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Abstract We consider a dichotomous population in which every person belongs
either to a sensitive group A or to the non sensitive complement A. The object of
interest is to estimate the population proportion of individuals who are members of
A. We refer to a randomized response model proposed by Huang (2004), where also
another parameter is present, namely the probability that a respondent truthfully
states that he/she belongs to A in a direct response survey. In the paper the posterior
distribution of the parameters under the joint Jeffreys and Reference prior is derived.
The properties of the noninformative priors are investigated through the frequentist
coverage probabilities of posterior quantiles.
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1 Introduction

In survey sampling questions about sensitive issues are likely to lead to refusals
or untruthful answers, making inferential results unreliable. To improve respondent
cooperation and to encourage truthful answers, Warner [3] proposed a data collec-
tion procedure, the randomized response technique, that allows to obtain sensitive
information preserving the confidentiality of the responses. Since Warner’s [3] first
paper several randomized response plans have been developed. We will focus on a
procedure proposed by Huang [1] where each interviewee is fist asked directly if
he/she is in the sensitive group A or in the non sensitive complement A. Only the
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respondents bearing to belong to A undergo a randomization, implemented as pro-
posed by Warner [3]. In [1] the model is considered from a classical perspective
and the method of moments is used to estimate the parameters.

The model in [1] has been further developed in Barabesi and Marcheselli [2],
who implemented a different randomization in the second stage and also proposed
a Bayesian analysis of the model, using independent Beta priors on the parameters.

In section 2 we briefly review the model. In section 3 we introduce the prior
distribution and derive the posterior for the parameters. We check the properties
of the noninformative prior in terms of frequentist coverage of one tail credible
intervals.

2 The model

Consider a dichotomous population in which every person belongs either to a sen-
sitive group A or to the non-sensitive complement A. The parameter of interest is
6, the population proportion of individuals in Group A. We assume that a simple
random sample of size n is drawn from the population.

The randomized response procedure proposed by Huang [1] works in two stages.
First the sample respondents are required to answer to the direct question whether
they belongs to group A or not. Only the respondents answering that they do not
belong to A procede to the second stage. Each of them is provided with a chance
device to select one of the questions: “Question 1: Do you belong to Group A?” and
“Question 2: Do you belong to Group A?”. Let p be the probability to select the first
question, with p known. The respondents do not report the outcome of the random
device. Thus, if a respondent says “Yes”, the interviewer does not know whether the
“Yes” refers to the first or the second question.

It is assumed that the respondents belonging to A answer the truth to the direct
question in the first stage with probability &, but that they gives totally honest an-
swers in the second stage, since they properly understand the random mechanism
and feel their privacy preserved by it. On the other hand, the respondents not be-
longing to A have no reason to lie. Thus it is reasonable to expect that they will be
completely truthful in their answers, no matter whether they have to answer to the
direct question or if they undergo the randomized response stage.

We will denote by Y the Bernoulli random variable, observed on each individual
in the sample, assuming value 1 if the answer to the direct question is “Yes” and
0 otherwise. For each respondent undergoing the randomized procedure, let Z be a
Bernoulli random variable taking value 1 if the final answer is “Yes”.

Since only respondents who belong to A and tell the truth answer “Yes” to the
direct question, we have that P(Y = 1) = 0&, while P(Z=1,Y =0)=(1-&)0p+
(1 —0)(1 — p). In fact the randomized procedure gives a “Yes” if the respondent
answers to Question 1, belongs to A and lied to the direct question or if he/she
answers to Question 2 and does not belong to A. Thus the likelihood function is:
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3 An Objective prior analysis

In order to derive the Jeffreys prior distribution for (6, &) and to compute the poste-
rior summaries of interest, we first reparametrize the model as follows.

LetX; =Y 1y Xo =Y 1 z(1 =), X3 =X (1 —z)(1 —yi) =n—X; — X,
o1 =06& and ¢p = (1 —&)0p+ (1 —0)(1 — p). Then (X;,X2,X3) has a Trino-
mial distribution, namely a Multinomial distribution on three cells, with parameters
(@1,¢2,1 — ¢1 — ¢,n) and parametric space defined by the following constraints:
91 €[0,1] and ¢ € [(1 — p)(1 — ¢1), p(1 — ¢1)], where, without loss in generality,
we assume p > % Note that when p = 1 the constraints on the parameter space
vanish and ¢, = 0 — ¢, 1 — ¢ — ¢ = 1 — 0. In particular X + X, has a Binomial
distribution with parameters n and 0 and the sample procedure give the same infor-
mation as a direct question sampling, when no respondent lies. However the closer
p is to 1 the lower is the privacy allowance provided by the procedure and conse-
quently the cooperation expected by the respondents. Note also that if p = % there
is an identifiability problem since ¢ = 1 — ¢; — ¢ = %(1 —¢1).

The usual computations give the Jeffreys prior distribution for (¢;, ¢;):

1 1
2Ky (1, 1) [0192(1— 91 — ¢2)]1/2

where (Pl € [Oa 1] and ¢2 € [(1 —p)(l - ¢1)7p(1 - ¢1)]’ Ku,b(aaﬁ) = Bh (avﬁ) -
B, (ct,B) and B; (o, ) is the Incomplete Beta function. Equation (1) is also the
Reference prior distribution for {¢;, ¢, }.

The corresponding posterior distribution is

©(91,92) ey

(P;CI*%(D;Z*% (1 _ ¢1 _ ¢2)n7x17x27%
B(x; + %,n—xl +1)Ki—p, (x2—|— %,n—xl —x2+ %)

(P1, Pa|x1,x2,n) =

Since the relation between (0, &) and (@1, ¢») is one to one (apart on a set of null
measure), the Jeffreys and Reference prior for (0,£) can be easily obtained via a
Jacobian argument:

2p—1 _ -
m0.8)= 0= §)ep+(1-0)(1—p)
1(1-§)8(1—p)+(1-0)p] 2 @

with 6 € [0,1] and & € [0, 1], and the corresponding posterior distribution is
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To evaluate the prior (2) from a frequentist perspective, we compute P,(6,&) =
Prg £(6 < 6y), the frequentist probability that 8y is larger than the actual value,
where 6y is the yth posterior quantile. Table 1 contains P o5(6,&) for n = 100 and
various values of 0, & and p. The calculations were done by simulation, generat-
ing 1,000 samples for each (0, &, p). The standard error for the entries in Table
1 is about 0.002. As expected the posterior quantiles perform poorly in frequentist
terms near the boundary of the parameter space. However things should be consid-
ered in perspective: no satisfactory frequentist methods are available in this case. In
the other situations the values of Py95(0,&) are close to 0.95, indicating that 695
exceeds O the correct (from a frequentist point of view) proportion of time. Slightly
better performances are obtained when p is larger.

7(0,&|x1,x2,n) =

Table 1 Frequentist coverage probabilities of 0.95 posterior quantiles

6=0.1 60=03 60=05 0=07 6=0.9

E=0 p=0.7 1 0.959 0.956 0.958 0.944
p=0.9 0.981 0.943 0.956 0.962 0.952
E=01 p=07 1 0.969 0.953 0.952 0.938
p=0.9 0.984 0.951 0.955 0.952 0.951
E=03 p=07 1 0.981 0.957 0.956 0.945
p=0.9 0.990 0.954 0.956 0.958 0.950
E=05 p=07 1 0.991 0.964 0.955 0.955
p=09 0.994 0.959 0.954 0.953 0.949
E=07 p=07 1 0.998 0.982 0.964 0.951
p=09 0.997 0.969 0.953 0.952 0.952
E=09 p=07 1 1 0.998 0.992 0.978
p=09 0.999 0.984 0.970 0.961 0.951
E=1 p=07 1 1 1 0.999 0.999
p=09 0.999 0.992 0.986 0.983 0.980
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