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Abstract In many real world problems data streams mining deals with streams
recorded by sensor networks located on some geographic area. Often, the place-
ment of the sensors determines the presence of a spatial dependence among the data
streams. This paper proposes a new method for monitoring the evolution of the spa-
tial dependence among data streams. It is based on the variogram for histogram data
which is used as synopsis for keeping a snapshot of the spatial dependence over
time intervals. We propose an efficient way to compute, on-line, the variogram for
histogram data and a measure for keeping track of evolutions in the spatial depen-
dence.
Abstract In numerosi ambiti applicativi, le tecniche di data stream mining sono
utilizzate per l’analisi di flussi di dati acquisiti da reti di sensori georeferen-
ziati. La collocazione spaziale dei sensori spesso determina la presenza di dipen-
denza spaziale. In quest’articolo, si propone un nuovo metodo per il monitoraggio
del cambiamento della struttura di dipendenza spaziale tra flussi di dati basato
sull’utilizzo del variogramma per dati ad istogramma, come sinopsi per tenere trac-
cia della dipendenza spaziale nel tempo. Si propone un metodo efficiente per il suo
aggiornamento on-line e una misura per valutare l’evoluzione della dipendenza
spaziale nei dati.
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1 Introduction

Data Stream Mining (DSM) aims to extract knowledge from huge amounts of data
which come from the repeated measurement of some variables. It assumes that the
dataset is made by observations which become available over time at a very high
frequency, evolving in an unpredictable fashion. Data with a time dimension should
be processed with at least a partial temporal ordering, moreover the input data is
not available for random access from disk or memory, but is rather represented as a
continuous flow. A time window, that is a subsequence of a data stream, is generally
available only once, thus, data has to be processed on fly at the speed in which it is
recorded. Finally, algorithms that are applied for the analysis, need to change their
behavior over time, according to the dynamic nature of data.

Often, data streams are recorded by sensor networks located on some geographic
area. In many real world applications, such as climatology, this involves a depen-
dence among data streams due to the spatial location of the sensors. In this sense,
near located sensors tend to produce values which are similar while far sensors tend
to produce more dissimilar values.

In dynamic frameworks where the monitored phenomenon evolves over time, the
spatial dependence can it self evolve. The monitoring and discovering of evolutions
in spatially dependence is the main topic of this paper.

To our knowledge, this task has not been dealt in the data stream mining litera-
ture. Methods for analyzing spatial data streams focus, mainly, on traditional data
mining tasks (clustering, classification, summarization) on streams recording the
position of moving objects [5][7]. Our challenge is, instead, the analysis of data
produced by sensors having a fixed, known, spatial location. With this aim, we in-
troduce a new tool for measuring the spatial dependence, called variogram for his-
togram data, and an efficient method for its on-line updating. We still introduce a
measure for keeping track of evolutions in the spatial dependence.

2 Main notation and tools

Let Y = {Y1, ...,Yi, ...,Yn} be a set of n streams, with Yi =
{
(y1

i , t1), ...,(y
j
i , t j), ...,

}
be

real valued ordered observations on a common discrete time grid T =
{

t1, ..., t j, ...
}

,
with t j ⊆ℜ and t j > t j−1. Each data stream Yi is made by observations recorded by
a sensor located at si ∈ S, with S⊆ℜ2 be the geographic space.

The method we propose is based on splitting the incoming parallel streams into
non overlapping windows, where each window, whose identifier is w = 1, . . . ,∞,
is an ordered subset of T having size b. Each window, frames a subset Y w ={

Y w
1 , . . . ,Y w

i , . . . ,Y w
n
}

where Y w
i =

{
(y j

i , t j), . . . ,(y
j+b
i , t j+b)

}
is called subsequence.
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A subsequence Y w
i is summarized by a histogram Hw

i =
{
(Iw

i,l ,π
w
i,l), . . . ,(I

w
i,L,π

w
i,L)
}

made by L weighted intervals (bins). Each histogram partitions the support Dw
i =

[yi;yi] of a subsequence Y w
i into a set of non overlapping intervals, or bins, so that:

Dw
i =

{
Iw
i,1, . . . , I

w
i,l , . . . , I

w
i,L

}
, where Iw

i,l =
[
yi,l ,yi,l

)
(for l = 1, . . . ,L)

Since our method needs to compare histograms, the next section introduces the
Wasserstein metric for histogram data.

2.1 Wasserstein metric for histogram data

The `p Wasserstein distance [9] is a distance function defined between the prob-
ability distributions of two random variables Y1 and Y2, on a given metric space.
Since Gini (1914) that introduced such measure in a discrete setting on the real line,
several authors proposed this distance in different contexts of analysis. Therefore,
we refer to this family of distances as Wasserstein distance. Denoting with F and
G the distribution functions of Y1 and Y2, and with F−1 and G−1 the correspond-
ing quantile functions, Mallows [6] proposed a metric that is the `2 version of the
Wasserstein distance which is expressed as follows:

dW (Y1,Y2) :=

√√√√√ 1∫
0

(F−1(t)−G−1(t))2dt

In particular, in our analysis we focus our attention on such `2-norm distance
because it can be interpreted as the Euclidean distance between quantile functions.

The main drawbacks are related to the inverse of the distribution functions which
is impossible to do analytically for most distributions. As shown in [4][8], this prob-
lem can be addressed, when data are histograms, by introducing an exact and effi-
cient way to compute this distance.

Given a histogram description Hw
i , with L be the number of weighted intervals

(bins):

Hw
i =

{
(Iw

i,1,π
w
i,1), . . . ,(I

w
i,l ,π

w
i,l), . . . ,(I

w
i,L,π

w
i,L)
}

we define the quantities τw
i,l in order to represent the cumulative weights associated

with the elementary intervals of Hw
i :

τ
w
i,l =

{
0 l = 0

∑
h=1,...,l

πw
i,h l = 1, . . . ,L . (1)

Using (1), and assuming a uniform density for each Iw
i,l , the empirical distribution

function is expressed as:
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Fw
i (y) = τ

w
i +

(
y− yi,l

) τw
i,l− τw

i,l−1

y i,l− yi,l

iff y i,l ≤ y≤ yi,l .

Then, the inverse distribution function is a piecewise function defined as follows:

Fw
i
−1(t) = y i,l +

t− τw
i,l−1

τw
i,l− τw

i,l−1

(
yi,l− y i,l

)
τ

w
i,l−1 ≤ t < τ

w
i,l .

To compute the distance between two histogram descriptions Hw
i and Hw

j we
need to identify a set of common uniformly dense intervals. Let τw be the set of
the cumulated weights of the two distributions τw =

[
τw

0 , ...,τ
w
l , ....,τ

w
q
]
, where:

τw
0 = 0 τw

q = 1 and πw
l = τw

l − τw
l−1. To solve the problem of finding a common

set τw of cumulated weights associated with the quantiles of the two distributions,
we consider equi-depth histograms. In this case, histograms Hw

i and Hw
j involved in

the distance computation are characterized by the same set of weights πw
i,l = πw

j,l =
1
L

and q = L .
The squared distance between the two histograms is computed as:

d2
M(Hw

i ,H
w
j ) :=

q

∑
l=1

τw
l∫

τw
l−1

(
Fw

i
−1(t)−Fw

j
−1(t)

)2
dt. (2)

Each couple (τw
l−1,τ

w
l ) permits to identify two uniformly dense intervals, one for

i and one for j, having respectively the following bounds:
Iw
i,l = [yi,l ,yi,l ] and Iw

j,l = [y j,l ,y j,l ].

Being Fwu−1(Fw
l−1) = yu,l and Fwu−1(τw

l ) = yu,l with u = i, j.
For each interval (bin) of the histogram, it is possible to compute the centers and

radii, as follows:

ci,l = (Fw
i
−1(τw

l )+Fw
i
−1(τw

l−1))/2 ri,l = (Fw
i
−1(Fw

l )−Fw
i
−1(τw

l−1))/2.

Because intervals are uniformly distributed, we may express them in function of
their centers and radii, and rewrite the equation (2) as follows:

d2
W (Hw

i ,H
w
j ) =

q

∑
l=1

π
w
l

[(
ci,l− c j,l

)2
+

1
3
(
ri,l− r j,l

)2
]
. (3)

2.2 The variogram function

In the traditional geostatistics literature, a widely used tool for evaluating the spatial
dependence is the variogram. Given a random process Y , it is defined as the variance
of the difference between process values at two locations, across realizations of



Monitoring spatially dependent data streams 5

the process [3]. If the process is stationary and isotropic, the variogram γ can be
represented as a function of the distance h =

∥∥si− s j
∥∥ between spatial locations. An

unbiased estimator of the variogram, for a set of observations yi, i = 1, . . . ,k located
at si is the empirical variogram whose formal expression is the following:

γ̂(h) =
1

|N(h)| ∑
i, j∈N(h)

(yi− y j)
2 (4)

where N(h) is the set of observations such that
∥∥si− s j

∥∥= h and |N(h)| is the num-
ber of pairs in the set.

In spatially dependent data, the value of the variogram function increases with
the lag distance h until a limit is reached. This limit permits to identify the level
beyond which the variability is no longer dependent on the spatial distance.

The variogram estimator cannot be computed at every lag distance h, due to the
reduced availability of observations. This involves that the empirical variogram is
not ensured to be valid so that in applied geostatistics, the empirical variograms are
often approximated by model function ensuring validity [2].

The empirical variogram introduced above, can be still used as a pure exploratory
tool for investigating spatial dependence in the data. In this sense, there is a distinc-
tion between the variogram model, estimated using the empirical variogram and than
some fitting model function, and the experimental variogram which corresponds to
the empirical variogram computed on the data without making formal assumptions
on the process generating the data.

We are interested in this second use of the variogram function in order to monitor
the evolution of the spatial dependence among the data streams.

Since the input data streams are represented as sequences of histograms, the next
section will introduce the variogram for histogram data.

3 Experimental variogram for histogram data

Let Y w =
{

Y w
1 , . . . ,Y w

i , . . . ,Y w
n
}

be the set of i = 1, . . . ,n subsequences framed by
the w−th time window and si ∈ S ( with S⊆ℜ2) be the geographic locations of the
data stream Yi.

Each subsequence Y w
i is represented by a histogram Hw

i =
{
(Iw

i,l ,π
w
i,l), . . . ,(I

w
i,L,π

w
i,L)
}

,
made by L weighted intervals (bins).

We define the experimental variogram for histogram data consistently with the
`2 Wasserstein metric introduced above and with its expression for histogram data
in 3:

γH(h) =
1

|N(h)| ∑
i, j∈N(h)

(d2
W (Hw

i ,H
w
j )) (5)
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where N(h) is the set of observations such that
∥∥si− s j

∥∥ = h and |N(h)| is the
number of pairs in the set.

The variogram γH(h) is nonnegative since it is the average of squared distances
and shares the characteristics of the experimental variogram for traditional scalar
data.

For irregularly spaced data where there are not enough observations exactly sep-
arated by h, N(h) is modified to (si,s j) :

∥∥si− s j
∥∥ ∈ (h− ε,h− ε), with ε > 0. This

involves that γH(0)≥ 0 (nugget effect).
According to the provided definition of variogram for histogram data, we can

measure the spatial dependence between distributions (histograms) into a time win-
dow. If there is spatial dependence, we expect that near sensors tend to have lower
values of average distances while far sensors tend to be more different so that γH(h)
is an increasing function.

Our aim is to monitor the evolution of the variogram for histogram functions
over time windows. With this aim, γH(h) has to be updated with the arrival of new
windows of data.

In the next section we introduce an effective way for updating the variogram for
histogram functions reducing the computational effort.

4 On-line updating of the variogram for histogram functions

Keeping track of the evolutions in spatial dependence requires the monitoring of
changes in the variogram for histogram functions. Our strategy is to update the vari-
ogram every time a new batch of subsequences becomes available and store a snap-
shot of the variogram at predefined time stamps using a tilted time frame approach.
The detection of change points is performed by comparing the variograms coming
from the snapshots.

The variogram construction is based on computing the average of pairwise dis-
tances at each lag distance h. The set of pairs involved in the average computation
depends only on the spatial location of the sensors which record the data. Such lo-
cations are fixed and known apriori so that at each window always the same pairs
participate to the computation of the variogram value.

The variogram function γw
H(h) for the window w, starting from the variogram

γ
w−1
H (h) at the window w−1 can be computed as follows:

γ
w
H(h) =

1
2 |Nw(h)|

(
γ

w−1
H (h) |N(h)|+ ∑

i, j∈N(h)
(d2

W (Hw
i ,H

w
j ))

)
(6)

where Nw(h) = Nw−1(h) is the set of observations such that
∥∥si− s j

∥∥ = h and
|Nw(h)| is the number of pairs in the set.

The previous expression indicates how to update the variogram at each lag h by
computing new average distances.
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This methods for updating the variogram at each window still requires the com-
putation of the distance between every pair of subsequences at a spatial distance h.
To make more efficient this step, we use the micro-clustering method for histogram
data, proposed in [1], on each data stream Yi.

The cited method performs the analysis of a data stream in order to obtain a
set of low variability micro-clusters which are summarized by histogram centroids.
Consistently with the approach proposed in this paper, the micro-clustering method
splits the incoming data into windows and allocates the histograms to the clusters
using the adapted Wasserstein distance to work with histogram data.

We propose to replace the computation of the pairwise distances in the variogram
with the distance between micro-cluster centroids. The algorithm can be summa-
rized as follows:

• For Each window w

– For Each subsequence Y w
i

· Compute the histogram Hw
i

· Allocate Hw
i to a micro-cluster

– End
– VARIOGRAM UPDATING
– For Each lag distance h
· Detect all the pairs Hw

i ,H
w
j such that

∥∥si− s j
∥∥= h

· For Each pair Hw
i ,H

w
j

· detect the micro-cluster centroids to which Hw
i and Hw

j have been al-
located

· End
· Update the variogram value γw

H computing the distance between the cen-
troids to which Hw

i and Hw
j have been allocated

– End

• End

The distances between micro-cluster centroids can be stored into a lookup table
so that it is not needed to compute them every time. This makes the variogram
updating computationally faster.

In order to evaluate the evolutions in spatial dependence, the variogram for his-
togram data can be stored at predefined time stamps and computed again on the
incoming batches. The comparison can be performed graphically or computing the
Euclidean distance between two variogram functions as follows:

EVO =
√

∑
h
(γw

H(h)− γ
w−k
H (h))2 (7)

The computation of the measure EVO is feasible since the data streams have a
fixed spatial location so that the compared experimental variograms are computed
for the same values of the lag h
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5 Experimental results

We have made some preliminary test for evaluating the performance of the proposed
strategy in keeping track of the spatial dependence among sensor data using a public
dataset available at htt p : //db.csail.mit.edu/labdata/labdata.html.

The dataset collects the records of 54 sensors placed at the Intel Berkeley Re-
search lab between February 28th and April 5th, 2004. Mica2Dot sensors with
weather boards collected timestamped topology information, along with humidity,
temperature, light and voltage values once every 31 seconds. Data was collected us-
ing the TinyDB in-network query processing system, built on the TinyOS platform.
The dataset includes the x and y coordinates of sensors (in meters relative to the
upper right corner of the lab).

We have analyzed the temperature records of each sensor so that we have a set of
54 time series each on made by 65000 observations.

In order to run the test, we have set the size of each window to s = 200 and the
number of bins for each histogram to L= 10. In fig.1 and in fig.2 we have plotted the
variogram for histogram data obtained by processing, respectively, the first 32500
time stamps and the latest 32500 time stamps. Looking at the plots, we can note a
change in the spatial dependence between the first batch of data and the second one,
however both highlight the presence of a spatial dependence since the two plots tend
to increase with the lag distance h.

6 Conclusions

In this paper we have introduced a strategy for monitoring the spatial dependence
of data recorded by spatially located sensors. To reach this aim, we have, at first,

Fig. 1 Variogram function for histogram data computed on the first 32500 time stamps
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introduced the variogram for histogram data and, then, a way to update it with the
flowing of data. Preliminary results confirm the effectiveness of the method, how-
ever, in future works, we will explore the possibility to reduce the computational
effort required for keeping an updated variogram over time.
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