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Abstract In recent years several researchers have proposed the use of the Gaussian
graphical model defined on a high dimensional setting to explore the dependence
relationships between random variables. Standard methods, usually proposed in lit-
erature, are based on the use of a specific penalty function, such as the L1-penalty
function. In this paper our aim is to estimate and compare two or more Gaussian
graphical models defined in a high dimensional setting. In order to accomplish our
aim, we propose a new computational method, based on glasso method, which let
us to extend the notion of p-value.

Key words: Gaussian graphical models, glasso, model selection

1 Introduction

In recent years many researchers have developed new methods to estimate a genetic
network which can bring useful results to elucidate the biological process of interest.
From a pure statistical point of view, the problems that we have when we want to
estimate a genetic network are concerned with the study of an high-dimensional data
set, namely a data set in which the number of variables is larger than the sample
size. Under this setting the dominant paradigm postulates that “what makes high
dimensional statistical inference possible is the assumption that the parameter vector
is sparse” [1].

Aim of this paper is to propose a new computational method to estimate and com-
pare the topological structure of two Gaussian Graphical Models (GGMs) defined
in a high dimensional setting. Inside the theory of this kind of graphical models, the
assumption of sparsity is translated on the assumption that the concentration matrix,
denoted by Ω = {ωi j}, is a sparse matrix. To make this paper clearer, we briefly
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review the theory underlying the GGMs. A graph is defined as a pair G = {V,E},
where the vertex set V is a finite set of p vertices and E ⊆V ×V is the set of ordered
pairs of distinct vertices. A given edge (i, j) ∈ E is called undirected if and only if
the pair ( j, i) belongs to the set E, otherwise it is called directed. When any edge
belonging to E is undirected, the corresponding graph G is said undirected. The
GGM is the most simple undirected graphical model where the vertices represent
the variables and the edges represent the partial correlation between two variables
given all the other variables. Formally two given random variables, say Xi and X j,
are conditional independent given all the other variables when the corresponding
partial correlation coefficient, ρi j|V\(i j) = ωi j/

√
ωiiω j j is equal to zero. To make

parameter estimation and model selection in the GGM, [2] propose the following
L1-penalized likelihood estimator

Ω̂(λ ) = max
Ω

`(Ω ;S)−λ‖Ω‖1, (1)

where S is the empirical variance/covariance matrix, `(Ω ;S) = logdetΩ − tr(SΩ)
is the log-likelihood function and ‖Ω‖1 = ∑i 6= j |ωi j|. Then, the corresponding esti-
mator is called graphical lasso (glasso). The optimal value of the turning parameter,
denoted by λ̂opt , is chosen by means of the Bayesian Information Criterion (BIC).
Although the estimated sparse concentration matrix, Ω̂(λ̂opt), can be useful, for ex-
ample, to elucidate a specific biological process, there is a considerable interest in
understanding if penalized partial correlation coefficients change going from an ex-
perimental condition to another one. In this paper we propose a permutation-based
method to test the null hypothesis that there is no change in penalized partial corre-
lation coefficients.

The remaining part of this paper is structured as follows. In the section 2 we ex-
plain the proposed permutation method and in the section 3 we evaluate the behavior
of the proposed method through a simulation study. Conclusions are also given.

2 A permutation method

In this section we shall assume, without loosing in generality, that we are working
with only two experimental conditions. Let y be a n-dimensional vector of labels
identifying the two conditions, i.e. using y+

i to identify the ith unit belonging to the
first condition and y−j to identify the jth unit belonging to the second condition, we
can write:

y =
(

y+
1 , . . . ,y+

n+ ,y−n++1, . . . ,y
−
n++n−

)′
where n+ is the number of units belonging to the first condition, n− is the number of
units belonging to the other condition. Then, the sample size n is equal to n+ +n−.
Let X be a n× p random matrix. Using the vector y, the random matrix X can be
defined joining the two random matrices X+ and X− corresponding to the first and
second condition, respectively. To formalize our method, we shall assume that the
rows of the matrices X+ and X− are normally distributed with 0 expected value and
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concentration matrices Ω+ and Ω−. Let ω̂
+
i j (λ̂

+
opt) be the estimated L1-penalized

partial correlation coefficients corresponding to the vertices i and j estimated using
X+. Similar notation is used to identify the quantities related to X−. A first simple
method to compare ω̂

+
i j (λ̂

+
opt) and ω̂

−
i j (λ̂

−
opt) is by using the observed Euclidean

distance, namely
d(i, j) =

∣∣∣ω̂+
i j (λ̂

+
opt)− ω̂

−
i j (λ̂

−
opt)
∣∣∣ . (2)

To assess the statistical significance of the change in the penalized partial correla-
tion coefficients, the following method to approximate the null distribution of (2) is
proposed.

Let yb be the b-th permutation of the vector y and let X+
b and X−b the two cor-

responding permuted matrices. Using the Bayesian Information Criterio (BIC) we
can estimate the two permuted sparse concentration matrices, denoted by Ω̂

+
b (λ̂+

opt)
and Ω̂

−
b (λ̂−opt), and then we can compute the permutation version of (2), denoted by

db(i, j). The permutation p-value can be easily computed repeating the previous step
B times as shown in Table 1. Since the L1-penalized Gaussian graphical model is a
consistent variable selection method, in other words the estimated model contains
the true model with probability tending to one, we can set ω̂

+
i j,b and ω̂

−
i j,b equal to

zero if ω̂
+
i j = 0 and ω̂

−
i j = 0. In this way we can significantly reduce the total amount

of hypothesis that we have to test.

Table 1 Pseudo-code of the L1-penalized differential sparse network analysis

Steps Algorithm
1 for b = 1 to B
2 compute the permutation vector yb
3 use yb to identify the matrix X+

b
4 use X+

b , the glasso and the BIC to compute Ω̂
+
b (λ̂+

opt,b)
5 use yb to identify the matrix X−b
6 use X−b , the glasso and the BIC to compute Ω̂

−
b (λ̂−opt,b)

7 compute

db(i, j) =
∣∣∣ω̂+

i j,b(λ̂
+
opt,b)− ω̂

−
i j,b(λ̂

−
opt,b)

∣∣∣
8 for the edge (i, j), the permutation p-value is defined by

pi j = ∑
B
b=1 I(db(i, j)>d(i, j))

B
with I(·) equal to one if the argument is true, zero otherwise

3 Simulation study and conclusions

In order to evaluate the proposed method, a simulation study has been carried out.
We run 50 simulations with p = 150 and n+ = n− = 100. Each row of the matrix
X+ was drawn from Np(0;Ω−1) where ωi,i = 1 and ωi,i+1 = 0.5. Each row of X−
was drawn from Np(0; I), where I is the identity matrix. We set B = 1000. Under
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the considered scenario, Fig. 1 seems to suggest that, under the null-hypothesis, the
p-values are not distributed as a uniform distribution.

Fig. 1 Gray dot curves are
corresponding to the distribu-
tion of the permuted p-values.
Black curve identify the mean
curve. Vertical gray dot lines
correspond to the thresh-
olds used to identify which
connections are significantly
different. Black dot line cor-
responds to the mean value of
the thresholds.
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In order to identify which connections are significant differently, Fig. 1 points
out a threshold equal to the minimum of each curve indicated by grey dotted ver-
tical lines. In correspondence with the just defined threshold values, Table 2 shows
the main summary measures used to evaluate the behaviour of the proposed per-
mutation method. These results seem to emphasize that for the considered scenario,
our procedure gives satisfactory results. Aim of our future work will be to define a
mixture model to estimate the FDR.

Table 2 Results from the simulation study. We reported the median of the cardinality of the active
set |A |, of the false negative (FN) and of the false positive (FP). The mean values of the False
Discovery Rate (FDR), of the Sensitivity (Se.) and of the Specificity (Sp.) are also reported

|A | FN FP FDR Se. Sp.
309.5 3 13 0.01 0.99 0.99
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