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Abstract Previous researches dealing with combined time-series cross-section (TSCS)
data usually assume that complete time-series exist for all the variables and all the
cross-section units under consideration. In many contexts, however, this may be a
very restrictive assumption. Our paper is concerned with problems of distance com-
putation when every cross-section unit has contiguous data, but the time frames over
which indicators are measured may differ for starting and/or ending dates.
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1 Introduction

TSCS data are usually organized into a three-way array of data referring to a set
of m units, indexed by r = 1,2, . . . ,m, in which each unit is described by a set of
p different time series or variable, indexed by j = 1,2, . . . , p. Both the set of units
and the set of variables remain unchanged during the period of observation. In most
cases, the lengths of time series are short, e.g. consisting of only 5− 10 time steps
and seldom more than 20. In this case, it is essential to make the most efficient use of
the few observations that are available. While there are a variety of problems related
to TSCS data, in this paper we focus on the equalization of time series of unequal
lengths in situations where the time series are fairly short for one reason or another.
Our goal is to facilitate the computation of distance functions (e.g. the Minkowski
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metrics) for clustering algorithms, which cannot be applied to time series with un-
equal length.

Let us consider the time series xr, j observed on the unit r for the variable j
for the period [ar, j, . . . ,br, j] and suppose that there are data not reported at the
start and/or at the end of a time series with respect to the longest time interval
for which the j-variable of the TSCS data set is observed: α j = min1≤r≤n ar, j and
β j = max1≤r≤n br, j j = 1,2, . . . ,m. Data falling in [α j,ar, j−1] or [br, j +1,β j, ] are
considered missing. It is important to distinguish between missing values due to a
shorter time interval and values that are omitted for other reasons (e.g. experimental
inaccuracies, irregularities in data collection). Only the former type is considered in
our paper. Also, we will not discuss of missing values that appear after the begin-
ning or before the end of the time series, because they require techniques which are
outside the scope of this paper but have been clearly established elsewhere.

Lack of values at the extremes of the time series raise problems for the computa-
tion of distance functions requiring continuous data points. It is therefore customary
to remove the leading and trailing “not available” observations and confining the
computation to the shortest overlapping time period. Truncation, however, forces
the longer time series to shrink (downsampling) to the length of the shorter which
implies a waste of potentially useful information. Similar problems arise if one con-
centrates attention to the cross-section units for which a complete time series is
available (thus forming a balanced sub-panel). Such a procedure appears to be un-
reliable due to the limited number of time points suffered by both time series and
cross-sectional analysis.

2 Review of the Proposed Approaches

When two time series have a different length, it is possible to increase the number
of data points by padding, upsampling, or interpolating the time-series to obtain se-
quences of the same length (see [2]). For reasons of space, we shall not pursue the
first class of techniques beyond observing that their overall results are less satisfac-
tory than those obtained by upsampling or interpolation.
Uniform scaling. [2] suggested a simple technique for transforming a time series
xr, j of length ηr, j to produce a new time series of length η j. The formula is: x+

r, j,t =
xr, j,s for s = dt f e t = 1,2, . . . ,η j where f = ηr, j/η j is the scaling factor and d.e
denotes the smallest integer not less than the argument. Uniform scaling implies the
duplication of a certain number of values of the shorter time series using multiple
copies of a value until its length equals that of the longest time series (with respect
of the j-th variables of the panel). The values to be duplicated are selected uniformly
(upsampling) in the range of the time series being stretched.
Asymmetrical filters. The completion of a sequence is similar in a sense to the
calculation of the asymmetrical moving average filters used at the end-points of a
time series to estimate the trend-cycle curve or the seasonal factor curve. See, for
example, [3]. At each time point, the estimate x̂r, j,t can be obtained by fitting a local
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polynomial just to the first (2hr, j +1) or the last (2kr, j +1) observations. This is
equivalent to taking linear combinations with weights that depends only upon the
degree of the polynomial and the number of points to fit.

x̂r, j,t =
∑u∈Ur, j wt,uxr, j,u

∑u∈Ur, j wt,u
, t ∈ Tr, j (1)

where U = [1, . . . ,2hr, j +1] ,Tr, j = [α j, . . . ,ar, j−1] for the missing values on the left
and U = [2kr, j, . . . ,br, j] ,Tr, j = [br, j +1, . . . ,β j] for the missing values on the right.
Box-Jenkins models. The simplest encountered model is the AR(1) model

xr, j,t = φ0,r, j +φ1,r, jxr, j,t−1 + εt t = α j, . . . ,β j,
∣∣φ1,r, j

∣∣ < 1 (2)

where φ0,r, j/
(
1−φ1,r, j

)
is the expected value and φ1,r, j determines the linear de-

pendency in xr, j. The εt are independent errors with mean zero and finite variance.
Estimation of the parameters and the associated standard errors can be done using
maximum likelihood after skipping the missing observations. The time series are
then enlarged with the forecasted values (forward or backward). See [4].

3 Experimental Results

To illustrate the two procedures, we choose the “Synthetic Control Chart Time Se-
ries” data set which contains 600 examples of time series each with 60values gen-
erated by the process introduced by [1]. There are 6 different classes with 100 rep-
resentative examples from each class. We divide the 60 observations of each se-
ries into m consecutive subsequences of equal length ηm = 60/m,m = 3,4,5 which
acts as the variables of the TSCS data set. For a number of cluster c ∈ {2, . . . ,6}
we select {31,21,16,13,11} cases (cross-section units) for each cluster from the
classes 1,2, . . . ,c. When c 6= 6, the classes are chosen at random (without replace-
ment) from 1, . . . ,6 in each repetition of the experiment. To simulate time spans of
different length, we randomly omit 0,1, . . . ,4 contiguous entries at the beginning
and end respectively of each subsequence. For all pairs of the m units we com-
pute the city-block distance between the adjusted time series d (xr, j,xs, j) which
form the distance matrix D j relative to the j-th variable for j = 1,2, . . . ,m so
that a comparison of two cross-section units becomes a comparison of two set of
matrices. Finally, the units are classified using the Partitioning around medoids
(PAM) algorithm on the weighted distance matrix D = ∑

p
j=1 (w j/∑

m
i=1 w j)D j with

w j = max1≤r,s≤m d (xr, j,xs, j). The adjusted Rand index (ARI) is chosen as validation
measure. To compare the stability of the results, the data generation is repeated for
1000 times for each k and for each m. In all the experiments, we set k to the number
of classes in the data set. The numerical summaries are given in Table 1.1.
It can be easily seen that, for all the methods, the mean values and the standard de-
viation of the ARI criterion, decrease as the number of cluster increases. This can
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Table 1 Adjusted Rand index for interpolation methods

No imputation Filtering AR(1) model Upsampling
c 3 4 5 3 4 5 3 4 5 3 4 5

Mean
2 0.716 0.756 0.779 0.765 0.785 0.809 0.779 0.811 0.816 0.747 0.773 0.798
3 0.653 0.683 0.686 0.695 0.699 0.715 0.709 0.721 0.729 0.678 0.689 0.704
4 0.607 0.633 0.653 0.647 0.646 0.674 0.651 0.661 0.680 0.631 0.643 0.669
5 0.568 0.591 0.604 0.605 0.609 0.616 0.607 0.618 0.622 0.595 0.605 0.614
6 0.540 0.561 0.577 0.569 0.575 0.585 0.569 0.580 0.593 0.555 0.572 0.582

St. Dev.
2 0.339 0.329 0.314 0.324 0.327 0.311 0.322 0.317 0.313 0.325 0.331 0.315
3 0.172 0.178 0.176 0.174 0.176 0.178 0.174 0.182 0.181 0.172 0.178 0.172
4 0.110 0.108 0.110 0.114 0.107 0.114 0.114 0.111 0.113 0.110 0.110 0.110
5 0.073 0.075 0.071 0.070 0.068 0.066 0.068 0.072 0.070 0.074 0.070 0.071
6 0.057 0.058 0.057 0.060 0.057 0.062 0.058 0.056 0.060 0.059 0.059 0.050

be considered an indication of the diminishing ability of the clustering algorithm
PAM/City block to determine the appropriate number of clusters. On the other hand,
the ARI is stable across the number of segments in which the original time series are
divided, save perhaps an almost imperceptible increase for m = 5. The effectiveness
of the padding procedures discussed in the previous section, can be determined by
comparing their results with those obtained with no imputation. The improvement
due to padding is evident, although not very pronounced. As a whole, the perfor-
mance of the three proposed methods is of the same order of magnitude, although
the impression is that there is a difference in favor of the AR(1) modeling.

There is no single best procedure to adjust time series of unequal length and
a variety of techniques are available to make up the required length. Our modest
experiment, however, should act as a deterrent to those who would quickly compute
distances only for overlapping intervals.
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