Alternative Bayesian analysis of capture
recapture data with behavioral effect modelling
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Abstract In the context of capture-recapture experiments we consider a generalized
version of a model framework recently proposed in Chao and Yang (2005) to better
understand behavioural pattern in response to trapping experience. A general order
Markov structure allows to incorporate in the analysis flexible behavioural effects on
the capture probabilities. We point out that the conditional likelihood approach used
in the original work to carry out inference yields unbounded estimates with positive
probability. We derive conditions under which pathological inference occurs and
connect it to a similar problem highlighted within a different restricted removal
sampling framework. To overcome the likelihood failure we investigate alternative
Bayesian estimators under different non-informative prior distributions and verify
with a simulation study their comparative merits in terms of efficiency and interval
estimate coverage.
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1 Capture-Recapture behavioural effect modelling

Consider a discrete-time closed capture-recapture experiment in which population
size is assumed to be constant (no birth-death or immigration-emigration) and indi-
viduals are observed at 7 > 1 trapping times. Let N be the true population size. The
number of distinct units captured during the study is denoted with M. We also sup-
pose that all units act independently and there is no misclassification. Ideally data
can be represented as a N X T binary matrix X = [x;;] where x; = 1 if unit i-th is
captured in the #-th occasion and x;; = 0 otherwise. Assume that the units captured
during the whole trapping stage are conveniently labeled from 1 to M and those not
captured from M + 1 to N; hence we can observe only the firsts M rows of the matrix
X. The space of all possible capture histories is 27 = {0,1}7. In the traditional be-
havioural model M}, as in [1] capture probabilities vary only once when first capture
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occurs. Model M, is the simplest way to consider a permanent change in behaviour
which has been termed in [5] “enduring effect to capture”; formally

M Pr(xp=1)= Pr(x,]—1|):l l)5,1—0):17 j>2 Vi
Pr(xjj = 1|Zl:1 xp>0)=r

Alternative model framework have been recently proposed to consider different as-
pects of the behaviour. First order Markov chain models have been introduced by [5]
to consider “ephemeral effect to capture”. Other ways to account behavioral effect
can be found in [8] and in [2] where other sources of heterogeneity are allowed. In
the generic Markov chain model of order k capture probabilities depends only on
the capture status in the previous k occasions. For k = 1,2 we have

M., : {P()m =1)=plxj=1x;-1=0)=po, Vj>1 Vi
plxij=1lxij1 =1)=p;
Pr(xjy = 1) = Pr(x;j = 1|xi =0) = Pr(xjj = 1|x;j—2 = 0,x;j—1 =0) = poo, Vj>2 Vi
M. - Pr(xljfl\x,l —1) Pr(x,171|x,»j,2:0,x,-j,| :1):])0]
2 Pr(xij = 1]xijj—2 = 1,x;j-1 = 0) = pyo
Pr(xij = lxijj—o = Lxjj_1 =1)=pu

It is also possible to consider both ephemeral and enduring effects together consid-
ering the marked status (marked-no marked) in the previous occasions; obviously if
a unit is captured in the previous occasions it is also marked. In [5] a conditional
likelihood approach is used to estimate the parameters involved in the model. The
procedure is based on the factorization of the likelihood function as in [10]; denote
with p the vector of transition probabilities involved in the model, the likelihood can
be factorized

L(N,p) =< L,(N,p) x L.(p)

where L.(p) is the conditional likelihood and it represents the conditional distribu-
tion of the M capture histories conditionally on the fact that each unit is observed
and L, (N, p) is the residual likelihood. The procedure consists of 2 steps: first com-
pute p maximizing L.(p) and then maximize L,(N,p) with respect to N. In [6]
it is pointed out for the first time the conditional likelihood failure for a removal
model. One can easily show that the likelihood structure of the removal model is
indeed equivalent to the likelihood structure of model M}, which is relevant for the
estimation of N; in the same article the authors characterized the condition under
which the estimate of N is unbounded. Indeed we draw the attention on the fact that
the same problem occurs for Markovian models and similar conditions can be ob-
tained (see [3]). The likelihood failure problem is often neglected in the literature,
although it is not infrequent especially when the population size N is not big and
the capture probability is small. In [7] it is shown that the failure problem affect
also UMLE and the condition for occurrence is derived. To overcome the likeli-
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hood failure problem the authors proposed a method based on weighted (integrated)
likelihood. It is natural to regard more generally the weighted likelihood approach
within the Bayesian approach where the weight function acts as a prior distribu-
tion on the capture probability. A theoretical justification is given in [4] where the
advantages of using the integrated likelihood are illustrated. In this short paper we
discuss alternative implementations of a fully Bayesian approach where one has to
specify prior distributions on all unknown parameters. In particular we will consider
4 different non-informative prior distributions on N: Uniform, one over N, one over
N? and the Rissanen’s prior; when conjugate distributions are used for the capture
probabilities the marginal posterior for N can be obtained in closed form integrating
the joint distribution over the parameters p as follow

7(NIX) < [ L(V.p)m(N)dp

2 Simulation study

In order to evaluate the performance of our Bayesian analysis and compare it with
the classical CMLE we set up a small simulation study where the true population
size N is fixed to be 100 and the number of trapping occasions is 7 = 5. Alternative
capture probability configurations are considered corresponding to moderately high
and low expected sample coverage as in the following Table 1.

Table 1 Description of simulation experiments.

Trial Model Capture probabilities M

1 M, p=02;r=04 67.49
2 M, p=0.1;r=03 41.06
3 M., Po=02p =04 67.49
4 M., po=0.1:p; =03 41.06
5 ]WL-2 Poo = 0.2;[)10 = 0.3;]70] = 0.35;]7]] =04 67.49
6 M., poo =0.1;p10 =0.2; po1 =0.3;p1; = 0.4 41.06

@ X is the empirical mean of the number of sampled distinct individuals which approximates the
underlying expected sample coverage.

To summarize the posterior distribution and provide a point estimate we consider
4 different statistics: posterior mean, posterior median, posterior mode and a mini-
mizer, denoted as mR, of the posterior expected loss corresponding to the quadratic
relative error as in [9]. We display in Table 2 the root relative mean square error
estimated with a Monte Carlo estimate using 1000 replicated data for each param-
eter configuration. Not only do we experience the advantages of the Bayesian ap-
proach over more traditional conditional likelihood in the more general Markov
model framework but we also verify the substantial dependence of the Bayesian
performance on the specific choice of prior input and posterior summary and sug-
gest that a more formal investigation on the possibility of defining a robust efficient
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default Bayesian analysis. In our little experience the choice of a Rissanen prior or
1/N? for N and the relative error posterior loss minimizer mR as a posterior estimate
seem to be preferred in terms of efficiency and robustness.

Table 2 Estimated root relative mean square error and empirical coverage and average length in
simulated data of alternative interval estimates with nominal confidence level 0.95.

Prior Tr. 1 Tr. 2 Tr. 3 Tr. 4 Tr. 5 Tr. 6
1/N? Mean 0.374 0.356 0.163 0.463 0.271 0.454
Median 0.216 0.323 0.146 0.313 0.195 0.295
Mode 0.167 0.421 0.132 0.286 0.150 0.345
mR 0.167 0.350 0.134 0.262 0.159 0.291
HPD 1. 95.3% 88.0% 94.7% 90.6% 94.8% 89.8%
(120.9) (163.9) (57.1) (144.4) (81.9) (172.7)
Rissanen Mean 0.688 0.807 0.177 0.895 0.410 1.109
Median 0.293 0.342 0.155 0.445 0.241 0.407
Mode 0.170 0.407 0.135 0.285 0.156 0.330
mR 0.194 0.327 0.140 0.273 0.178 0.280
HPD 1. 96.0% 92.8% 95.1% 97.3% 95.7% 93.0%
(194.5) (342.0) (59.9) (204.1) (97.3) (319.4)
CMLE 0.704% 1.284% 0.176 0.642* 0.337+ 0.542%
CL 95.1% 94.5% 94.5% 94.5% 94.9% 97.2%
(2388.9)  (7201.6)  (69.4) (488.8) (175.1) (855.2)

b the * sign denotes the presence of likelihood failure.
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