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Abstract A common problem in control chart analyses is idgaWith autocorrelated
data. This problem is very often faced by fittingdtable time-dependence model to
data and by building the chosen control chart snasiduals based on the assumption
that the stochastic process, of which the obsedetdset is considered as a finite
realization, is gaussian. In this paper the chafcdealing with autocorrelated non-
gaussian data in control charts is analyzed. Itiquéar, two cases will be considered:
the case of uncorrectly modeled autocorrelated @atd the case where time-
dependence in data is disregarded.

1 Introduction

A common problem in SPC (Statistical Process Conisaflealing with autocorrelated
data [4,5]. When a standard or a wrong analysipdied, control charts can be highly
unreliable. More specifically, [1] highlights th#ie rate of false positives (RFP), as
measured by the conditional probability of a fataé-of-control signal, is likely to
increase due to unmodeled correlated data; similarllarger rate of false negatives
(RFN) may be experienced. This problem is very oftaed by fitting a suitable time-
dependence model to data and by building the chosetnol chart on its residuals. To
get into details, the following steps are needgdtientify the presence of dependence
of data upon time; ii) identify a correct equatit;mh model such a dependence; iii)
estimate the parameters of such a model; iv) coeniht estimated residuals and check
if the dependence upon time has been eliminatedu¥) the chosen control chart. To
implement step i), the sample autocorrelation fiancfacf) is usually computed and the
significance of its values is discussed up to dable lag. Such a task is usually
accomplished by drawing suitable confidence bamdthe acf graph. These bands are
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based, however, on the assumption that the stachastcess, of which the observed
dataset is considered as a finite realization,aigsgian. The same assumption bases
often steps ii) and iii): in the former the Box-Jarkprocedure is usually applied and a
correct model is identified by comparing the obsdrgample acf with its theoretical
counterpart corresponding to a suitable gaussianegs in the ARMA class; in the
latter, the gaussian assumption is used to competdikelihood and to get the ML
estimates of parameters (such estimates being leoveepivalent to the ones got from
the OLS method under the same assumption). Firthkynormality of the process, or
at least of the innovation term as below detailedften essential to step iv), where the
significance of the estimated values of the redidafis to be discussed.

In this paper the chance of dealing with autocatesl non-gaussian data in control
charts is analyzed.

2 Focus on the problem

To be consistent with more situations of non-noityjiah general ARMAQ,q) model
will be assumed for the proce&s which generated datab,(B) - X;= 0,(B)- ¢,

t=12,.. where ®,(B)=1-¢;B—p,B*—-—¢,B?, 0,B)=1-6,B—
8,B? —---— 6,B% and B denotes the backward operator, Be.X; = X;_;. The noise

& in model (1) is often callethnovation term. Classically thes;'s are assumed to be
independently identically distributed €0, ¢2); this assumption, along with suitable
constraints on the values of the parameters ofnibeel, let the proces§ be stationary
gaussian. When the innovation term fails to be gians the normality of; is not
necessarily prejudiced & can be often regarded as a linear combinatiom®Et's
(like in the simple AR(1) case). Provided the laties iid, the central limit works and
X; turns out to be marginally approximately normal.ddurse this fact does not give
strictly a Gaussian process, but the significarfche values of the sample acf can be
meaningfully discussed. In the following, we wilhphasize however that, due to the
non-normality of the innovation term, some probleould still arise when the control
chart is built on residuals of an incorrectly sfiedi model. There are other cases where
the non-normality of the innovation term cau&esot to have a gaussian distribution,
not even marginally or approximately. A simple exdanis when a MA(1) process with
non-normal innovation is faced. In this chance, dlgmificance of the estimated acf is
harder to discuss and hence the dependence of upema time is likely to be
disregarded or at least incorrectly modeled. Thance will be further discussed.

It has to be emphasized that an unidentified tiegeddence of data, along with an
incorrectly specified time-dependence model, cad k& meaningless control charts, as
detailed in the Introduction. Consider first the eaghen the innovation term is non-
gaussian, buf, is marginally approximately normal. Despite stgpni the above-
reported sequence poses specifically no problerspes difficulties could be
experienced in the development of step ii). In [Bls shown that, when the innovation
is not normal, a correct identification of a mo¢even in the simpler AR class) needs
to consider deeper tools than the acf, such as misned the second and of the third
order. More than the problem of misspecificatidre hon-normality of the error term
could pose further problems in step v) above: dwmethe non-normality of the
innovation, the estimated residuals are likelytodie gaussian. Hence the classical test
to check if the dependence upon time has beenrglted, based on Pearson’s product-
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moment autocorrelation coefficient r, could giveskeading results at least if the
sample size is not very large. To avoid such drakdaone can revert to alternative
measures of time-dependence of residuals, sudieasetial version of Spearman's rho.
A simple example will give some evidence of suchead. Suppose that the process
which generated data is AR(2) where the random iataw terms are iid with non-
normal distribution (Logistic, Laplace and Cauctjyppose further that the researcher
erroneously estimates an AR(1) model and wants $b tiee autocorrelation of
residuals. To compare the ability of different sest detect the dependence upon time
which still characterizes data, Tables 1-3 reploet simulated powers of the 5%-level
tests based on Spearman’s rho and on Peansadare specifically, 10000 samples of
size 10 were generated after setting differenteslof the parametds, in the AR(2)
model (and fixing the parametéy, to 0.5) and the percents of a correct rejectiothef
hypothesis of randomness was computed, when abéestd on the residuals of an
estimated AR(1) model is applied. As expected, ¢ésehhased on Spearman’s rho gives
a substantial gain of power, even if there are cageere both tests have relatively
small powers. To evaluate the effect on the peréorra of the related Shewhart control
chart, Tables 1-3 report the simulated RFPs and RBBifng aware of an unmodeled
second-order component is likely to reduce suocbsratence, a non-standard analysis
of residuals, with a consequent different spedificaof the time-dependence model, is
here to be advised.

Table 1: Simulated powers, RFPs and RFNs when the innavétion has a Logistic distribution.

b, 1/2 1/4 1/8 1/16 1/32
Spearman 18.13 8.31 5.31 4.45 3.82
Pearson 16.39 6.26 3.56 2.60 2.21

RFP/RFN 0.57/55.99 0.58/41.85 0.55/39.52 0.40/32.3Y.74/28.94

Table 2: Simulated powers, RFPs and RFNs when the innavéation has a Laplace distribution.

b, 1/2 1/4 1/8 1/16 1/32
Spearman 13.89 4.71 2.99 2.42 2.36
Pearson 10.86 2.26 1.08 0.70 0.58

RFP/REN 1.26/44.07 1.30/25.28 1.23/17.47 1.17/14.31.32/16.42

Table 3: Simulated powers, RFPs and RFNs when the innavétion has a Cauchy distribution.

b, 1/2 1/4 1/8 1/16 1/32
Spearman 23.46 8.88 5.64 4.38 4.02
Pearson 11.22 1.34 0.62 0.30 0.38

RFP/REN 0.72/23.52 0.79/11.75 0.97/8.94 0.77/7.49 .88/0.10

The above reported second case of non-normalitiiocorrelated data, that is the
one whereX; in not even approximately gaussian, is surely mdedicate. The
considered problem of an incorrect significancelysis of the estimated acf is here
faced in the very beginning, at step i). This faould probably affect the whole
procedure and hence the final performance of tinéralochart is likely to be very poor.
A natural way is to apply a suitable transformatiordata so that it can be reduced to
normality [2]. Finding a good transformation howeve not an easy task, especially
when the source of non-normality and the actuaritigion of the process are not
completely known. Moreover, the researcher coultirealize the need for a control
chart based on residuals. Consider the followingrgta where the underlying process
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is MA(1) with innovation terms following non-normdistribution (Logistic, Laplace
and Cauchy). Again, 10000 datasets of size 10 wemergted and the parameggrin
the MA(1) model was fixed to different values. Tebl4-6 report the percents of a
correct rejection of the hypothesis of randomnéssed on Spearman’s rho and on
Pearson’s r. These results show that a prelimiaasfysis of data uniquely based on r
could result in a poor performance of a Shewhantrob chart, as further evidenced by
the reported values of the simulated RFPs and RPNs.

Table4: Simulated powers, RFPs and RFNs when the innovéion has a Logistic distribution.

01 1/2 1/4 1/8 1/16 1/32
Spearman 12.36 7.52 5.28 5.45 4.96
Pearson 11.22 5.62 3.20 2.65 2.08

RFP/RFN 0.57/55.93 0.25/30.13 0.08/15.71  0.10/12.11.04/4.82

Table5: Simulated powers, RFPs and RFNs when the innavéation has a Laplace distribution.

0, 1/2 1/4 1/8 1/16 1/32
Spearman 12.95 7.72 6.25 5.41 4.87
Pearson 10.90 4.95 2.78 2.07 1.86

RFP/RFN 0.67/51.58 0.23/27.03  0.07/15.57  0.07/9.93.01/4.21

Table 6: Simulated powers, RFPs and RFNs when the innavétion has a Cauchy distribution.

01 1/2 1/4 1/8 1/16 1/32
Spearman 13.17 9.65 7.10 5.93 5.56
Pearson 6.26 2.64 1.39 0.97 1.06

RFP /REN 2.48/26.72 0.62/14.55 0.10/6.80 0.10/4.13 .04/0.60

Some final comments can now be given. First, thitings of the reported
simulations are surely limited: different valuestioé parameters of the ARMA model
should be tried, along with a wider set of valuesthe sample size. Nonetheless, an
important warning could be given: a good developnadrcontrol charts should never
neglect the use of alternative measures of timexgggnce along with the usual r. This
fact could increase the awareness of the researcheteeper unmodeled time-
dependencies in data and hence the need for meaneetl tools of analysis. An
extended discussion of such a need will be thecobjea future paper.
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