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Abstract The present paper illustrates a sampling method, based on balanced sampling, 
practical and easy to implement, which may represent a general and unified approach 
for defining the optimal inclusion probabilities and the related domain sampling sizes 
in many different survey contexts characterized by the need of disseminating survey 
estimates of prefixed accuracy for a multiplicity both of variables and of domains of 
interest. The method, depending on how it is parameterized, can define a standard 
cross-classified or a multi-way stratified design. The sampling algorithm defines an 
optimal solution - by minimizing either the costs or the sampling sizes - which 
guarantees: (i) lower sampling errors of the domain estimates than given thresholds and 
(ii) that in each sampling selection the sampling sizes for all the domains of interest are 
fixed and equal to the planned ones. It is supposed that, at the moment of designing the 
sample strategy, the domain membership variables are known and available in the 
sampling frame and that the target variables are unknown but can be predicted with 
suitable superpopulation models. 

Introduction 

A unified approach (UI), which is practical and easy to implement, for defining 
optimal multivariate multi-domain sampling is introduced below.  
Some parts of this approach have been described with more details in the papers of 
Falorsi and Righi (2008) and of Righi and Falorsi (2011). 
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1. The parameters of interest are RxD totals, the generic of which, 
=)(drt ∑∑ ∈∈

=
dUk rkUk dkrk yy γ  , represents the total of the variable r (r =  

1,…,R) in the Domain of Interest (DI) dU  (d=1,…, D) which is a subpopulation 
(of size dN ) of the population U. The symbols rky  and dkγ  denote respectively 

the value of the r-th (r =1, …, R) variable of interest of the k-th population unit and 
the domain membership indicator being 1=dkγ  if dUk∈  and 0=dkγ otherwise. 
The dkγ  values are known, and available in the sampling frame.  

2. In addition to the DIs, the other subpopulations relevant in the approach are the 
Planned Domains (PDs), hU  (h=1,…, H),  which are subpopulations for which the 

sample designer want to plan and to fix in advance the sample sizes so as to control  
the accuracy of the domain estimates. The PDs are in general defined as 
subpopulations of the DIs. As described below in section 2, the definition of the 
PDs allows to implement different sampling designs.  

3. The random selection of the sample s is implemented with the cube algorithm 
(Deville and Tillè, 2004) respecting  the following balancing equations: 

∑∑ ∈∈
=

Uk kksk k δδ π in which, with reference to the unit k, kπ is the inclusion 

probability and ),...,( 1 Hkkk δδ=′δ  is a vector of indicator variables, available in the 
sampling frame, being 1=hkδ  if hUk∈  and 0=hkδ , otherwise. The above 

equations guarantee that in each possible sample selection, the realized sample 
sizes for the planned domains hU  are fixed and equal to the expected ones. Since 

the PDs are defined as subpopulations of the DIs, also the latter have planned 
sample sizes. 

4. The unknown rky  values are predicted with a simple working model, M, 

rkrkrk uyy += ~  in which, rky~  and rku (k=1,…,N) denote respectively the 

predictions and the random residuals which have the following model expectations: 
 

 lkuuEuEkuE rlrkMrkrkMrkM ≠∀==∀= 0),(;)(;0)( 22 σ ,  (1.1) 
 
further we assume τσσ krrk v22 =  where kv  is an auxiliary variable, 2

rσ and τ are 
scalar parameters which we assume as known when planning the sampling design. 
In practice the scalar parameters have to be estimated from pilot or previous survey 
data. 

5. According to Deville and Tillè (2005), an approximation of the Measure of the 
Accuracy (MA) (eg. the sampling variance or the anticipated variance) of the 
balanced sampling may be defined as implicit function of the inclusion 
probabilities and of the squared residual of a generalized linear regression model 
linking an appropriate transformation of the target variable (which may be known 
or predicted) to the auxiliary variables involved in the balancing equations. Taking 
into account the Horvitz Thompson (HT) estimator, kUk dkrkdr yt πγ /ˆ )( ∑ ∈

=  of the 
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totals
 )(drt and considering the Anticipated Variance (Isaki and Fuller, 1982) as 

measure of accuracy , the MA may be expressed by: 
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  (1.2) 
where: pE  denotes the expectation over repeated sampling, π  is the vector of the 

inclusion probabilities, kdrkdkrkrkkdr guy )()( )~( πγη −+= , )/( HNNf −= , 

),1()~(1
)( kUk dkrkrkkkkdr uyg πγ −+′= ∑ ∈

− δAδ being )1( kkUk kk ππ −′=∑ ∈
δδA . 

6. The MA may be expressed with a general expression based on stable generic 
terms assuming different forms, according to the chosen MA and to the sampling 
context 
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The stable generic terms kdr)(ω and kdr)(ϕ are fixed quantities (which may be 
known or predicted) and the )()( πdriC (i=0,1,2) are functions of the vector π . For 

instance, the stable generic terms in the case of (1.2) are given by  

dkrkrkdrk y γσω )~( 22 += , kdrkdr )()( ωϕ = , 

=)()(0 πkdrC )]1(~[2 2
)(~1

kdkrkkdrydkrkk γy πγσ −+′= − δbAδ , 

,]])1([

)]1(~[2[)(

122
)(~)(~1

2
)(~1

)(1

kUj rjjdjjjdrydryk

kdkrkkdrydkrkkkdr γyC

δAδδbbAδ

δbAδπ

−
∈

−

−

∑ −′+′′+

+−+′−=

σπγ

πγσ
 

=)()(2 πkdrC  kUj rjjdjjjdrydryk δAδδbbAδ 122
)(~)(~1 ])1([ −

∈
− ∑ −′+′′ σπγ ,  

being )1(~
)(~ kUk dkrkkdry y πγ −=∑ ∈

δb . 

The expression (1.3) is suitable for an automated spreadsheet of the algorithm (see 
below) defining the optimal inclusion probabilities. 

7. The inclusion probabilities are defined as a solution of the following optimization 
problem which guarantees lower sampling errors of the domain estimates 
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where: )ˆ( )(drtMA is defined according to (1.3), )(drV  is a fixed quantity which defines 

the threshold of the measure of accuracy of the estimate )(̂drt  and kc  is the cost for 
collecting information from the unit k. The dominant term in the formula (1.3), is 

∑ ∈Uk kkdr πω /)( while the other addenda give a minor contribution. The algorithm for 

solving the problem (1.4) consists of three nested calculation loops. The outer loop 
fixes the values of the functions )()( πkdriC . The inner loop defines the i

kπ values 

which appear as multiplying factor of the functions )()( πkdriC  and then the innermost 
loop is a modified Chromy algorithm (Falorsi and Righi; 2008) which finds the 
solution to the minimum constrained problem (1.4) for given values  of 

∑ =

2

0 )( )(
i kdri

i
k C ππ .  

2. Some examples 

As a general rule, in order to define the optimal inclusion probabilities for a given 
sampling strategy, the following operations have to be done: 
1. Define the DIs and the related PDs. 
2. Define the estimator. The HT estimator is considered in the above section; the 

generalized regression estimator is introduced in section 3.  
3. Define the form of the model (1.1) for predicting the unknown rky  values. 
4. Define the form of the MA (eg. expression 1.2) and reformulate it according to the 

general expression (1.3) which is suitable for the automation of the algorithm for 
finding optimal inclusion probabilities.  

The theory here illustrated is developed for single stage sampling; however, the 
approach could be easily extended to consider the case of multistage sampling designs. 
Some examples are given below in order to demonstrate how the proposed sampling 
design could represent a way to generalize in a unified framework some well-known 
sampling designs. In the following the anticipated variance is taken into account as 
measure of the accuracy. Consider first the univariate and single-domain case in which 
R= D=1. 
 
Example 1. Optimal Stratified sampling  
Assume that  the PDs define a single partition of the population U, so that each PD 
coincides with a stratum, and suppose that the predicted values of the variable r 
(r=R=1) of interest are constant in each stratum with uniform stratum variance, e.g. 

rhrk Yy =~ and 22
rhrk σσ =  (for )hUk∈ . In this context the UI defines a Stratified Simple 

Random Sampling WithOut Replacement (SSRSWOR) design. If the costs kc  are 
uniform in each planned domain, that is hk cc =  for hUk∈ , then the stratum sample 
sizes are computed according to the optimal allocation (Cochran, 1977, section 5.5) in 
which hrhhh cNn /σ≈ . If the costs kc  are uniform for all the units in the 
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population, then the well-known Neyman’s allocation is realized with rhhh Nn σ≈ . 
Eventually, if the variances are constant over strata, that is rrh σσ = , then the 
proportional allocation is implemented, resulting .hh Nn ≈  
 
Example 2. Optimal pps sampling  
Assume that there is a single planned domain that coincides with the population U and 
define the stable terms in (1.3) as 2

rkdrk σω = , kdrkdr )()( ωϕ = , 0)()( =πkdriC  
(i=0,1,2). Then, according to the results given in Särndal et al. (1992, ch 12), the UI 
defines optimal inclusion probabilities proportional to the squared roots of the 
measures of the heteroscedasticity : kk x≈π . 
 
Let us consider now the multivariate multi-domain case and suppose that the sampling 
estimates have to be calculated for the domains of three domain types lT (l=1, .., 3) each 
of which defines a partition of the population of U of cardinality lD being 

.321 DDDD ++=  A demonstration of how the sample size of the interest domains 
may be obtained by different sampling designs is shown below. 
 
Example 3 
The standard approach, here denoted as cross-classified or one-way stratified design, 
defines the strata by cross-classifying the modalities of the three domain types.  
We can obtain the one-way stratified design with the UI by assuring that the hU  
coincide with the strata of the one-way stratified design. Then: 321 DDDH ××= . The 
vectors kδ′  are defined as (0,..,1,...,0) vectors and each hU  can be defined by a specific 
intersection of the populations of three domains of interest, one for each domain type. 
Furthermore if, for every variable r of interest, the predicted values are constant in 
each stratum with uniform stratum variance, e.g. rhrk Yy =~

 and 22
rhrk σσ =  (for )hUk∈ , 

then a SSRSWOR  design is implemented. After some algebra the (1.2) becomes  

∑ ∑∑∑ = Γ∈∈Γ∈
−=−=

D
d hhhh rhUk kh rhdr nNNfftAV

dhd 1
22

)( )1/()1/1()|ˆ( σπσπ , 

since the terms rky~ disappear and hk ππ = (for )hUk∈ .  
 
Example 4 
Consider the previous situation in which the hU  coincide with the strata of the one-
way stratified design and the predicted values are constant in each stratum. If the model 
variances are proportional to a known values of some auxiliary variable, 
eg. krrk v22 σσ = , then a stratified random sampling without replacement with varying 
inclusion probabilities design is implemented. 
 
Example 5 
The PDs hU  are defined combining all the couples of the domains of the domain types; 
then )()()( 323121 DDDDDDH ×+×+×=  and the kδ′  are defined as vectors with three 
values equal to one, each in correspondence of one of the three above couples, e.g. 
(0,...,0,1,0,...,0,1,0,...,0,1,0,...,0). 
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Example 6 
Some PDs hU

 
agree with the domains of one population partitions, for instance 1T , and 

the others hU  are defined combining couples of the remaining domain types 2T  and 

3T . Then: )( 321 DDDH ×+=  and the kδ′  are defined as vectors having two values 
equal to one, the first in correspondence to the domains of the partition 1T  and the 
second in correspondence to the couple of the partitions 2T  and 3T , e.g. 
(0,...,0,1,0,...,0,1,0,...,0). 
 
Example 7 
The PDs hU  agree with the domains of interest; then 321 DDDH ++= and the kδ′  are 
defined as vectors with three ones each in correspondence to one of the three domain 
types. 
 
The examples 3 and 4 describe one-way (or standard) stratified designs, while the 
remaining examples (5,6,7) refer to a multi-way stratified design. The choice of the 
sampling design depends on theoretical and operative reasons. From the operative view 
point the implementation of the one-way stratified design belongs to the current culture 
of the survey practitioners and it's implementation is uncomplicated, while the multi-
way design is seldom adopted for defining the sampling strategies of the actual surveys; 
however these kinds of designs allow to face a lot of empirical contexts in which the 
traditional approach fails to achieve the target objectives. 

3 Remarks on the regression estimator 

Consider the case in which for producing the sampling estimates, vectors of auxiliary 
variables are available for all the population units and suppose that the predictions 
based on this auxiliary information are those given in model (1.1). In this context, the 
estimates of interest may be computed with a generalized modified regression 
estimator, which may be expressed as (Rao, 2003, pag. 20): 
 

 ksk dkrkUk dkrkdrgreg uyt πγγ ∑∑ ∈∈
+= /~ˆ )( (r = 1,…,R ; d=1,…, D).  (3.1) 

 
An approximation of the Anticipated Variance of the estimator (3.1) under balanced 
sampling is 
 

 
])1/1([)|ˆ( 2

)()( kdrgregUk kMdrgreg fEtAV ηπ −= ∑ ∈
π ,  

 
being )1()]1([ 1

)( jdjrjUk jjjUj jjkkdkrkkdrgreg uu πγπππγη −−′−= ∑∑ ∈
−

∈
δδδδ . 

The expression of the residuals kdrgreg )(η is equivalent to the expression kdr)(η  given 
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in formula (1.2), except for the substitution of  the terms dkrkrk uy γ)~( +  with dkrku γ . 
The derivation of the expression of stable generic terms of (1.3) is straightforward. 
 

4 Remarks on nonresponse 

Suppose that, for different causes, it is impossible to collect the survey variables from 
some sample units. Only to make the things simple, let us further hypothesize that: (i) 
the phenomenon of nonresponse is substantially different among the PDs hU  
(h=1,...,H); (ii) the response propensities, kθ , are roughly constant for the units 
belonging to the subpopulation hU , that is hhk Uk ∈≅ for θθ ; (iii) when planning the 

sample design, a quite reliable estimate, say hθ
~

, of the response propensity of the units 
belonging to hU  may be obtained from the previous surveys. According to the strategy 
proposed in Särndal and Lundström (2005, expression 6.4), the estimator of the totals 
of interest is calculated with the calibration estimator: 
 

=)(̂drcal t kksk kdkrky πθλγ ˆ/
*∑ ∈

 (r = 1,…,R ; d=1,…, D),              (4.1) 

  
where: s* is the sample of respondents; kθ̂  is the sample estimate of the response 

probability; ∑∑∑ ∈
−−

∈
−

∈
′−+=

*
11

*
1 ])ˆ([]')ˆ([1

sj kjjjjsj jjjUj jk δδδδδ θπθπλ . 

In the context here described, the response probabilities may be estimated by 

hhk nm /ˆ =θ  for hh Ussk ∩=∈ **  being hm  the sample size of *
hs . Let us note that the 

stratum response probabilities have been introduced with two different symbols, hθ
~

and 

hθ̂ , since the first is an estimate available when planning the sample design, and the 
latter is estimated from the current survey data. Under the hypothesis that by 
calibrating in each PD, the nonresponse bias becomes negligible and considering the 
response phenomenon as a second phase of sampling, then the MA of (4.1) may be 
computed by (Särndal and Lundström; 2005, pag. 150): 
 

 NRsamdrcaldrcal AVAVtAVtMA +== )|ˆ()ˆ( )()( π   
 
in which )|/( πksk kdkrkpmsam yEEAV πνγ∑ ∈

=  is the anticipated variance of the 

calibrated estimator in the absence of nonresponse and 
)|ˆ/(

*
πkksk kdkrkqpmNR yVEEAV πθνγ∑ ∈

=  represents the additional part of 

variability due to the phenomenon of non-response, denoting with )(⋅qV the variance of 
(4.1) over different sets of respondents.  
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Let rjUj jUj jjkrkrk yye ∑∑ ∈
−

∈
′′−= δδδδ 1)(

 
denote the residual with respect to the 

regression model in which the variables of interest rky  are regressed with respect to 

the auxiliary vectors kδ′ and let 2
rkeσ  indicate the model variance of rke . By adopting, 

in the phase of planning the sampling design, the reasonable approximations
 

dkrkkUj rkdkjkkkdkrk eee γπγππγ 221 ))1/1(( ≅−− ∑ ∈
− δAδ , and 1≅f , the 

anticipated variance of (4.1) may be approximated by 
))

~
/(/1)|ˆ( 22

)( ∑∑ ∈∈
−=

Uk dkrkekdkrkeUk kdrcal tAV γσθγσππ , being hk θθ
~~

=  

hUk∈for . Thus, having reliable estimates of the response propensities kθ
~

 and of the 

model variances 2
rkeσ , it is possible to define the inclusion probabilities that 

individuate the minimum cost solution, taking into account the additional part of the 
variance deriving from the expected non response. After some simple algebra, in this 
context, the terms of the general expression (1.3) of the MA are given by: 

kdkrkekdr θγσω
~

/2
)( = , dkrkekdr γσϕ 2

)( = , )()( πkdriC =0 (for i=0,1,2). Let us note that, 

if the model variance is constant in each PD h (that is 22
rherke σσ =  hUk∈for ), then 

hhk Nn /=π and then the MA may be reformulated according to the sound expression 
(Särndal and Lundström; 2005, pag. 171-172) 
 

 ∑ =
−=

H
h rkehhhdrcal mNNtAV

1
2

)( )1~/()|ˆ( σπ ,  

being hhh nm θ
~~ =  the expected number of respondents in hU . 
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