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Abstract Modelling dependence structures in high-dimensional problems of ex-
treme events is of interest in several application areas. Current dependence mod-
els for multivariate extremes are based upon max-stable distributions and one ap-
proach is to investigate the Pickands dependence function through nonparametric
estimators. In the bivariate setting, there exist several estimators while more prob-
lematic are the assumptions that must be satisfied in multivariate extremes. The aim
is to briefly review an existing nonparametric inference method for estimating the
Pickands function, which assume known marginal distributions, in the multivariate
framework.
Abstract L’analisi della dipendenza nella teoria dei valori estremi multivariati é di
interesse in diversi settori applicativi. Alcuni dei piú recenti modelli di dipendenza
sono basati su distribuzioni max-stable ed un particolare approccio prevede lo stu-
dio della funzione di dipendenza Pickands attraverso stimatori non parametrici.
Nel caso bivariato esistono numerosi stimatori mentre sono piú problematici i pre-
supposti che devono essere verificati nel caso multivariato. L’obiettivo é quello di
esaminare un metodo non parametrico per stimare la funzione Pickands, assumendo
note le distribuzioni marginali, nel caso multivariato.
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1 Introduction

In the last years, interest in high-dimensional and multivariate problems of extreme
events has increased. In some fields, as environment and economics, spatial analysis
of dependence structures are more often needed. Extreme value theory provides the
necessary tools to deal with an overall analysis of both marginal distributions and de-
pendence structures. This work aims to be a contribution in the direction of propos-
ing an overview of nonparametric methods for estimating the dependence function,
assuming knowledge of the marginal distributions, in the multivariate framework.

1.1 Dependence function

Let Xi = (Xi,1, . . . ,Xi,d), i = 1, . . . ,n , be a d-dimensional random variable, with
continuous marginal distribution functions F1, . . . ,Fd , and assume it follows a mul-
tivariate max-stable distribution [16]. To make the problem more tractable, assume
that the margins are unit Fréchet, that is P(X j ≤ x) = e−1/x j , x j > 0. Then, the joint
distribution of X can be written as

G(x) = exp{−V (x)}, V (x) =
(

1
x1

+ . . .+
1
xd

)
A(w). (1)

The exponent measure function V (x) is an homogeneous function of order−1 which
describes the dependence structure among data [4]. It can be rewritten in terms of
the Pickands dependence function A(w) which is a restriction in the unit simplex,

Sd̄ :=

{
(w1, . . . ,wd̄) ∈ [0,1]d̄ :

d̄

∑
j=1

w j ≤ 1, w j ≥ 0 ∀ j ∈ {1, . . . , d̄}

}
, (2)

where w j =
x j
r , r = x1 + . . .+ xd , are pseudo polar coordinates [4] and d̄ = d−1. A

Pickands function A(w) needs to satisfy the following properties [8]:

1. A(w) is continuous and convex;
2. A(w) has lower limit at max

(
w1, . . . ,wd̄ ,1−∑ j≤d̄ w j

)
≥ 1/d which corresponds

to the case of complete dependence;
3. A(w) has upper limit equal to one, for any w = (w1, . . . ,wd̄) ∈Sd̄ and it implies

that each component of X is independent of all the others;
4. A(w) at the extremal points of the simplex, e j =(0, . . . ,0,1,0, . . . ,0) for 1 ≤ j ≤ d̄

and 0 = (0, . . . ,0), assumes the unit value.

In order to model the exponent measure function, many parametric models have
been proposed in literature while they can be quite restrictive despite their flexi-
bility. This reason leads many authors focusing on nonparametric estimates of the
dependence function or of its restriction A(w). Extending to the multivariate case,
however, most of the estimators proposed provide results which not satisfied the
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above properties 1−4. It implies that the resulting estimate of V (x) in (1) does not
match a proper distribution G(x).

2 Nonparametric estimation

Several nonparametric estimators of the Pickands dependence function have been
proposed. In the bivariate case the first examples are given in [15] and [5]. Fur-
ther modifications have been proposed and discussed in [2] and [9], assuming the
marginal to be known. The estimation problem of the Pickands dependence function
in the case d > 2 was studied in [18] and [6], assuming knowledge of the marginal
distributions. Their estimators are based on functionals of the transformed random
variables Yi j =− logFj(Xi j) (i= 1, . . . ,n, j = 1, . . . ,d), as in the estimators proposed
by [15] and [2] for the bivariate case. In the multivariate case other extensions can
be found in [1] and [7]. However, these estimators of the Pickands dependence func-
tions are not in general valid Pickands functions themselves due to possible violation
of necessary conditions. An alternative estimator is proposed in [12] as a solution
of an optimization problem subject to constraints which guarantee the satisfaction
of all required properties. The latter estimator is discussed in this review.

2.1 Nonparametric estimator using Bernstein polynomials

The methodology adapted in [12] is based on the projection of a pilot estimate Â,
returned from some basic estimators, onto the set of functions A which satisfy
properties 1−4. The representation of the Pickands function,

BA(w;k) = ∑
`∈Lk

β`b`(w;k) (3)

is given through the Bernstein polynomials where k ∈ N determines the order of
the polynomials, the vector of coefficients β defines the shape of the representation,
with β` ∈ [0,1]. Lk is the set of all d̄−dimensional vectors with values in {0, . . . ,k},
for which the components have sum less or equal to k. The polynomial basis
b`(w;k), with w∈Sd̄ , are the multivariate extension of b`(w;k) =

(k
j

)
w j(1−w)k− j,

j = 0, . . . ,k, w ∈ [0,1], as in [10] and [14]. This approach has been selected because
Bernstein polynomials can uniformly approximate any functions [11] and since
A(w) is continuous on Sd̄ , it follows that the sequence of Bernstein polynomials
(3) converges uniformly to A on Sd̄ as k goes to infinity, in other words

lim
k→∞

BA(w;k) = A(w). (4)
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Thus, the functional representation BA(w;k) provides an approximation of A, for any
given k; larger is k and more accurate the approximation becomes. However, their
flexibility is useful to provide estimates of functions subject to shape restrictions
such as the Pickands, in fact Bernstein polynomials possess the optimal shape re-
striction property among all polynomials [3], so that an estimation procedure subject
to shape restrictions can be easily accommodated. Another advantage of using the
above methodology is that all the constraints are expressed taking into account only
the coefficients β of the Bernstein representation (3), thus the estimation method
appears to be computationally handy also in high dimensions. Finally, the resulting
estimator Ã is obtained solving a constrained optimization problem. The resulting
estimator has nice asymptotic properties, under opportune conditions, as sample size
increases.
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Fig. 1 Theoretical (solid line) and estimated (dashed line) Pickands dependence function of the
extremal skew-t model: (a) bivariate case (b) trivariate case with Ã(w) (c) trivariate case with Â(w)

Figure 1 shows the theoretical (solid line) and estimated (dashed line) Pickands
functions corresponding to the extremal skew-t model (EST) [13] for the bivari-
ate and trivariate case. Ã is the estimator proposed in [12] with an order of the
polynomial k = 10. In particular, the first plot refers to the EST model with
α1 = 3, α2 = − 6, ν = 3, and two different correlation parameters, i.e.
ω = − 0.2 and 0.9 which determine low and strong dependence respectively.
The middle plot shows the estimated Pickands function for the EST model with
α1 = 7, α2 = −10, α3 = 1, ν = 3 and ω = 0.9. The last plot represents, for
the same model, the preliminary estimation Â, most commonly used in literature.
Notice that Â is not convex and therefore is not a proper Pickands function, whereas
Ã satisfies all the required constraints at each point of the domain.
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