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Abstract Borrowing strength in small area estimation is most often achieved
through mixed effects regression models. The default normality assumption for ran-
dom effects is difficult to check, as they are latent variables. Missing covariates
can lead to multimodal distributions of random effects; thedistribution may also
be skewed. Clearly the difficulties in model checking arise for any other parametric
assumption. Estimation of the random effects is crucial forpredicting small area
quantities, and the effect on model estimates of parametricassumptions is shown to
be important [7, 2, 4]. In this paper a semiparametric Bayesian linear mixed effects
model is analysed, in which the random effects are modelled through a Dirichlet
process. The computational approach follows [5, 6]. The application focuses on a
Fay-Herriot-type area level model; in this context, the main aim is to assess im-
provements in precision of small area predictions.
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1 Introduction and model assumptions

The simplest area level model for small area estimation can be expressed as follows:

θ̂i = θi + ei ei ∼ N(0,ψi) independent i = 1, . . . ,m (1)

θi = xT
i β +νiνi ∼ N(0,σ2

ν ) independent i = 1, . . . ,m (2)

wherem is the number of observed small areas,θ̂i is the direct estimator of the area
characteristic (a mean or a total), with sampling errorei (and sampling variance

Silvia Polettini
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ψi), θi is the true mean value for small areai and finallyνi is a random component
accounting for heterogeneity and lack of fit. Combining the previous equations, one
obtains a mixed effects linear regression model with normalrandom components.

For area level models, the distributional assumptions onei are usually justified
by the properties of the direct estimatorsθi. In what follows, the sampling variances
ψi are assumed known, as customary in most applications.

In constrast, the normality assumption for the random effects νi has no justifi-
cation other than computational convenience and is difficult to detect in practice
since it involves unobservable quantities. The problem affects both frequentist and
Bayesian analysis, although availability of MCMC techniques makes computational
convenience less relevant in the latter framework.

The assumption of normality may fail to represent the distribution of the random
effects for several reasons: missing covariates can lead tomultimodal distributions;
the distribution may be skewed. Accurate estimation of the random effects is crucial
for predicting small area quantities; the effect on model estimates of distributional
assumptions on the random effects is shown to be important [7, 4]. For instance,
the presence of outliers may affect the precision of estimates and induce bias in
GLMMs. Also, although point small area mean prediction is robust to deviations
from normality, the precision of such predictions is decreased; also, estimation of
nonlinear functionals may suffer from misrepresentation of the law of the random ef-
fects. For the reasons mentioned above, it would be important to rely on a model that
has a flexible specification of the random components, so to achieve a greater flex-
ibility and robustness against model misspecifications. For the Fay-Herriot model
[3], [2] develop two robustified versions by describing the random effects by either
an exponential power (EP) or a skewed EP distribution and investigate robustness
of such Fay-Herriot-type models under deviations from normality. Their aim is to
understand whether estimates of linear and especially nonlinear functionals such as
the c.d.f. are sensitive to deviations from normality of therandom effects. Although
the models proposed by [2] are based on distributions that generalize the normal,
yet these parametric models may fail to adequately describethe distribution of the
random effects, and again the problem of checking the adequacy of these models
arises. Following the work by [5], we consider a different extension of the Fay-
Herriot model [3] based on Dirichlet process priors (DPP), where the distributional
assumption in (2) is replaced by

νi ∼ G(·) independent, i = 1, . . . ,m; G ∼ DP(M,N(0,σ2
ν )), (3)

whereDP(M,φ) stands for the Dirichlet process (DP) with precision parameter M
and base measureφ which in the context of a generalization of the Fay-Herriot
model is natural to assume to be a normal distribution. The representation above
not only relaxes the normal assumption, but also provides anenlarged model for
describing the random effects.

To complete the specification of the model, we introduce the following priors:

σ2
ν ∼ IG(a1,b1); β ∼ N(0,dI); M ∼ Gamma(a2,b2) (4)
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Fig. 1 Performance of the DPP model vs standard estimators: Relative estimation error (left panel)
and variance (right panel); MSE is reported for the EBLUP

with fixed hyperparameters. For the DP precision parameter,we follow [6], who
show that ML estimation ofM, affecting the number of clusters, is the most prob-
lematic aspect of the model; a Metropolis-Hastings within Gibbs algorithm, with
a Gamma candidate, produced using a Laplace approximation for the calculation
of the posterior mean and variance ofM is used. For a default specification of the
Gamma hyperparameters forM, Dorazio [1] suggests a numeric determination of
the values that result in a posterior for the total number of clusters which is closest
to the uniform.

The semiparametric setting described in formulae (1–2), (3) and (4) is reported
to reduce the variability of the regression parameters estimates [5], producing uni-
formly shorter HPD intervals than the standard normal random effects models.

2 Application and Comments

The model just described was applied to a single pseudo-sample of areas, obtained
by aggregating a sample of individual records drawn from a known population of
individuals using a complex sampling scheme, standard in real surveys. The target
is here the estimation of the unemployment rate. A set of covariates was introduced
and used without any model selection procedure. The true small area figures were
known and therefore could be used to assess the estimators. For the characteristics
of the sample, the random effects were not designed and therefore a priori there is
no specific parametric family that can fully describe the random area effects.

The estimates obtained under the DPP model were compared with the EBLUP.
For comparison, the standard hierarchical Bayesian (HB) model with “vague priors”
is also estimated. The model formalization of the HB model coincides with the DPP
except for the definition of the random effects, assumed to benormally distributed.
With the “vague” prior choice (larged) HB predictions coincide with those obtained
from the EBLUP (see e.g. [8]). The Bayesian estimates were obtained by running
Gibbs sampling algorithms.
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As expected, the EBLUP and DP prior point estimators of smallarea percentages
perform similarly, and both agree quite well with the true figures (see Fig. 1).

To assess the model, it is important to compare the estimatorabove with the
EBLUP with respect to measures of variability, being this one the feature where
the effect of a more flexible specification of the random effects is expected. Since
the model was not designed to achieve “calibration” betweenposterior variance and
MSE (see [8], p. 238), comparing the two is not completely appropriate. We refer to
the standard hierarchical Bayesian (HB) model as a benchmark. Figure 1 contrasts
the posterior variances of the standard HB model across sampled areas with those
of the semiparametric model; with a slight abuse of interpretation, the figure also
contains the boxplot for the estimated MSE of the EBLUP. In line with [5], the
posterior variance is sensibly decreased under the DPP model. Coverage properties
of the model can only be assessed by a simulation study, whichwas not possible
in our scheme since we do not have access to the population needed to draw the
samples. It is only possible to investigate the fraction of HPD intervals covering the
true area mean; the percentage of areas whose population mean value is covered by
the .95 credibility interval was 88.8 for the DPP model and 92.1 for the HB model.
In light of the limited assessment allowed by this application, the area level flexible
model seems to result in accurate estimation of small area quantities.

The performance of the approach should be assessed by means of an extensive
simulation. This has not been done in this paper but will be the subject of further
analysis.
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