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Abstract We present a new geometric approach to krige functional compositional
data which embraces the viewpoints of both Functional and Compositional Data
Analysis. Our theoretical framework enables one to characterize and predict ran-
dom fields valued in the Hilbert space of functional compositions endowed with the
Aitchison geometry. We show the application of the methodology to a field case
scenario dealing with particle-size data collected within a heterogeneous aquifer
near Tübingen, Germany. We consider particle-size densities, interpreted as func-
tional compositional data, and perform kriging of these curves to obtain a complete
characterization of the soil textural properties within the aquifer.
Abstract Si presenta un nuovo approccio geometrico al kriging di dati compo-
sizionali funzionali che combina i punti di vista della Functional Data Analysis e
della Compositional Data Analysis. Il contesto teorico proposto consente di carat-
terizzare e prevedere campi aleatori a valori nello spazio di Hilbert delle com-
posizioni funzionali, dotato della geometria di Aitchison. Si mostra l’applicazione
della metodologia a un caso studio relativo a dati granulometrici osservati in un
acquifero eteorogeneo vicino a Tübingen, in Germania. Si analizzano le densità
granulometriche, interpretate come dati funzionali composizionali, e si applica la
metodologia di kriging a tali curve al fine di ottenere una completa caratterizzazione
delle proprietà tessiturali della matrice porosa nell’acquifero investigato.
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1 Introduction

The increasing complexity of the type and quality of measurements collected in
earth sciences motivates the development of new advanced statistical techniques
to deal with spatially dependent high-dimensional and constrained data. This work
focuses on the problem of the geostatistical prediction of functional compositional
data (FCD). The latter are defined as infinite-dimensional objects constrained to be
non-negative and to integrate to a constant [3] (e.g., probability density functions).
We recall that a B-part composition is a B-dimensional vector whose components
are proportions (or percent amounts) of a whole according to a certain partition of
the domain (e.g., [1]). Thus, a functional compositional datum can be figured as
a continuous composition obtained by refining the domain partition until having
(infinite) infinitesimal parts [3].

To accommodate both the functional and the compositional nature of the data, we
combine the viewpoints of Functional Data Analysis and Compositional Data Anal-
ysis. In this context we consider each datum as a point of an infinite-dimensional
space endowed with a proper geometry to account for data constraint. We employ
the Aitchison geometry ([1, 3]) within the Hilbert space method developed in [5], to
perform kriging of a partially observed spatial field of functional compositions.

We illustrate the potential of the proposed method through its application to
particle-size densities (PSDs), which are FCD commonly available in hydrological
applications. PSDs describe the distribution of particle sizes within the soil sam-
ple they refer to, and are key to properly reconstruct the structural properties of the
porous medium under study. We show that our approach leads to a precise charac-
terization of the spatial field of PSDs by exploiting the entire information embedded
in the PSDs through a global definition of spatial dependence.

2 Method

We consider the problem of predicting a spatial field of functional compositions
from a sample of functional compositional data Ys1 , ...,Ysn observed at a discrete
set of locations s1, ...,sn in a spatial domain D⊂Rd . Each datum Ysi , i= 1, ...,n, is a
functional composition (FC): it is a non-negative real function on a compact domain
T = [tmin, tmax] constrained to integrate to a constant (e.g., a continuous probability
density function), i.e., Ysi : T → [0,+∞) s.t.

∫
T Ysi = c, for some c ∈ R (usually,

c= 1). Note that the L2 structure would not be appropriate to deal with FCs, because
usual pointwise operations are not well defined in this context (e.g., the pointwise
sum of two FCs is not a FC).

Following [3], we define two non-negative function f ,g to be equivalent if there
is an α > 0 such that f = αg ; we then consider the space A2(T ) of (equivalent
classes of) non-negative real functions on the compact domain T with square inte-
grable logarithm:
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A2(T ) = { f : T → R : f ≥ 0 a.e., log( f ) ∈ L2}.

In the following, the representative of an equivalence class in A2 will always be its
element f integrating to 1. We then indicate with⊕,� the perturbation and powering
operators in A2, respectively acting as:

f ⊕g =
f g∫

T f g
f ,g ∈ A2; α� f =

f α∫
T f α

, α ∈ R, f ∈ A2.

We note that the difference operator 	 induced by perturbation ⊕ acts as f 	 g =

f ⊕ 1/g∫
T (1/g) , for f ,g∈A2. Moreover, we remark that, unlike pointwise L2 operations,

perturbation and powering of PDFs are well-defined. Finally, we denote with 〈·, ·〉
the Aitchison inner product in A2:

〈 f ,g〉=
∫

T
[log( f ) log(g)]− 1

|T |

∫
T

log( f )
∫

T
log(g), f ,g ∈ A2.

In [3], (A2,⊕,�,〈·, ·〉) is proven to be a separable Hilbert Space.
We assume the dataset Ys1 , ...,Ysn to be the collection of the observations in n

locations s1, ...,sn in D of a stochastic process {Ys,s ∈ D} valued in A2 and charac-
terized by a globally second-order stationary model in the sense of [5], with trace-
covariogram C and trace-semivariogram γ , i.e., for all s,si,s j ∈ D,

E[Ys] = arginf
Y ∈A2(T )

E[‖Ys	Y ‖2
A2 ] = m;

C(h) = Cov(Ysi ,Ys j) = E[〈Ysi ,Ys j〉], h = dist(si,s j);

γ(h) = Var(Ysi ,Ys j) = E[‖Ysi 	Ys j‖], h = dist(si,s j).

We aim at predicting Ys0 at an unsampled location s0 ∈ D through the Ordinary
Kriging predictor. The latter is the best linear unbiased predictor Y ∗s0

=
⊕n

i=1 λ ∗i �
Ysi , whose weights λ ∗1 , ...,λ

∗
n ∈R minimize the Aitchison variance of the prediction

error under the unbiasedness constraint:

(λ ∗1 , ...,λ
∗
n ) = argmin

λ1,...,λn∈R :
Y λ

s0=
⊕n

i=1 λi�Ysi

VarA2(Y λ
s0
	Ys0) s.t. EA2 [Y λ

s0
] = m. (1)

The well-posedness of problem (1) follows from the results of [5] for the general
case of Hilbert-space valued random fields.

Proposition 1 ([5]). Assume that Σ =(C(hi, j))∈Rn×n, hi, j = si−s j, i, j = 1, ...,n, is
a positive definite matrix. Then problem (1) admits a unique solution (λ ∗1 , ...,λ

∗
n ) ∈

Rn, which is obtained by solving:(
C(hi, j) 1

1 0

)(
λi
ζ

)
=

(
C(h0,i)

1

)
, (2)
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ζ being the Lagrange multiplier associated with the unbiasedness constraint. The
ordinary kriging variance of predictor Y ∗s0

is then

σ
2
∗ (s0) = VarA2(Y ∗s0

) =C(0)−
n

∑
i=1

λ
∗
i C(hi,0)−ζ

∗. (3)

An estimate of the trace-covariogram C, or, equivalently, of the trace-semivariogram
γ is required to solve system (2). To this end, a method of moment (MoM) estimator
γ̂ can be employed:

γ̂(h) =
1

2|N(h)| ∑
(i, j)∈N(h)

‖Ysi 	Ys j‖
2
A2 , (4)

where N(h) denotes the set of location pairs separated by h and |N(h)| is its cardi-
nality. A discretized version of γ̂ is considered in typical applications and a valid
variogram model is then fitted to observations [2]. To compute the norms appearing
in (4) and the resulting kriging predictions we resort to a centered log-ratio trans-
form, which defines an isometric isomorphism between the space A2 and the space
L2, where efficient routines are available. We refer to [4] for further details on the
computational details.

3 A case study on particle-size distributions

We illustrate our approach through a field scale case study. The data we consider are
part of the dataset collected within an alluvial aquifer with thickness of about 5 m
near the city of Tübingen, Germany. We focus on the 60 particle-size curves (PSCs)
collected at one of the monitoring wells at the site: in each location si, i = 1, ...,60,
the PSC Xsi expresses the relative amount Xsi(t) of particles within a given soil
sample having size smaller than or equal to t, where t ∈ T = [tmin, tmax] [7]. As
such, PSCs describe the distribution of grain sizes within the soil sample. These
data are relevant to applications related to groundwater hydrology, soil science and
geochemistry, with particular emphasis on applications oriented towards modeling
physical and chemical processes occurring in heterogeneous earth systems. We in-
terpret PSCs as cumulative distribution functions and focus on their densities Ysi ,
i = 1, ...,n, which can be modeled as functional compositional data. We note that
a data preprocessing is needed to compute density functions, because the available
particle-size curves are reconstructed through grain sieve analysis performed on the
basis of 12 sieve diameters. Here, we resort to the smoothing procedure based on
Bernstein polynomials described in [4]. Smoothed particle-size densities are de-
picted in Fig. 1a.

The (smoothed) densities are then embedded in the Hilbert space A2 of functional
compositions and the methodology introduced in Section 2 is applied. Second-order
stationarity is assumed for the field, this assumption being supported by prior knowl-
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edge on the test site ([7] and references therein). Fig. 1b-1c depicts prediction re-
sults. These are seen to be satisfactory on the basis of cross-validation, evidenc-
ing a median and mean sum of squared error lower than 0.2% (Fig. 2a and c).
Cross-validation predictions appear overall unbiased: this is evidenced by the cross-
validation residuals depicted in Fig. 2b which are fairly spread across a uniform
distribution (i.e., the neutral element of perturbation ⊕). Tests performed to assess
the local quality of kriging predictions indicate that our methodology proves to be
fairly accurate in predicting the local features of particle-size distributions.
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Fig. 1 (a) Particle-size densities (smoothed data); (b) kriged particle-size densities; (c) kriging
variance, ranging between 0 (darkest shade) and 2.53 (lightest shade). Vertical coordinates corre-
spond to data (sampled or predicted) locations.

We finally remark that a key advantage of our approach lies in the possibility
of obtaining predictions of the entire particle-size curve at unsampled locations,
as opposed to classical [2] or compositional kriging techniques [8] which allow
only finite-dimensional predictions, based on a set of selected features (or synthetic
indices) of the curve.

4 Conclusion

In this work, a novel methodology to krige functional compositions has been pre-
sented. Our approach enables one to predict the entire curve at unsampled loca-
tions on the basis of new definitions of spatial dependence which globally take into
account the information content embedded in the curves. The method has been il-
lustrated through its application to the spatial analysis of particle-size curves. Our
kriging predictor for functional compositions grounds its strength on a very general
method, which is appropriate for data belonging to any Hilbert space and is pre-
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Fig. 2 Cross-validation results. (a) boxplot of the SSE, reporting the absolute and relative quartile
values; (b) cross-validation residual particle-size curves; (c) cross-validation prediction of particle-
size densities as a function of elevation (the size of the symbols is proportional to the associated
cross-validation SSE/kriging variance); the curve highlighted is associated with the highest SSE.

sented in [5]. More generally, this approach can be exploited whenever a Hilbert
space approximation can be used to describe data. For instance, it can be employed
in the case of data belonging to a Riemannian manifold which can be locally approx-
imated through a Hilbert tangent space where linear models and linear predictors
can be defined. Such an idea, thoroughly explored in [6], opens new groundbreak-
ing perspectives into the geostatistical analysis of shapes, M-reps or directional data.
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