ASSESSMENT OF BAYESIAN MODELS FOR
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Abstract We develop a Bayesian hierarchical model for predicting oaicurrence
and amount on a fine-pixel grid, by modelling the relatiopdhetween rain gauge
and radar data. An enrichment consists in including neighbmod information as
a covariate for dealing with spatial misalignment. A foctishis work is on evalu-
ation of the predictions, which can consist in point or ptulistic forecasts. In the
first case, competing models can be assessed and ranked lmasti@f consistent
scoring functions. On the other hand, probabilistic fosts@onsist in full predic-
tive distributions and ought to be calibrated and sharptaBlé adaptation to the
zero-inflated model of standard tools for evaluation ardiegpo the prediction of
hourly rainfall in Emilia-Romagna region.

Abstract In questo lavoro viene presentato un modello gerarchicoeBano per
la previsione della presenza e della quaatili pioggia, che considera la relazione
tra misurazioni da pluviometro e da radar; informazioni gjedi intorno al sito plu-
viometro permettono di correggere il misallineamento. kevjsioni sono ottenute
in forma probabilistica, fornendo l'intera distribuzionmedittiva, e sono riassunte,
tramite I'applicazione di un funzionale, in previsioni gah. Strumenti per la valu-
tazione e il confronto tra modelli zero-inflated sono prapesapplicati alla previ-
sione di pioggia oraria in Emilia-Romagna.
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1 Motivating example: Emilia-Romagna rainfall data

Rainfall measurements are essential for public authsritieing the basis for hydro-
logical models and risk monitoring; knowledge of rainfatt@unts with high spatial
resolution can be useful for water resource planning andagement. Direct mea-
surements are provided by rain gauges in sparsely distddotations. Radar data
are available on fine-pixel grids, thus overcoming the pobbf sparseness of the
rain gauge network. However they consist in indirect measants and are not reli-
able for the assessment of rain amounts, despite accumf@@cessing performed
by removing systematical and occasional biases. We focheonly rainfall data in
Emilia-Romagna Region, in Italy. Radar data consist of lyorainfall maps with
1x1 km grid cell resolution, within a circle of 125 km radiegntered near Bologna;
in this area, about 300 rain gauges are available. The dateterogeneousin space
and time, and many zero values are present, corresponditg tmurs. Table 1 re-
ports summaries of 8 rain events of September-October 20iHysed in a previous
paper ([1]), characterised by different duration and fessgu

Table 1 Descriptive statistics of 8 rainfall events in Septembetaber 2010: event ID (Event),
number of hours characterizing the event (H.rs), percentdgzero measurements (Zeros), first
(Q1), second (Med) and third (Q3) quartiles of positive ameumaximum (Max) and correlation
between rain gauge and radar measurements (Corr)

Event H.rs Zeros Q1 Med Q3 Max Corr
E1l 6 24 0.4 1.0 24 19.4 0.81
E2 9 49 0.6 2.0 4.4 31.2 0.80
E3 10 30 0.4 0.8 2.2 34.4 0.55
E4 6 49 0.6 18 3.8 27.0 0.59
E5 7 53 0.2 0.8 3.4 37.2 0.76
E6 5 61 0.2 0.6 1.8 12.4 0.79
E7 11 67 0.2 0.8 2.0 15.0 0.46
E8 16 43 0.4 0.8 1.6 10.8 0.43

2 Model specification for spatial prediction

A flexible choice for dealing with the remarkable quantityzefo measurements is
proposed in ([8]), consisting in a zero-inflated model:

P(Yst|Ret, T&t) = Thtlyg=0+ (1 — &) p(Xst) g0 S€S t=1,...,T

whererg, Yst andRg; are the probability of zero and the rain gauge and radar mea-
surements at locatiomand timet respectivelyp(Xst) = p(Yst|Yst > 0), ands is

the set of rain gauge locations (when dealing with radarpikel containing the
locationsis considered in this first formulation).
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Both rain occurrence and rain accumulation are modeled pio#ixg radar as a
covariate, and the spatial information is captured by néraredom effects whose
correlation decreases exponentially with the euclidesiadced between locations.
Previous work ([1]) encourages separate modeling of diffehours and suggests
a slight preference for the gamma distribution over the oceting lognormal for
modeling positive rain amounts. This is our “base” model:

eRain occurrence: proljit — 1) = it + Vot 10g(Ret) + st (1)

where &0%,@ ~MVN(0,05%;) and 3.(s)=exp—@dsg) (2)

e Rain accumulation:

Xst|Ust, Tt ~ Gammat, &t /Ust) where logust = Bit + B log(Rst) + ast  (3)
at|02, @ ~ MVN(0,02,%4) and 34(s,8) = exp(— @ dsg). (4)

Noninformative hyperpriors are exploited for hyperpartene

In order to enrich the model and to address misalignment weider the in-
clusion of the meatRs; of the radar pixels around the rain gauge locasan Sg
as a further covariate when modelling both rain occurremcerain accumulation;
moreover, as suggested in ([8]), we added an indicator fomdetecting when the
radar pixel containing locatiotmeasures less therPnm (equivalentto rain gauge
sensibility). In the following, we use the denomination igte’ for referring to the
model in which equations (1) and (3) are modified in the folfaywvay:

probit(1 — &) = yir + Y2t 10g(Rst) + yat109(Rst) + Yarl {ry>0.2) + &st (5)

log tst = Bat + B2t 109(Ret) + Bat 109(Ret) + Batl (ry>0.2} + st (6)

Parameter estimation is performed through Markov chain téldarlo algo-
rithms, implemented in C for real-time rainfall field rectnustion.

3 Evaluation of the predictions

Point forecasts are required in many practical situatigves evaluate and rank our
predictions from models “base” and “neigh” according to thean absolute error
and the mean squared error, which are consistent with regpé¢ice median and

mean respectively (see [4]).

Predictive intervals are often associated with point fasts for providing informa-

tion about their uncertainty. If we are looking for centeceedibility intervals, when

their left extremes coincide with zero, precautions focukdting the coverage are
needed.
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To realize their full potential, forecasts ought to be pimlistic in nature, taking
the form of probability distributions ([3]). When probaikiic forecasts are avail-
able, the assessment of their adequacy should addresgatialiband sharpness.
The former refers to the statistical consistency betweerptiobabilistic forecasts
and the observations; the latter corresponds to the comatiemt of the predictive
distributions and is a property of the forecasts only. Theenooncentrated the pre-
dictive distributions, the sharper the forecasts, and llaeper the better, subject to
calibration (see [5]).

The most common tool for assessing probabilistic calibrais the histogram of
the Probability Integral Transform (PIT). In the case ofgypéation, the distribu-
tion is zero-inflated, thus requiring a correction in cop@sdence to zero obser-
vations. Literature proposes two alternative approadhespredictive CDH- can
be randomized in zero by multiplying it for a standard unifiorariable, or a non-
randomized method can be adopted, as introduced in [2] éocdise of count data.
The second approach deals with discrete data and is thusraotiyl applicable in
our case, due to the continuous nature of the distributiopasitive amounts; in
this work we propose an adjustment for zero-inflated distiiims with continuous
modeling of the positive values. The procedure consists in:

1 fixing a numbed of bins in which [0,1] will be divided
2 calculating the CDF of the PIT, conditioning on the obsdrvalue, inuj; =
J/J7 J :177‘]

0 u<rm
FPT(ujly=0)={ u/mo<u<m F"T(ulyy# 0>={
1 u>rm

0 u<F(y)
1 u>F(y) @

(we dropped the subscripgsandt fromy, rrandF for simplicity of notation)
3 calculating the meaR™' (u;j) over the observations, ..., yn for each
u=j/d, i=1..3, _
4 computingf; = FP'T(u)) —FPT(uj_q), j=1,....,3;
5 drawing a PIT histogram with heights.

If the distribution of all the potential predictive values ¢onsidered, aggregating
over the individuals, a check for marginal calibration candone, verifying its
statistical compatibility with the empirical distributiof all the observations ([5]).

Summary measures of predictive performance addressiigatidn and sharpness
simultaneously are provided by scoring rules. They coirsfsinctionsS(F Pred, yobs)
of the predictive distributiof P and of the observatioy??s quantifying a penalty
the forecaster aims to minimize, and they should be progy. Comparisons are
made on the means of the scoring rule values over the obeersat he Brier Score
(BS) is a useful and proper scoring rule when the interest ihhe exceedance of a
certain threshold; in particular, we focus on the deteabibrainfall occurrence (i.e.
zero threshold). The continuous ranked probability sc@RKS) is the integral of
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the BS over the thresholds, and is a wide used proper scarlag[6] provides a
useful formulation for computing it when a big sample frora giredictive distribu-
tion is available, as happens with Markov chain Monte Cattpats.

4 Assessment and comparison between two model specificatson

The competing models “base” and “neigh” are compared insexfpredictive per-
formances at a random set of 50 validation sites. When asgegsint forecasts,
we also compare the predictions with the raw radar data. |Reate reported in
Table 2, showing both models succeed in correcting radar. d&e additional co-
variates (model “neigh”) improve point forecasts, accogdioth to MAE and MSE.
Coverages of the centered 50% and 90% predictive intervalslase to the nomi-
nal levels (not shown). Also CRPS is slightly lower for the@ed model (“neigh”).
Graphical displays assessing calibration look very simiitaFig. 1 we show proba-
bilistic and marginal calibration displays for model “bggbe corresponding plots
for model “neigh” look very similar. Non-randomized PIT tagram is almost uni-
form in both cases, meaning that probabilistic calibraisoachieved. The marginal
calibration plot reports the predictive and empirical C@Bsained pooling together
all the observations; only small discrepancies are dedecte

Table 2 Assessment of point forecasts via MAE and MSPE, of prolsthilforecasts via CRPS,
and of the ability in predicting the probability of rain vieSRwith respect to zero threshold)

Event MAE | MSE CRPS BS

base neigh rad@base neigh radarbase neigfbase neigh
E1 [0.33 0.32 0.940.34 0.32 2.57 0.25 0.25/0.08 0.07
E2 (0.90 0.89 1.405.4 5.32 8.57 0.67 0.66/0.07 0.07
E3 |0.58 0.57 1.382.05 2.18 5.0 0.42 0.42/0.10 0.10
E4 (0.79 0.73 1.864.27 4.62 13.400.57 0.54/0.07 0.07
E5 [0.95 0.92 1.547.12 6.36 11.950.69 0.66/0.11 0.11
E6 [0.23 0.23 0.680.53 0.44 1.48 0.18 0.18/0.09 0.09
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Fig. 1 Graphical tools for the assessment of probabilistic fastra
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