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Abstract The present paper illustrates a sampling method, based on balanced sampling,
practical and easy to implement, which may represent a general and unified approach
for defining the optimal inclusion probabilities and the related domain sampling sizes
in many different survey contexts characterized by the need of disseminating survey
estimates of prefixed accuracy for a multiplicity both of variables and of domains of
interest. The method, depending on how it is parameterized, can define a standard
cross-classified or a multi-way stratified design. The sampling algorithm defines an
optimal solution - by minimizing either the costs or the sampling sizes - which
guarantees: (i) lower sampling errors of the domain estimates than given thresholds and
(i7) that in each sampling selection the sampling sizes for all the domains of interest are
fixed and equal to the planned ones. It is supposed that, at the moment of designing the
sample strategy, the domain membership variables are known and available in the
sampling frame and that the target variables are unknown but can be predicted with
suitable superpopulation models.

Introduction

A unified approach (Ul), which is practical and easy to implement, for defining
optimal multivariate multi-domain sampling is introduced below.

Some parts of this approach have been described with more details in the papers of
Falorsi and Righi (2008) and of Righi and Falorsi (2011).
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. The parameters of interest are RxD totals, the generic of which,
Har) = Zk y VY dk :Zk g Yk o represents the total of the variable » (=
€ eU,

1,...,R) in the Domain of Interest (D) U, (d=1,..., D) which is a subpopulation
(of size N, ) of the population U. The symbols y,, and y, denote respectively

the value of the r-th (r =1, ..., R) variable of interest of the k-th population unit and
the domain membership indicator being y, =1 if k€U, and y, =0 otherwise.

The y, values are known, and available in the sampling frame.

In addition to the Dls, the other subpopulations relevant in the approach are the
Planned Domains (PDs), U, (h=1,..., H), which are subpopulations for which the

sample designer want to plan and to fix in advance the sample sizes so as to control
the accuracy of the domain estimates. The PDs are in general defined as
subpopulations of the Dls. As described below in section 2, the definition of the
PDs allows to implement different sampling designs.

The random selection of the sample s is implemented with the cube algorithm
(Deville and Tille, 2004) respecting the following balancing equations:

zkes o, :zkeU 7, 8y in which, with reference to the unit &, 7 is the inclusion

probability and &), = (dy,....0y;) is a vector of indicator variables, available in the
sampling frame, being o, =1 if k€U, and &, =0, otherwise. The above

equations guarantee that in each possible sample selection, the realized sample
sizes for the planned domains U, are fixed and equal to the expected ones. Since

the PDs are defined as subpopulations of the Dls, also the latter have planned
sample sizes.
The unknown y,. values are predicted with a simple working model, M,

Vuk =Yk Tty in which, 3., and u, (k=1,...,N) denote respectively the
predictions and the random residuals which have the following model expectations:

Eyy () = 09k; Eyg (ufy) = 05 Epg (ygesttyg) =0 Ve = 1, 1)

further we assume 0% = o2 v[ wherev, is an auxiliary variable, o2and < are

scalar parameters which we assume as known when planning the sampling design.
In practice the scalar parameters have to be estimated from pilot or previous survey
data.

According to Deville and Tilleé (2005), an approximation of the Measure of the
Accuracy (MA) (eg. the sampling variance or the anticipated variance) of the
balanced sampling may be defined as implicit function of the inclusion
probabilities and of the squared residual of a generalized linear regression model
linking an appropriate transformation of the target variable (which may be known
or predicted) to the auxiliary variables involved in the balancing equations. Taking

into account the Horvitz Thompson (HT) estimator, ?(dr) = Z Yuyae! 7y of the

keU
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totals ¢(4-)and considering the Anticipated Variance (Isaki and Fuller, 1982) as

measure of accuracy , the MA may be expressed by:

MA(t(gry) = AV (t(gry |7) = Eps E , (tary — tar) |m)?
1 2
= kaeU (z—l) En {aryk)

(1.2)
where: E,, denotes the expectation over repeated sampling, = is the vector of the
inclusion  probabilities, 7y = (Ve + ) Yax = 7 Earye » S =NIIN-H),

’ -1 = H '
8(ar)k =0; A Zkeu 8 (Wt +upi) vax 1= 7 ), being A = Zkeuﬁkﬁk (=) -

6. The MA may be expressed with a general expression based on stable generic
terms assuming different forms, according to the chosen MA and to the sampling
context

~ Ddr)k 2 i
MA(tar)) =1 zkEU%—ZkGU((o(dr)k +zi:o”’l‘ Ci(dr)k(ﬂf)):| (1.3)

The stable generic terms @g, ), and @4, are fixed quantities (which may be
known or predicted) and the C;(,,(n) (i=0,1,2) are functions of the vector m. For
instance, the stable generic terms in the case of (1.2) are given by
g =% + 05 Var Pldr)k = Ddr)k »
Cowrr(m) = =28, A [Fuva b=y 0k & va A=),
Cuar () =287 A7 T D34y +0k Ot Yar L=7)1+

! , ' 2 27,1

+8% A7 b5 05 4y +Z,-€U 8,874 A-7;)% c51A 8,1,

’ —l ! ’ 2 2 —l
Cotar (@) = 8 A7 D505 ) +Z},€U 8,8, 7, -2 cZ1A T,
being by = ZkeU 8 o Yax A=1y) -

The expression (1.3) is suitable for an automated spreadsheet of the algorithm (see
below) defining the optimal inclusion probabilities.

7. The inclusion probabilities are defined as a solution of the following optimization
problem which guarantees lower sampling errors of the domain estimates

Min (ZkeU T Cr)
MA(f(4)) < Vigry (d=1...Dir=1..,R) (1.4
0< <1 (k=1,..,N)
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where: MA(?(d,)) is defined according to (1.3), V(dr) is a fixed quantity which defines

the threshold of the measure of accuracy of the estimate ?(d,) and ¢, is the cost for

collecting information from the unit k. The dominant term in the formula (1.3), is
ZkeU @(ary | 7, While the other addenda give a minor contribution. The algorithm for

solving the problem (1.4) consists of three nested calculation loops. The outer loop
fixes the values of the functions Cj(4i(m) . The inner loop defines the 7 values
which appear as multiplying factor of the functions C(4.yx(w) and then the innermost

loop is a modified Chromy algorithm (Falorsi and Righi; 2008) which finds the
solution to the minimum constrained problem (1.4) for given values  of

2
Z,‘:O Tk Ci(d)')k (m) .

2. Some examples

As a general rule, in order to define the optimal inclusion probabilities for a given

sampling strategy, the following operations have to be done:

1. Define the DIs and the related PDs.

2. Define the estimator. The HT estimator is considered in the above section; the
generalized regression estimator is introduced in section 3.

3. Define the form of the model (1.1) for predicting the unknown y,, values.

Define the form of the MA (eg. expression 1.2) and reformulate it according to the

general expression (1.3) which is suitable for the automation of the algorithm for

finding optimal inclusion probabilities.
The theory here illustrated is developed for single stage sampling; however, the
approach could be easily extended to consider the case of multistage sampling designs.
Some examples are given below in order to demonstrate how the proposed sampling
design could represent a way to generalize in a unified framework some well-known
sampling designs. In the following the anticipated variance is taken into account as
measure of the accuracy. Consider first the univariate and single-domain case in which
R=D=1.

Example 1. Optimal Stratified sampling

Assume that the PDs define a single partition of the population U, so that each PD
coincides with a stratum, and suppose that the predicted values of the variable r
(r=R=1) of interest are constant in each stratum with uniform stratum variance, e.g.

Vu=Y,and o2 =c? (for keU,). In this context the Ul defines a Stratified Simple
Random Sampling WithOut Replacement (SSRSWOR) design. If the costs ¢; are
uniform in each planned domain, that is ¢, =¢, for keU,, then the stratum sample
sizes are computed according to the optimal allocation (Cochran, 1977, section 5.5) in
which n, ~ N, o, /\/Z. If the costs ¢, are uniform for all the units in the
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population, then the well-known Neyman’s allocation is realized withn, ~ N, o, .
Eventually, if the variances are constant over strata, that is o,, =o,, then the
proportional allocation is implemented, resulting », ~ N,

Example 2. Optimal pps sampling
Assume that there is a single planned domain that coincides with the population U and

define the stable terms in (1.3) as gy :o—fk,(p(d,)k :a)(d,)k,q(d,)k(n):o
(i=0,1,2). Then, according to the results given in Sarndal et al. (1992, ch 12), the Ul
defines optimal inclusion probabilities proportional to the squared roots of the
measures of the heteroscedasticity : , ~ \/x_ .

Let us consider now the multivariate multi-domain case and suppose that the sampling
estimates have to be calculated for the domains of three domain types 7; (/=1, .., 3) each

of which defines a partition of the population of U of cardinality D, being
D=D;+D,+D;. A demonstration of how the sample size of the interest domains
may be obtained by different sampling designs is shown below.

Example 3

The standard approach, here denoted as cross-classified or one-way stratified design,
defines the strata by cross-classifying the modalities of the three domain types.

We can obtain the one-way stratified design with the Ul by assuring that the U,

coincide with the strata of the one-way stratified design. Then: H =D;xDy,xD5. The
vectors &), are defined as (0,..,1,...,0) vectors and each U, can be defined by a specific

intersection of the populations of three domains of interest, one for each domain type.
Furthermore if, for every variable » of interest, the predicted values are constant in

each stratum with uniform stratum variance, e.g. y,, =Y, and o2 = o2, (for keU,),
then a SSRSWOR design is implemented. After some algebra the (1.2) becomes

- 2 D 2
AV (t(gry |7) = ther,, O-rhzkeuh Um-)=r Zd:lzhel"‘, o Ny (Ny /0y, =1),

since the terms y,, disappear and 7, = 7, (for keU,).

Example 4
Consider the previous situation in which the U, coincide with the strata of the one-

way stratified design and the predicted values are constant in each stratum. If the model
variances are proportional to a known values of some auxiliary variable,

eg. a,zk :O',Z v, then a stratified random sampling without replacement with varying
inclusion probabilities design is implemented.

Example 5
The PDs U, are defined combining all the couples of the domains of the domain types;

then H =(DyxD,)+(DyxD3)+(D,xD3) and the &) are defined as vectors with three

values equal to one, each in correspondence of one of the three above couples, e.g.
(....,0,1,0,..,0,1,0.,..,0,1,0,...,0).
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Example 6
Some PDs U, agree with the domains of one population partitions, for instance 7;, and

the others U, are defined combining couples of the remaining domain types 7, and
T;. Then: H=D;+(D,xD3) and the &) are defined as vectors having two values
equal to one, the first in correspondence to the domains of the partition 7; and the
second in correspondence to the couple of the partitions 7, and 73, e.g.
(...,0,1,0...,0,1,0,...,0).

Example 7
The PDs U,, agree with the domains of interest; then H =D, + D, +D;and the &) are

defined as vectors with three ones each in correspondence to one of the three domain
types.

The examples 3 and 4 describe one-way (or standard) stratified designs, while the
remaining examples (5,6,7) refer to a multi-way stratified design. The choice of the
sampling design depends on theoretical and operative reasons. From the operative view
point the implementation of the one-way stratified design belongs to the current culture
of the survey practitioners and it's implementation is uncomplicated, while the multi-
way design is seldom adopted for defining the sampling strategies of the actual surveys;
however these kinds of designs allow to face a lot of empirical contexts in which the
traditional approach fails to achieve the target objectives.

3 Remarks on the regression estimator

Consider the case in which for producing the sampling estimates, vectors of auxiliary
variables are available for all the population units and suppose that the predictions
based on this auxiliary information are those given in model (1.1). In this context, the
estimates of interest may be computed with a generalized modified regression
estimator, which may be expressed as (Rao, 2003, pag. 20):

gregl(ar) = ZkeU Yk Vak +Zkes g Y Imy (r=1,...R ;d=1,..., D). (3.1)

An approximation of the Anticipated Variance of the estimator (3.1) under balanced
sampling is

AV(greg ;(dr) | 7"') = EM [kaEU (1/7[1{ _1) greg’](?_dr)k] )

: , -1
beING greq M(dryk = trk Vi _”ksk[zjeuﬁjaj 7i-7;)] zkEU5j wy Vg (A=7;).

The expression of the residuals 4,474« IS €quivalent to the expression 74,.); given
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in formula (1.2), except for the substitution of the terms (¥, + ) ¥gr With s 7 -
The derivation of the expression of stable generic terms of (1.3) is straightforward.

4 Remarks on nonresponse

Suppose that, for different causes, it is impossible to collect the survey variables from
some sample units. Only to make the things simple, let us further hypothesize that: (7)
the phenomenon of nonresponse is substantially different among the PDs U,

(h=1,...,H); (ii) the response propensities, &, , are roughly constant for the units
belonging to the subpopulation Uy, , that is 6, = 8, for k € U}, ; (iif) when planning the
sample design, a quite reliable estimate, say 5,, , of the response propensity of the units

belonging to U;, may be obtained from the previous surveys. According to the strategy

proposed in Sarndal and Lundstrom (2005, expression 6.4), the estimator of the totals
of interest is calculated with the calibration estimator:

ctftay = Dy nbri¥ax 2l O (P=1. R d=1,..., D), (4.)

where: s* is the sample of respondents; ék is the sample estimate of the response
- _ 5y\-1s 1 5y\-ls & 1-1
probability; 4 =1+[> 8, -2 (7;0)7'8, 1}, (7,6,)™8,8,17,.
In the context here described, the response probabilities may be estimated by
ék =my,In;, for kes; =s*NU, being m,, the sample size of s;. Let us note that the

stratum response probabilities have been introduced with two different symbols, éh and

éh , since the first is an estimate available when planning the sample design, and the

latter is estimated from the current survey data. Under the hypothesis that by
calibrating in each PD, the nonresponse bias becomes negligible and considering the
response phenomenon as a second phase of sampling, then the MA of (4.1) may be
computed by (Sérndal and Lundstrém; 2005, pag. 150):

MA(ml f(dr)) =4 V(cal ;(dr) |7t) = AVsam +4 VNR

in which AV

sam = EnE, (Zkesy,k;/dk vy Iz |®) is the anticipated variance of the

calibrated estimator in the absence of nonresponse and
AVyg =E,E,V, (Zk Yada Vil ékﬁk |m) represents the additional part of
€S

variability due to the phenomenon of non-response, denoting with 7, () the variance of
(4.1) over different sets of respondents.
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— ’ ry—1 . "
Let e, =y —Sk(zjeuﬁ_/éj) Z(/eyafy’i denote the residual with respect to the
regression model in which the variables of interest y,, are regressed with respect to

the auxiliary vectors &) and let ,o2 indicate the model variance of e, . By adopting,
in the phase of planning the sampling design, the reasonable approximations

-1 2.2 ~
(erk 7ak =7k A Z_/eU 75 d; Yawers U 7mp =1)" =epyg, and  f=1, the
anticipated variance of (4.1) may be approximated by
- 2 5 2 ; 0 —p
AV Carlan 1M =", U eomicracl0) =), eOncva),  being 6 =0,
for k e U;, . Thus, having reliable estimates of the response propensities ék and of the

model variances o7, it is possible to define the inclusion probabilities that

individuate the minimum cost solution, taking into account the additional part of the
variance deriving from the expected non response. After some simple algebra, in this
context, the terms of the general expression (1.3) of the MA are given by:

Ogrye = eO'er Y dk lék v Pldryk = eo'fk Yk Ci(dr)k(n) =0 (for i=0,1,2). Let us note that,

if the model variance is constant in each PD 4 (that is ,o2% =025, forkeU,), then
7, =ny, | Ny and then the MA may be reformulated according to the sound expression
(Sérndal and Lundstrém; 2005, pag. 171-172)

A~ H ~
AV (cartary Im) = thlNh (NyImy=1) 05

being m;, = §h ny, the expected number of respondents in U, .
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