A Bayesian nonparametric model for count
functional data

Antonio Canale and David B. Dunson

Abstract Count functional data arise in a variety of applications, including longi-
tudinal, spatial and imaging studies measuring functional count responses for each
subject under study. The literature on statistical models for dependent count data
is dominated by models built from hierarchical Poisson components. The Poisson
assumption is not warranted in many applications, and hierarchical Poisson mod-
els make restrictive assumptions about over-dispersion in marginal distributions.
This article discuss a class of nonparametric Bayes count functional data mod-
els introduced in Canale and Dunson [3], which are constructed through rounding
real-valued underlying processes. Computational algorithms are developed using
Markov chain Monte Carlo and the methods are illustrated through application to
asthma inhaler usage.
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data; Splines; Stochastic process.

1 Introduction

A stochastic process y = {y(s),s € Z} is a collection of random variables indexed
by s € 9, with the domain 2 commonly corresponding to a set of times or spa-
tial locations and y(s) to a random variable observed at a specific time or location s.
There is a rich frequentist and Bayesian literature on stochastic processes, with com-
mon choices including Gaussian processes and Lévy processes, such as the Poisson,
Wiener, beta or gamma process. Gaussian processes provide a convenient and well
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studied choice when y : 2 — R is a continuous function. Our interest focuses on the
case in whichy: 2 — A4 ={0,..., 00}, so that y is a count-valued stochastic pro-
cess over the domain 2. There are many applications of such processes including
developemental toxicity epidemiology studies monitoring a count health response
over time.

Although there is a rich literature on count stochastic process models for lon-
gitudinal and spatial data, most models rely on Poisson hierarchical specifications.
Although such models have a flexible mean structure, the Poisson assumption is
restrictive in limiting the variance to be equal to the mean, with over-dispersion
introduced in marginalizing out the latent processes. Such modeling frameworks
have several disadvantages. Firstly the dependence structure is confounded with
marginals overdispersion and secondly under-dispersed count data are not accomo-
date. To relax usual Poisson parametric assumptions [10] exploited a hierarchical
specification of the Faddy model [6]. Although the gain in flexibility, the computa-
tion for this model is challenging.

In considering models that separate the marginal distribution from the depen-
dence structure, it is natural to focus on copulas. Nikoloulopoulos and Karlis [15]
proposed a copula model for bivariate counts that incorporates covariates into
the marginal model. Erhard and Czado [5] proposed a copula model for high-
dimensional counts, which can potentially allow under-dispersion in the marginals
via a Faddy or Conway-Maxwell-Poisson [16] model. Genest and Neslehova [8]
provide a review of copula models for counts.

An alternative approach relies on rounding of a stochastic process. For classifica-
tion it is common to threshold Gaussian process regression [4, 9]. For example, [12]
rounded a real discrete autoregressive process to induce an integer-valued time se-
ries while [2] used rounding of continuous kernel mixture models to induce nonpara-
metric models for count distributions. In this article we discuss a class of stochastic
processes introduced in [3] that map a real-valued stochastic process y* : Z — R to
a count stochastic processy: Z — 4.

2 Rounded Stochastic Processes

2.1 Notation and model formulation

Let y € € denote a count-valued stochastic process, with 2 C R” compact and €
the set of all 2 — 4 step functions with unit step and a finite number of jumps in
2. Such an assumption is a count process version of the continuity condition rou-
tinely assumed for  — R functions. It ensures that for sufficiently small changes
in the input the corresponding change in the output is small, being either zero or
one. We are particularly motivated by applications in which counts do not change
erratically at nearby times but maintain some degree of similarity.
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We choose a prior y ~ IT, where IT is a probability measure over (¢, %), with
% (€) the Borel c-algebra of subsets of €. The measure IT induces the marginal
probability mass functions

pri{y(s) = j} =I{y:y(s) = j} = m(s), jeA, sc€, (1)

and the joint probability mass functions

pr{y(s1) = ji, - y(sk) = jx} = I{y : y(s1) = ji, s ¥(s) = Jic} = ), (51,0, 56J2)

for j, € AV ands, € D, h=1,...k,and any k > 1.

In introducing the Dirichlet process, [7] mentioned three appealing characteris-
tics for nonparametric Bayes priors including large support, interpretability and ease
of computation. Our goal is to specify a prior IT that gets as close to this ideal as
possible. Starting with large support, we would like to choose a IT that allocates pos-
itive probability to arbitrarily small neighborhoods around any yy € € with respect
to an appropriate distance metric, such as L'. To our knowledge, there is no pre-
viously defined stochastic process that satisfies this large support condition. In the
absence of prior knowledge that allows one to assume y belongs to a pre-specified
subset of ¥ with probability one, priors must satisfy the large support property to be
coherently Bayesian. Large support is also a necessary condition for the posterior
for y to concentrate in small neighborhoods of any true yo € €.

With this in mind, we propose to induce a prior y ~ IT through

y=h(y"), y ~IT, (3)

where y* : Z — R is a real-valued stochastic process, & is a thresholding operator
from % — €, % is the set of all 2 — R continuous functions, IT* is a probability
measure over (%, %) with B(#%') Borel sets. Unlike count-valued stochastic pro-
cesses, there is a rich literature on real-valued stochastic processes. For example, IT*
could be chosen to correspond to a Gaussian process or could be induced through
various basis or kernel expansions of y*.

There are various ways in which the thresholding operator 2 can be defined.
For interpretability and simplicity, it is appealing to maintain similarity between y*
and y in applying h, while restricting y € €. Hence, using the informal definition
of rounding as an operation that reduces the number of digits while keeping the
values similar, we focus on a rounding operator that let y(s) = 0 if y*(s) < 0 and
y(s)=jif j—1<y*(s) < jfor j=1,...,00. Negative values will be mapped to zero,
which is the closest non-negative integer, while positive values will be rounded up
to the nearest integer. This type of restricted rounding ensures y(s) is a non-negative
integer. Using a fixed rounding function 4 in (3), we rely on flexibility of the prior
y* ~ IT* to induce a flexible prior y ~ IT. For notational convenience and generality,
we let y(s) = j if y*(s) € Aj = [aj,aj11), with ag < --- < a.. and we focus on
ap=—o,a;=j—1,j=1,... 0.

In certain applications, count data can be naturally viewed as arising through
integer-valued rounding of an underlying continuous process. For example, in the
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longitudinal tumor count studies of Section 3.1, it tends to be difficult to distinguish
individual tumors and it is natural to posit a continuous time-varying tumor burden,
with tumors fusing together and falling off over time. In collecting the data, tumor
biologists attempt to make an accurate count but even at the same time counts can
vary. It is natural to accommodate this with a smoothly-varying continuous tumor
burden specific to each animal with measurement errors and rounding producing the
observed tumor counts. However, even when there is no clear applied context moti-
vating the existence of an underlying continuous process, the proposed formulation
nonetheless leads to a highly flexible and computationally convenient model.

2.2 Count functional data

We have focused on the case in which there is a single count process y observed
at locations s = (si,...,s,)7. In many applications, there are instead multiple re-
lated count processes {y;,i = 1,...,n}, with the ith process observed at locations
S = (sil,...,s,-,,l.)T. We refer to such data as count functional data. As in other
functional data settings, it is of interest to borrow information across the individual
functions through use of a hierarchical model. This can be accomplished within our
rounded stochastic processes framework by first defining a functional data model

for a collection of underlying continuous functions {y;,i = 1,...,n}, and then let-
ting y; = h(y}), for i = 1,...,n. There is a rich literature on appropriate models for
{yf,i=1,...,n} ranging from hierarchical Gaussian processes [1] to wavelet-based

functional mixed models [14].

Let y;(s) denote the count for subject i at time s, y; = y;(s;;) the number at the
tth observation time, and x;a predictor for subject i at time ¢. As a simple model
motivated by the asthma inhaler use applications described below, we let

yi=h(yy), vi=E&+b(xi) 0+e, &E~Q, & ~NO"), )

where &; is a subject-specific random effect, b(-) are B-splines basis functions that
depend on predictors and time, 6 are unknown basis coefficients, and € is a resid-
ual. To induce a penalization on finite differences of the coefficients of adjacent
B-spline we let p(0 | 1) «< exp(—1/2A0"P0), where P = D™D is a penalty matrix
with D the rth order difference matrix and A ~ Ga(v/2,8v/2), § ~ Ga(a,b). Such
a prior for the basis coefficients induces a penalty on finite differences of the coef-
ficients of adjacent B-splines with the parameter A being a roughness penalty. Such
a construction is known as Bayesian P-spline (penalized B-spline) model [13]. The
hyperparameter 6 controls dispersion of the prior. By choosing a hyperprior with
small a,b values, one induces a prior with heavy tails and good performance in a
variety of settings [11]. We additionally choose a hyperprior for the residual preci-
sion p(7) o< 1. To allow the random effect distribution to be unknown, we choose
a Dirichlet process prior, with Q ~ DP(aQy), with @ a precision parameter and the
base measure Qg chosen as N(0, y). As commonly done we fix o = 1.
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3 Asthma inhaler use applications

We analyze data on daily usage of albuterol asthma inhalers [10]. Daily counts of
inhaler use were recorded for a period between 36 and 122 days at the Kunsberg
School at National Jewish Health in Denver, Colorado for 48 students previously
diagnosed with asthma. The total number of observations was 5209. As discussed
by Grunwald and coauthors [10], the data are under-dispersed.

Let y; denote the number of times the ith student used the inhaler on day ¢. In-
terest focuses on the impact of morning levels of PMj,s, small particles less than
25 mm in diameter in air pollution, on asthma inhaler use. At each day ¢, a vector
X = (x,l,...,xl,,)T of environmental variables are recorded including PMys, aver-
age daily temperature (Fahrenheit degree/100), % humidity and barometric pressure
(mmHg/1000). We modify (4) to include multiple predictors with an additive model
structure as follows.

4
yie =h(yy), yi=%&+ Y. bi(xi)" 0 +e&, (5)
=

where &; is a random effect modeled as described in previous section, b, is a B-spline
basis with 0; the basis coefficients relative to jth predictor and & ~ N(0, 77 'R), with
R an AR-1 tridiagonal correlation matrix with correlation parameter p. The prior for
each 0; is identical to the prior described above leading to an additive Bayesian P-
splines model. Each predictor is normalized to have mean zero and unit variance
prior to analysis. The correlation parameter is given a uniform prior on [—1,1].
Computational details are reported in [3].

We ran our Markov chain Monte Carlo algorithm for 10,000 iterations with a
1,000 iteration burn-in discarded. To obtain interpretable summaries of the non-
linear covariate effects on the inhaler use counts, we recorded for each predictor at
a dense grid of xj; values at each sample after burn-in the conditional expectation of
the count for a typical student having & = 0,

.uj(xjt) = E(yit |xjt7-xj’t = Oaj/ 7é jvii 207677’-7’:’)
K

~ Y k[@{ags 1 (i), T — P{aws 1 (xj0), T, ©)
=0

where ®(-; 1, T) is the cumulative distribution function of a normal random variable
with mean {1 and precision 7, K is the 99-99% quantile of N{u} (x;;), 71}, and

w7 (xje) = bj(xje)"0;+ Y bi(0)76), 7
=

with the other predictors fixed at their mean value. Based on these samples, we
calculated posterior means and pointwise 95% credible intervals, with the results
reported in Figure 1. Interestingly, each of the predictors had a non-linear impact
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on the frequency of inhaler use, with inhaler use increasing with morning levels of
PM»s.

Previous analysis conducted in [10] tackle the problem under a generalized linear
mixed models setup with the Faddy distribution. The mean for each subject i at time
t was

Mir = exp(xy B+ +xp By + i +eir) ®)

where u; is a subject specific random effect and e;; an error modeled as an AR-1
process. They estimated a coefficient of just 0-013 for PM;s, which is close to zero
with 95% intervals including zero. In contrast, we obtain clear evidence of non-
linear effects of several of the covariates including PM»s.
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Fig. 1 Posterior mean and 95% pointwise credible bands for the effect of (a) average daily tem-
perature, (b) % of humidity, (c) barometric pressure, and (d) concentration of PMj5 pollutant on
asthma inhaler use calculated with equation (6).
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4 Discussion

We have discussed a simple approach, introduced by [3] for modeling count stochas-
tic processes based on rounding continuous stochastic processes. The general strat-
egy is flexible and allows one to leverage existing algorithms and code for posterior
computation for continuous stochastic processes. Although rounding of continuous
underlying processes is quite common for binary and categorical data, such ap-
proaches have not to our knowledge been applied to induce new families of count
stochastic processes. Instead, the vast majority of the literature for count processes
relies on Poisson process and hierarchical Poisson constructions, which have some
well known limitations in terms of flexibility. The modeling framework can be easily
generalized to the settings of count functional data, i.e. when one observe n differ-
ent realizations of a stochastic process and its performance has been shown in an
application to asthma inhaler use.
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