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Abstract A von Mises Markov random field model is introduced for the analysis of
spatial series of angles. Because the likelihood function of the model is unknown up
to a normalizing constant, two inferential procedures are proposed for parameter es-
timation. The first one is based on the maximization of a pseudo-likelihood function
and provides a computationally convenient, consistent, although inefficient estima-
tor. The second one is based on the maximization of a Monte Carlo Markov Chain
approximation of the likelihood and is more efficient than the pseudo-likelihood
estimator, although computationally more expensive. The model is illustrated on a
spatial series of sea currents directions.
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1 Introduction

Spatial series of angles arise when a circular variable is observed at a number of sites
in a spatial domain and appear often in environmental, epidemiological and ecolog-
ical studies. These data are often analyzed in a regression framework, exploiting a
spatial linear predictor that includes the spatial coordinates of the observation sites
and linking the expected response of a circular variable to the predictor through a
suitable link function that maps the real line into the circle. Widely used is, for ex-
ample, the von Mises regression model, where the mean parameter of the von Mises
density is linked to the spatial predictor through an arctangent link function.

Inference in circular regression models is normally carried out by assuming that
the observed angles are conditionally independent, given the linear predictor. This
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independence assumption, however, is often too restrictive in the analysis of spatial
series. Only the large-scale spatial variation of the data is typically explained by a
spatial predictor and regression residuals are often spatially autocorrelated, due to
the small-scale variation of the data.

The literature on the spatial modeling of angles is limited.In a geostatistical con-
text, [9] introduced the cosineogram as a measure of spatialautocorrelation between
angles. In a Bayesian framework, [8] introduced a spatial autoregressive model for
circular data by transforming and combining two spatial conditional autoregressive
(CAR) processes.

Taking a likelihood-based approach to inference, a von Mises Markov random
field (VM-MRF) model is proposed for the analysis of spatial circular data. The
VM-MRF is a Markov random field whose coordinates are random variables with
a circular support and whose finite-dimensional marginal distributions belong to an
exponential family with low-dimensional sufficient statistics. Both the Markovian
structure and the low-dimensionality of the model allow foran intuitively appeal-
ing interpretation of the parameters and facilitate the implementation of inferential
procedures.

2 The von Mises Markov random field model

The VM-MRF is a spatial array of random variableYi, indexed by the sitesi of
a spatial domainS and defined on the circle,yi ∈ [−π ,π). It is defined by then-
dimensional multivariate von Mises densities

f (y;θ) =
exp{κc(y−µ(β))1+ λ

2s(y−µ(β))T C s(y−µ(β ))}
C(κ ,λ )

, (1)

known up to the parameterθ = (β,λ ,κ), where

c(y−µ(β))T =(cos(y1− µ1(β)) . . .cos(yn − µn(β)))

s(y−µ(β))T =(sin(y1− µ1(β)) . . .sin(yn − µn(β))) ,

whereasC(κ ,λ ) is the normalizing constant,µi(β) is a mean response linked to
a linear predictorxT

i β trough a suitable link function mapping the real line to the
circle and an available covariate profilexT

i that includes the spatial coordinates of
the observation site,κ is a concentration parameter,λ is a spatial dependence pa-
rameter and, finally,C is a binary, symmetric adjaciencyn×n matrix that specifies
a spatial neighborhood structure between observation sites, i.e. each sitei ∈ S is as-
sociated with a neighborhoodN(i)⊂ S and the generic elementci j of C is equal to
1 if j ∈ N(i) and 0 otherwise.

The likelihood function of a VM-MRF model is a special case ofthe multivariate
von Mises density, introduced in [7] for bioinformatic studies and recently exploited
in enviromental studies [5, 6]. For large values of the concentration parameter, this
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Fig. 1 Observed directions of sea currents (top left), spatial trend and small scale variation (top
and bottom right) as predicted by a von Mises MRF through MCMCmaximum likelihood; bottom
left: the neighborhood structure used to define the von MisesMRF.

likelihood is well approximated by the likelihood of a Gaussian CAR process and
maximum likelihood estimation is straightforward. Under low concentration lev-
els, otherwise, the likelihood is known up to an intractablenormalizing constant
and direct likelihood maximization is not possible. Approximation methods such as
pseudo-likelihood estimation [1] or Markov Chain Monte Carlo (MCMC) maximum
likelihood [3] procedures are however relatively straightforward. Under a VM-MRF
model, the univariate conditional distribution of each observation given the rest of
the sample is von Mises, with parameters that depend only on the values taken by the
field in the local neighborhood. As a result, maximization ofthe pseudo-likelihood
reduces to a von Mises regression problem and the samples required by MCMC
maximum likelihood can be generated by a simple Gibbs-sampling scheme. More-
over, the finite-dimensional marginal distributions (1) ofthe VM-MRF belong to an
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exponential family with low-dimensional sufficient statistics. This facilitates the nu-
merical maximization of both the pseudo-likelihood and theMCMC-approximated
likelihood function by standard Newton-Raphson algorithms.

3 Analysis of marine currents in the Adriatic sea

This paper was motivated by the analysis of sea current directions, provided by the
NASCUM project, a program for the mapping of the surface currents in the Northen
Adriatic Sea with high frequency (HF) radars. This area is affected by intense mar-
itime traffic and accidental spillage episodes caused by ship navigation. Models of
coastal marine circulation can therefore help to assess theenvironmental risk associ-
ated with these pollution sources. Figure 1 (top left-hand side) depicts the HF data,
during a Bora episode. A VM-MRF model was fitted, exploiting alinear spatial
trend as predictor and using an inverse tangent transformation as a link function. A
queen’s adjacency structure (Figure 1, bottom-left picture) was exploited to detect
the small-scale spatial variation of the data. The results depicted in Figure 1 (top
and bottom right-hand side) have been obtained by the maximization of a MCMC
approximation to the likelihood function. The spatial trend component is given by
the marginal expectationµ(β̂), while the small-scale variation component is given
by the conditional expectationE(Yi|yN(i); θ̂), whereθ̂ = (β̂, κ̂ , λ̂ ) are the MCMC
maximum likelihood estimates, obtained from the data. It isworth noting that the
decomposition of the data into a small scale and a large scalecomponent depends
on both the choice of a simple linear gradient and a queen’s adjacency structure and,
as a result, should be interpreted with care [4].
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