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Abstract We discuss two likelihood-based small-sample confidence intervals for
the skewness parameter of the distribution of the maximum (or minimum) of the
equi-correlated bivariate normal model. These are compared numerically to their
large-sample counterpart, and to an approximate confidence interval whose con-
struction derives from theoretical findings on the intraclass correlation coefficient
and Fisher’s transformation. The performance of the confidence intervals is analyzed
in terms of actual coverage, symmetry of errors, and expected length. A simulation
revealed that the considered small-sample procedures perform well even when the
sample size is limited. A real-life application to a mono-zygotic twin study is also
given.
Abstract Nel presente lavoro proponiamo intervalli di confidenza asintotici per il
parametro di asimmetria della distribuzione del massimo in un modello normale bi-
variato equicorrelato, con particolare attenzione alla loro applicazione allo studio
di gemelli monozigoti.

Key words: Equi-correlated bivariate normal distribution; modified likelihood ra-
tio; intraclass correlation coefficient; skew-normal distribution.

1 Introduction

The skew-normal distribution, introduced in 1985 by Azzalini [1], represents an
asymmetric extension of the normal distribution. Owing to Loperfido [8], who
proved that the maximum (or minimum) of a bivariate exchangeable normal ran-
dom vector is skew-normally distributed with skewness parameter γ (or −γ) which
depends on the correlation coefficient ρ , this distribution can be used to model the
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maximum (or minimum) of two correlated measurements. This paper emphasizes a
present-day application of this model to mono-zygotic twin studies. Here, the need
for simple, though reliable procedures for assessing the degree of concordance of a
continuous mono-zygotic twin trait was already underlined by [13].

The aim of this paper is to explore the performance of two small-sample con-
fidence intervals for γ which we obtained by applying the higher order frequentist
and Bayesian pivots presented in [6] to the three-parameter equi-correlated bivari-
ate normal model. These are compared to their large-sample counterpart, together
with a newly derived large-sample confidence interval which borrows from Mameli
et al. [9] and uses results from Loperfido [8] and Fisher’s transformation. Our find-
ings extend the work by Mameli and Brazzale [10] on higher order likelihood-based
inference for γ in the five-parameter bivariate normal model. The extensive numeri-
cal work given there revealed that the small-sample frequentist confidence intervals
outperform those proposed in [9] with respect to both average length and symmetry
of errors, although they behave quite similarly as far as real coverage goes. This is
especially true for very limited sample sizes and if ρ is close to −1. On the other
hand, the calculation of the large-sample solution of [9] requires a by far less com-
putational effort.

The paper is organized as follows. Section 2 reviews modern likelihood-based
small-sample asymptotics and the equi-correlated bivariate normal model. The ap-
plication of our results to a dataset of twin measurements is illustrated in Section 3.
Section 4 closes the paper with the discussion of the findings from a simulation
study.

2 Background theory

Likelihood asymptotics Consider a parametric statistical model with density
function f (y;θ), where y = (y1, . . . ,yn) is a vector of n observations and θ = (ψ,λ )
a k-dimensional parameter, with ψ the scalar parameter of interest and λ a vector
of nuisance parameters of dimension k−1. Let L(θ) ∝ f (y;θ) and l(θ) = logL(θ)
denote the likelihood and the log-likelihood functions, respectively. Inference on ψ

is commonly based on the signed likelihood root

r(ψ) = sign(ψ̂−ψ)
√

2(lp(ψ̂)− lp(ψ)),

where lp(ψ) = l(θ̂ψ) denotes the profile log-likelihood and θ̂ψ = (ψ, λ̂ψ) represents
the constrained maximum likelihood estimate. The signed likelihood root pivot is
asymptotically normal up to the order n−1/2. As nowadays well known, this approx-
imation may be rather poor if the sample size is limited.

Inference on ψ may be improved by adjusting the signed likelihood root as in
[2]. The modified signed likelihood root

r∗ = r+
1
r

log
(q

r

)
(1)
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is asymptotically standard normal up to the order n−3/2. In the Bayesian framework,
a similar expression

r∗B = r+
1
r

log
(qB

r

)
, (2)

provides a third order approximation

Π(ψ0 | y) = Pr(ψ ≤ ψ0 | y)
.
= 1−Φ(r∗B),

for posterior quantiles for the parameter ψ . The correction term qB in (2) depends
on both the underlying model and the elicited prior for the parameter θ , whereas the
frequentist counterpart q in (1) relies only on the model; see expressions (4) and (3)
below and [11] for an extensive review and list of reference. In addition, inference
based on r and r∗ is invariant under interest-respecting re-parametrizations.

The equi-correlated bivariate normal model Let (x1,y1), . . . ,(xn,yn) be an
independent sample from an equi-correlated bivariate normal vector (X ,Y ), where
X and Y have common mean µ , common variance σ2 and correlation coefficient ρ .
The corresponding log-likelihood function for θ = (ρ,µ,σ) is

l(θ) =−n
(

log [(1−ρ
2)1/2

σ
2]+

µ2

(1+ρ)σ2

)
+

nµ(x̄+ ȳ)
(1+ρ)σ2 +

2ρ ∑
n
i=1 xiyi−∑

n
i=1 x2

i −∑
n
i=1 y2

i
2(1−ρ2)σ2 ,

which characterizes a full exponential family with canonical parameter ϕ(θ) =
(µ/[σ2(1 + ρ)],ρ/[σ2(1− ρ2)],−1/[2(1− ρ2)σ2]). Maximum likelihood yields
the estimate θ̂ , whose components are

µ̂ =
1
2n

n

∑
i=1

(xi + yi) , σ̂ =

√
1
2n

n

∑
i=1

[
(xi− µ̂)2 +(yi− µ̂)2

]
, ρ̂ =

1
nσ̂2

n

∑
i=1

(xi− µ̂)(yi− µ̂) .

Fisher [5] called ρ the intraclass correlation coefficient and its maximum likelihood
estimate ρ̂ the intraclass correlation.

Confidence intervals for γ Our interest lies on γ =
√

(1−ρ)/(1+ρ), the param-
eter which characterizes the skewness of the distribution of the maximum between
the two correlated normal variates X and Y .

Likelihood-based confidence intervals are obtained via pivot profiling (see [3])
from the pivots r, r∗, and r∗B. The correction term in (1) becomes

q =
|ϕ(θ̂)−ϕ(θ̂ψ ) ϕλ (θ̂ψ )|

|ϕθ (θ̂)|

{
| j(θ̂)|
| jλλ (θ̂ψ )|

} 1
2

, (3)

where ϕθ (θ) is the matrix of partial derivatives of ϕ(θ) with respect to θ , while
ϕλ (θ) represents the matrix of partial derivatives of ϕ(θ) with respect to λ . Simi-
larly, jλλ (θ) is the (k−1)×(k−1) sub-matrix of the observed information function
j(θ) with respect to λ ; see [6]. The Bayesian analogue
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qB = l′p(ψ) jp(ψ̂)−
1
2

{
| jλλ (θ̂ψ )|
| jλλ (θ̂)|

} 1
2

π(θ̂)

π(θ̂ψ )
, (4)

where l′p(ψ) = dlp(ψ)/dψ is the profile score function and jp(ψ) =−d2lp(ψ)/dψ2

the profile observed information function, was given in [4]. Here, we assume
for π(θ) the “unique prior”, defined in [14], which requires an orthogonal re-
parametrization of the model of the form

p(x1,x2 |ψ,η)∝
1

η2
exp
{
− 1

2(1−ψ2)1/2η2

[
(x1−η1)

2 +(x2−η1)
2−2ψ(x1−η1)(x2−η1)

]}
,

with ψ = ρ , η1 = µ and η2 = σ2(1−ρ2)1/2.
We also obtained a further confidence interval for γ , which is accurate up to the

second order. Its derivation is equivalent to the one discussed in [9], and exploits the
fact that Fisher’s transformation of ρ̂ is again a normalizing and variance stabilizing
transformation as it is the case for the well known transformation of the sample
correlation. That is, the pivot

√
n
[

1
2

log
(

1+ ρ̂

1− ρ̂

)
− 1

2
log
(

1+ρ

1−ρ

)
+

1
2n

]
, (5)

is asymptotically standard normal up to the order n−1; see [7]. Expression (5) leads
straightforwardly to an asymptotic confidence interval for γ .

3 Real data example

Here, we consider the twin study conducted by Tramo et al. [15]. This study gives,
among others, the head circumference of ten pairs of mono-zygotic twins for which
bivariate normality is supported by the corresponding Shapiro-Wilk test (p-value
= 0.198). We are interested in the parameter γ which characterizes the skewness of
the distribution of the maximum between the head circumference in the first twin
and in the second twin. Maximum likelihood yields γ̂ = 0.270. The interval based
on the pivot (5), here ACI, is shorter than the likelihood-based confidence intervals
obtained from r (1st), r∗ (3rd), and r∗B (Bayes); see Table 1.

Table 1 Lower (LB) and upper (UB) bounds of 95% confidence intervals for γ .

Method LB UB Length

1st 0.142 0.511 0.369
3rd 0.129 0.499 0.370
Bayes 0.118 0.470 0.353
ACI 0.170 0.408 0.238

The same analysis carried out on a second variable of the same dataset, this
time the corpus callosum surface area of the twins, led to identical conclusions and
inspired the simulation study described below.
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4 Simulation study

We conducted a simulation study to assess the behaviour of nominal 95% confidence
intervals based upon the small-sample pivots r∗ and r∗B, and to compare them with
those obtained from the large-sample counterpart r and the second order pivot (5).
The accuracy of the confidence intervals is evaluated in terms of empirical coverage
(CP), upper (UE) and lower (LE) error probability, and average length (AL). We
consider 10,000 bivariate normal random samples with µ = 7 and σ = 0.9 for the
four sample sizes n = 5,10,15,20, while the values of ρ range from a moderate to
a strong correlation.

Figure 1 reveals that the small-sample pivots r∗ and r∗B exhibit more reliable cov-
erage than the confidence intervals obtained from their large-sample counterpart r
and the pivot (5), although the Bayesian solution r∗B somewhat overestimates the
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(a) n = 5
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(b) n = 10
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(d) n = 20

Fig. 1 Empirical coverage of the 95% confidence intervals for γ for varying values of ρ . Legend:
–◦– 1st order; –4– 3rd order; –n– Bayes; –•– ACI; — nominal.
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nominal level. Unreported results indicate that r and, to a somewhat lesser extent
(5), exhibit, for small sample sizes, an unsatisfactory behaviour as far as the sym-
metry of errors is concerned, although the confidence intervals based on (5) seem
to improve as soon as n ≥ 10. In addition, r∗B and (5) produce confidence intervals
with, respectively, larger and shorter expected width as compared with the intervals
obtained from r∗ and r. The finite-sample differences among the four pivots van-
ish as the sample size increases. For all four methods, the expected length becomes
wider for negative values of ρ , especially when ρ approaches −1.
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Padova – Progetto di Ricerca di Ateneo 2010 grant no. CPDA101912. The authors acknowledge
helpful suggestions from an anonymous referee.

References

1. Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian
Journal of Statistics, 12, 171–178.

2. Barndorff-Nielsen, O. (1983). On a formula for the distribution of the maximum likelihood
estimator. Biometrika, 70, 343–365.

3. Brazzale, A. R., Davison, A. C. and Reid, N. (2007). Applied Asymtpotics: Case Studies in
Small-Sample Statistics. Cambridge University Press.

4. DiCiccio, T. J. and Martin, A. (1991). Approximations of tail probabilities for a class of
smooth functions with applications to Bayesian and conditional inference. Biometrika, 78,
891–902.

5. Fisher, R. A. (1921). On the ”probable error” of a coefficient of correlation deduced from a
small sample. Metron, 1, 3–32.

6. Fraser, D. A. S., Reid, N. and Wu, J. (1999). A simple general formula for tail probabilities
for frequenstist and Bayesian inference. Biometrika, 86, 249–264.

7. Konishi, S. (1985). Normalizing and variance stabilizing transformation for intraclass corre-
lations. Annals of the Institute of Statistical Mathematics, 37, 87–94.

8. Loperfido, N. (2002). Statistical implications of selectively reported inferential results. Statis-
tics & Probability Letters, 56, 13–22.

9. Mameli, V., Musio, M., Saleau, E. and Biggeri, A. (2012). Large sample confidence intervals
for the skewness parameter of the skew-normal distribution based on Fisher’s transformation.
Journal of Applied Statistics, 39, 1693–1702.

10. Mameli, V. and Brazzale, A. R. (2013). Modern likelihood inference for the param-
eter of skewness: An application to mono-zygotic twin studies. Working Paper Se-
ries, N. 10, December 2013, Department of Statistical Sciences, University of Padova.
http://www.stat.unipd.it/˜brazzale (main Publications – Submitted).

11. Reid, N. (2003). Asymptotics and the theory of inference. Annals of Statistics, 31, 1695–1731.
12. Reid, N. and Fraser, D. A. S. (2010). Mean log-likelihood and higher-order approximations.

Biometrika, 97, 159–170.
13. Smith, C. (1974). Concordance in twins: methods and interpretation. The American Journal

of Human Genetics, 26, 454–466.
14. Staicu, A. M. and Reid, N. (2008). On probability matching priors. The Canadian Journal of

Statistics, 36, 613–622.
15. Tramo, M. J., Loftus, W. C., Green, R. L., Stukel, T. A., Weaver, J. B. and Gazzaniga, M. S.

(1998). Brain size, head size, and IQ in monozygotic twins. Neurology, 50, 1246–1252.


