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Abstract Aim of this paper is to investigate the effect of model uncertainty on mul-
tivariate volatility prediction. This effect is expected to be particularly relevant in
applications to vast dimensional datasets since it is well known that, in this case,
the need for tractable model structures requires the imposition of severe and often
untested constraints on the volatility dynamics. By means of an application to the
optimization of a vast dimensional portfolio of stock returns, the paper compares the
performances of different models and combination procedures. The main finding is
that results are highly sensitive not only to the choice of the model but also to the
specific combination procedure being used.
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1 Introduction

In multivariate volatility prediction model uncertainty is a relevant problem to be
faced by researchers and practitioners. The risk of model misspecification is partic-
ularly sizeable in large dimensional problems where highly restrictive assumptions
on the volatility dynamics are usually required (see e.g. Pesaran, Schleicher & Zaf-
faroni, 2009). In order to reduce the impact of misspecification at the forecasting
stage, a typical approach is to consider the combination of forecasts from different
competing models. Although some recent papers have been focused on the evalua-
tion of forecast accuracy of MGARCH models (Patton & Sheppard, 2008; Laurent,
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Rombouts & Violante, 2011) less attention has been paid to the combination of
volatility forecasts from different models as a strategy for improving the predictive
accuracy (Amendola & Storti, 2008). Also, it has to be considered that in theory
different combination strategies could be implemented but, for a given application,
only one must be chosen. A combination strategy is defined by the identification
of two different elements: a combination rule, which is a function of the alterna-
tive forecasts available, and an estimator of the weights assigned to each model. As
a consequence of these choices, an additional source of uncertainty, related to the
choice of the combination strategy, is introduced into the analysis.
Aim of this work is to discuss some alternative forecast combination strategies for
(possibly HD) multivariate volatility forecasts and compare their empirical perfor-
mances. Section 2 introduces the reference model used for the analysis while some
alternative estimator of the combination weights are discussed in Section 3. The sta-
tistical properties of the estimators have been assessed by a Monte Carlo simulation
whose results are not presented here but are available upon request. Section 4 con-
cludes illustrating the results of an application to the optimization of a portfolio of
stock returns.

2 The reference model

The data generating process is assumed to be given by

rt = Stzt t=1,...,T, T+1,...,T+N

where T is the end of the in-sample period, zt
iid∼ (0, Ik) St is any (k × k)

positive definite (p.d.) matrix such that StS
′

t = Ht = V ar(rt|It−1), Ht =
C(H1,t, . . . ,Hn,t; w) with Hj,t being a symmetric p.d. (k × k) matrix. In prac-
tice Hj,t is a conditional covariance matrix forecast by a given ‘candidate model’.
The functionC(.) is an appropriately chosen combination function and w is a vector
of combination parameters. The weights assigned to each candidate model depend
on the values of the elements of w but do not necessarily coincide with them. Dif-
ferent combination functions C(.) can in principle be used and there is no a priori
valid procedure for selecting the optimal function. Among all the possible choices
of C(.), the most common is the linear combination function

Ht = w1H1,t + . . .+ wnHn,t wj ≥ 0

where w coincides with the vector of combination weights. The assumption of non-
negative weights is required in order to guarantee the positive definiteness of Ht but
can be too restrictive. Alternatively, in order to get rid of the positivity constraint
on the wj , two different combination functions can be selected: the exponential and
square root combination function. The exponential combination is defined as

Ht = Expm [w1Logm(H1,t) + . . .+ wnLogm(Hn,t)]
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where Expm(.) and Logm(.) indicate matrix exponential and logarithm respectively.
Differently from the other two functions, the square root combination (for St) is not
directly performed on the Hj,t but on the Sj,t

St = w1S1,t + . . .+ wnSn,t

with Ht = StS
′

t and Hj,t = Sj,tS
′

j,t.

3 Weights estimators

For the estimation of the combination parameters we consider three different estima-
tion approaches: Composite Quasi ML (CQML), Composite GMM (CGMM) and
‘Pooled’ Mincer-Zarnowitz (MZ) regressions. All the estimators considered share
the following features: i) do not imply any assumption on the conditional distri-
bution of returns ii) can be applied to large dimensional problems. In the CQML
method the estimated wi are obtained by performing the following optimization:

ŵ = argmax
w

∑
i6=j

L(r(ij)|w, IN ),

where r(ij)
t = (ri,t, rj,t)′, ŵ = (ŵ1, . . . , ŵk)′ and

L(r(ij)|w, IN ) = −0.5
N∑

h=1

log(|H(ij)
T+h|)− 0.5

N∑
h=1

r(ij)
T+hH(ij)

T+h(r(ij)
T+h)′

is the (bivariate) quasi log-likelihood for the couple of assets (i,j) computed over the
prediction period [T+1,T+N].
The CGMM estimator extends the same framework to a GMM setting. The ŵi are
obtained by performing the following optimization:

ŵ = argmin
w

∑
i 6=j

m(r(i,j); w)′Ω(i,j)
N m(r(i,j); w)

r(i,j)
t = (ri,t, rj,t), for t = T+1, . . . , T+N .m(r(i,j); w) = 1

N

∑T+N
t=T+1 µ(r(i,j)

t ; w)

and µ(r(i,j)
t ; w) is a (p× 1) vector of moment conditions Ω

(i,j)
N is a consistent p. d.

estimator of

Ω(i,j) = lim
N→∞

NE(m(r(i,j); w∗)m(r(i,j); w∗)′)

with w∗ being the solution to the moment conditions i.e. E(m(r(i,j); w∗)) = 0.
Finally, in the ‘Pooled’ MZ regressions the ŵi are the OLS estimates of the param-
eters of the pooled regression model
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vech(Σ̃T+h) = w1vech(H̃1,T+h) + . . .+ wnvech(H̃n,T+h) + eT+h

for h = 1, ..., N , where, depending on the type of combination chosen, Σ̃t and H̃i,t

are appropriate transformations of Hi,t and Σt = Σt = rtr
′

t.

4 An application to stock returns

We consider an application to the optimization of a portfolio of stocks using data
from Chiriac and Voev (2011). Data refer to 2156 open to close daily returns on 6
NYSE stocks from 3/1/2000 to 30/7/2008. Six different candidate models and five
combination strategies are considered. For each of this we compute the associated
minimum variance portfolio and compare the empirical volatilities of the optimized
portfolios (table 1). The CGMM gives the lowest variance but the results appear to
be very sensitive to the choice of the model or combination strategy used.

Model Portfolio Variance∗ Comb. strategy Portfolio Variance∗
DCC 2.33188 REG(rv) 2.08441
CC 2.37658 REG 2.08733
ES 2.33857 CGMM 2.07337

MCOV(22) 2.67185 CQML 2.10192
MCOV(100) 2.10778 EW 2.08147

VECH 2.09339

Table 1 Realized portfolio variances ((∗):× 104) for different models, constant conditional corre-
lation (CC), dynamic conditional correlation (DCC), exponential smoothing (ES), k-days moving
covariance(MCOV(k)), and weights estimators, CGMM, QML, equally weighted (EW), MZ re-
gression (REG), MZ regression using realized covariance as dependent variable (REG(rv)). In all
cases a linear combination function is used.
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