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Abstract A common problem in control chart analyses is dealing with autocorrelated 
data. This problem is very often faced by fitting a suitable time-dependence model to 
data and by building the chosen control chart on its residuals based on the assumption 
that the stochastic process, of which the observed dataset is considered as a finite 
realization, is gaussian. In this paper the chance of dealing with autocorrelated non-
gaussian data in control charts is analyzed. In particular, two cases will be considered: 
the case of uncorrectly modeled autocorrelated data and the case where time- 
dependence in data is disregarded. 

1 Introduction 

A common problem in SPC (Statistical Process Control) is dealing with autocorrelated 
data [4,5]. When a standard or a wrong analysis is applied, control charts can be highly 
unreliable. More specifically, [1] highlights that the rate of false positives (RFP), as 
measured by the conditional probability of a false out-of-control signal, is likely to 
increase due to unmodeled correlated data; similarly, a larger rate of false negatives 
(RFN) may be experienced. This problem is very often faced by fitting a suitable time-
dependence model to data and by building the chosen control chart on its residuals. To 
get into details, the following steps are needed: i) identify the presence of dependence 
of data upon time; ii) identify a correct equation to model such a dependence; iii) 
estimate the parameters of such a model; iv) compute the estimated residuals and check 
if the dependence upon time has been eliminated; v) build the chosen control chart. To 
implement step i), the sample autocorrelation function (acf) is usually computed and the 
significance of its values is discussed up to a suitable lag. Such a task is usually 
accomplished by drawing suitable confidence bands on the acf graph. These bands are 
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based, however, on the assumption that the stochastic process, of which the observed 
dataset is considered as a finite realization, is gaussian. The same assumption bases 
often steps ii) and iii): in the former the Box-Jenkins procedure is usually applied and a 
correct model is identified by comparing the observed sample acf with its theoretical 
counterpart corresponding to a suitable gaussian process in the ARMA class; in the 
latter, the gaussian assumption is used to compute the likelihood and to get the ML 
estimates of parameters (such estimates being however equivalent to the ones got from 
the OLS method under the same assumption). Finally, the normality of the process, or 
at least of the innovation term as below detailed, is often essential to step iv), where the 
significance of the estimated values of the residual acf is to be discussed.  

In this paper the chance of dealing with autocorrelated non-gaussian data in control 
charts is analyzed.  

2 Focus on the problem 

To be consistent with more situations of non-normality, a general ARMA(p,q) model 
will be assumed for the process �� which generated data: Φp�B� ∙ Xt = Θq�B� ∙ �� , 
� = 1,2, … where Φp�B� = 1 − ϕ�B − ϕ�B� − ⋯ − ϕ�B�, Θq�B� = 1 − θ�B −

θ�B� − ⋯ − θ�B� and  B denotes the backward operator, i.e. B ∙ Xt = ����. The noise 
�� in model (1) is often called innovation term. Classically the ��’s are assumed to be 
independently identically distributed as ��0,  ��; this assumption, along with suitable 
constraints on the values of the parameters of the model, let the process �� be stationary 
gaussian. When the innovation term fails to be gaussian, the normality of �� is not 
necessarily prejudiced as �� can be often regarded as a linear combination of the ��’s 
(like in the simple AR(1) case). Provided the latter are iid, the central limit works and 
�� turns out to be marginally approximately normal. Of course this fact does not give 
strictly a Gaussian process, but the significance of the values of the sample acf can be 
meaningfully discussed. In the following, we will emphasize however that, due to the 
non-normality of the innovation term, some problem could still arise when the control 
chart is built on residuals of an incorrectly specified model. There are other cases where 
the non-normality of the innovation term causes �� not to have a gaussian distribution, 
not even marginally or approximately. A simple example is when a MA(1) process with 
non-normal innovation is faced. In this chance, the significance of the estimated acf is 
harder to discuss and hence the dependence of data upon time is likely to be 
disregarded or at least incorrectly modeled. This chance will be further discussed. 

It has to be emphasized that an unidentified time dependence of data, along with an 
incorrectly specified time-dependence model, can lead to meaningless control charts, as 
detailed in the Introduction. Consider first the case when the innovation term is non-
gaussian, but �� is marginally approximately normal. Despite step i) in the above-
reported sequence poses specifically no problems, some difficulties could be 
experienced in the development of step ii). In [3], it is shown that, when the innovation 
is not normal, a correct identification of a model (even in the simpler AR class) needs 
to consider deeper tools than the acf, such as moments of the second and of the third 
order. More than the problem of misspecification, the non-normality of the error term 
could pose further problems in step v) above: due to the non-normality of the 
innovation, the estimated residuals are likely not to be gaussian. Hence the classical test 
to check if the dependence upon time has been eliminated, based on Pearson’s product-
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moment autocorrelation coefficient r, could give misleading results at least if the 
sample size is not very large. To avoid such drawbacks, one can revert to alternative 
measures of time-dependence of residuals, such as the serial version of Spearman's rho. 
A simple example will give some evidence of such a need. Suppose that the process 
which generated data is AR(2) where the random innovation terms are iid with non-
normal distribution (Logistic, Laplace and Cauchy). Suppose further that the researcher 
erroneously estimates an AR(1) model and wants to test the autocorrelation of 
residuals. To compare the ability of different tests to detect the dependence upon time 
which still characterizes data, Tables 1-3 report the simulated powers of the 5%-level 
tests based on Spearman’s rho and on Pearson’s r. More specifically, 10000 samples of 
size 10 were generated after setting different values of the parameter ϕ� in the AR(2) 
model (and fixing the parameter ϕ� to 0.5) and the percents of a correct rejection of the 
hypothesis of randomness was computed, when a test based on the residuals of an 
estimated AR(1) model is applied. As expected, the test based on Spearman’s rho gives 
a substantial gain of power, even if there are cases where both tests have relatively 
small powers. To evaluate the effect on the performance of the related Shewhart control 
chart, Tables 1-3 report the simulated RFPs and RFNs. Being aware of an unmodeled 
second-order component is likely to reduce such rates; hence, a non-standard analysis 
of residuals, with a consequent different specification of the time-dependence model, is 
here to be advised.  
 
Table 1: Simulated powers, RFPs and RFNs when the innovation term has a Logistic distribution. 

ϕ� 1/2 1/4 1/8 1/16 1/32 
Spearman 18.13 8.31 5.31 4.45 3.82 
Pearson 16.39 6.26 3.56 2.60 2.21 
RFP / RFN 0.57/55.99 0.58/41.85 0.55/39.52 0.40/32.37 0.74/28.94 

 

Table 2: Simulated powers, RFPs and RFNs when the innovation term has a Laplace distribution. 

ϕ� 1/2 1/4 1/8 1/16 1/32 
Spearman 13.89 4.71 2.99 2.42 2.36 
Pearson 10.86 2.26 1.08 0.70 0.58 
RFP / RFN 1.26/44.07 1.30/25.28 1.23/17.47 1.17/14.31 1.32/16.42 

 

Table 3: Simulated powers, RFPs and RFNs when the innovation term has a Cauchy distribution. 

ϕ� 1/2 1/4 1/8 1/16 1/32 
Spearman 23.46 8.88 5.64 4.38 4.02 
Pearson 11.22 1.34 0.62 0.30 0.38 
RFP / RFN 0.72/23.52 0.79/11.75 0.97/8.94 0.77/7.49 0.88/9.10 

 
The above reported second case of non-normality in autocorrelated data, that is the 

one where �� in not even approximately gaussian, is surely more delicate. The 
considered problem of an incorrect significance analysis of the estimated acf is here 
faced in the very beginning, at step i). This fact could probably affect the whole 
procedure and hence the final performance of the control chart is likely to be very poor. 
A natural way is to apply a suitable transformation to data so that it can be reduced to 
normality [2]. Finding a good transformation however is not an easy task, especially 
when the source of non-normality and the actual distribution of the process are not 
completely known. Moreover, the researcher could not realize the need for a control 
chart based on residuals. Consider the following example where the underlying process 
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is MA(1) with innovation terms following non-normal distribution (Logistic, Laplace 
and Cauchy). Again, 10000 datasets of size 10 were generated and the parameter θ� in 
the MA(1) model was fixed to different values. Tables 4-6 report the percents of a 
correct rejection of the hypothesis of randomness, based on Spearman’s rho and on 
Pearson’s r. These results show that a preliminary analysis of data uniquely based on r 
could result in a poor performance of a Shewhart control chart, as further evidenced by 
the reported values of the simulated RFPs and RPNs. 
 

Table 4: Simulated powers, RFPs and RFNs when the innovation term has a Logistic distribution. 

θ� 1/2 1/4 1/8 1/16 1/32 
Spearman 12.36 7.52 5.28 5.45 4.96 
Pearson 11.22 5.62 3.20 2.65 2.08 
RFP / RFN 0.57/55.93 0.25/30.13 0.08/15.71 0.10/12.11 0.04/4.82 

 

Table 5: Simulated powers, RFPs and RFNs when the innovation term has a Laplace distribution. 

θ� 1/2 1/4 1/8 1/16 1/32 
Spearman 12.95 7.72 6.25 5.41 4.87 
Pearson 10.90 4.95 2.78 2.07 1.86 
RFP / RFN 0.67/51.58 0.23/27.03 0.07/15.57 0.07/9.93 0.01/4.21 

 

Table 6: Simulated powers, RFPs and RFNs when the innovation term has a Cauchy distribution. 

θ� 1/2 1/4 1/8 1/16 1/32 
Spearman 13.17 9.65 7.10 5.93 5.56 
Pearson 6.26 2.64 1.39 0.97 1.06 
RFP / RFN 2.48/26.72 0.62/14.55 0.10/6.80 0.10/4.13 0.04/1.60 

 
Some final comments can now be given. First, the settings of the reported 

simulations are surely limited: different values of the parameters of the ARMA model 
should be tried, along with a wider set of values for the sample size. Nonetheless, an 
important warning could be given: a good development of control charts should never 
neglect the use of alternative measures of time-dependence along with the usual r. This 
fact could increase the awareness of the researcher of deeper unmodeled time-
dependencies in data and hence the need for more advanced tools of analysis. An 
extended discussion of such a need will be the object of a future paper. 
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