
On species sampling sequences induced by
residual allocation models
Modelli di campionamento di specie indotta da
assegnazione residua

Abel Rodrı́guez and Fernando A. Quintana

Abstract We discuss fully Bayesian inference in a class of species sampling models
that are induced by residual allocation (sometimes called stick-breaking) priors on
almost surely discrete random measures. This class provides a generalization of
the well-known Ewens sampling formula that allows for additional flexibility while
retaining computational tractability. In particular, the procedure is used to derive
the exchangeable predictive probability functions associated with the generalized
Dirichlet process of [3]. The procedure is illustrated with an application to genetics.
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1 Introduction

An exchangeable sequence of random variables X1,X2, . . . defined on a probability
space (X ,B) follows a species sampling model (SSM) if its joint distribution can
be characterized by a sequence of predictive rules where X1 ∼ G0 and

p(Xn+1 ∈ B|Xn, . . . ,X1) =
Kn

∑
k=1

qn
k(m

n)δX̃k
(B)+qn

Kn+1(m
n)G0(B),

for some non-atomic measure G0 on (X ,B) and for all B ∈B. In the previous ex-
pression, δa denotes the degenerate probability measure placing probability 1 on a,
mn = (mn

1, . . . ,m
n
Kn) with mn

k = ∑
n
j=1 I(X j = X̃k) being the number of values among
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X1, . . . ,Xn that are equal to X̃k, Kn = max{k : mn
k > 0} being the number of unique

values among X1, . . . ,Xi, and qn
k for k≤ n and n = 1,2, . . . being a collection of func-

tions of mn (usually called the predictive probability functions, or PPFs) which for
all n and mn satisfy qn

k(m
n)≥ 0 and ∑

Kn+1
k=1 qn

k(m
n) = 1.

A well-defined set of PPFs implies a symmetric joint probability distribution
p(mn

1, . . . ,m
n
Kn) for the number of species and the sample sizes associated with

each one of them, which can be obtained through a recursion where p(1) = 1,
p(mn

1, . . . ,m
n
k + 1, . . . ,mn

Kn) = qn
k(m

n
1, . . . ,m

n
Kn)p(mn

1, . . . ,m
n
k , . . . ,m

n
Kn) for k ≤ Kn,

and p(mn
1, . . . ,m

n
Kn ,1) = qn

Kn+1(m
n
1, . . . ,m

n
Kn)p(mn

1, . . . ,m
n
Kn) [10, 5]. The function

p is often called the exchangeable partition probability function (EPPF).
Constructing EPPFs is a difficult task, as ensuring that X1,X2, . . . is an exchange-

able sequence implies quite strict conditions on the PPFs [11, 5]. As a consequence,
the number of species sampling models in the literature is rather small, with the most
popular ones being those associated with the Dirichlet process (DP) [2, 1], the two-
parameter Poisson-Dirichlet process (PDP) [10], and the normalized inverse Gaus-
sian measures (NIGM) [6]. This list suggests that there is a close link between the
class of nonparametric priors on almost-surely discrete distributions and the class of
SSMs. Indeed, a well known result due to [11] establishes that the De Finetti mea-
sure of any SSM can be written as G(·) = ∑

∞
k=1 ωkδX∗k

(·)+RG0 for some sequence
of positive random variables ω1,ω2, . . . and R such that 1−R = ∑

∞
k=1 ωk ≤ 1 almost

surely, X∗1 ,X
∗
2 , . . . is a random sample from a non-atomic G0, and the sequences

ω1,ω2, . . . and X∗1 ,X
∗
2 , . . . are independent.

2 PPFs and EPPFs from residual allocation models

The random probability measure G is said to follow an independent residual alloca-
tion prior if it can be represented as

G(·) =
N

∑
k=1

ωkδX∗k
, (1)

where N ∈ N, X∗1 ,X
∗
2 , . . . is a sequence of independent and identically distributed

realizations from some distribution G0 and ωk = zk ∏`<k{1− z`} where zk ∼ Hθ
k

independently for all k = 1,2, . . . (with the convention zN = 1 if N < ∞), and Hθ
k

is a probability distribution on [0,1] indexed by θ . Examples include the Dirichlet
process (where N = ∞, θ = b, and zk ∼ Beta(1,b) for some b > 0) and the Poisson-
Dirichlet process (for which θ = (a,b), zk ∼ Beta(1−a,b+ ka) and either N = ∞,
0≤ a < 1 and b >−a or N < ∞, a < 0 and b =−aN).

[4] and [11] show that the EPPF associated with (1) is given by

p(mn
1, . . . ,m

n
Kn | θ) = ∑

( j1,..., jKn )∈JKn

Eθ

{
Kn

∏
k=1

ω
mn

k
jk

}
, (2)
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where J represents the set of all possible sequences of distinct (not necessarily
consecutive) positive integers of length Kn.

The residual allocation construction provides a very general mechanism to define
priors on random measures and, implicitly, on the associated SSMs. In the sequel,
we will focus on the special case where all the stick-breaking ratios zk are not only
independent but also identically distributed, i.e., zk ∼ H for all k = 1,2, . . ..

Lemma 1. The EPPF induced by the stick breaking prior in (1) is given by

p(mn
1, . . . ,m

n
Kn | θ) = ∑

σ∈PKn

 Kn

∏
k=1

γθ

(
mn

σk
,∑Kn

j=k+1 mn
σ j

)
1− γθ

(
0,∑Kn

j=k mn
σ j

)
 , (3)

where PKn denotes the set of all permutations of {1, . . . ,Kn}, σ = (σ1, . . . ,σ
n
K) and

γθ (x,y) = Eθ {zx(1− z)y} with z∼ H. �

Note that the function gθ

(
mn

σ1
, . . . ,mn

σKn

)
= ∏

Kn

k=1
γθ

(
mn

σk
,∑Kn

j=k+1 mn
σ j

)
1−γθ

(
0,∑Kn

j=k mn
σ j

) satisfies

gθ (1) = 1, but is in general not symmetric on its arguments and depends on the
permutation σ , which encodes the order of the indices that identify the components
that generate the unique labels associated with the observed species. Indeed, in the
future it will be convenient to interpret gθ (mn

σ1
, . . . ,mn

σKn ) as describing the joint
probability distribution of the exchangeable vector (mn

1, . . . ,m
n
Kn) and the permuta-

tion σ , p(mn
1, . . . ,m

n
Kn ,σ | θ).

3 A new species sampling models

[3] defined a new class of residual allocation priors by letting N = ∞ and uk ∼
Beta(a,b). Since a = 1 implies that G follows a Dirichlet process, he called this
construction a generalized Dirichlet processes (GDP). The EPPF associated with
the GDP is

p(mn
1, . . . ,m

n
Kn | a,b) =

{
Γ (a+b)
Γ (a)Γ (b)

}Kn
Γ (b)

Γ (b+n)

∑
σ∈PKn

Kn

∏
k=1

Γ
(
a+mn

k

){
Γ

(
a+b+∑

Kn
j=k mn

σ j

)
Γ

(
b+∑

Kn
j=k mn

σ j

) − Γ (a+b)
Γ (b)

} .

The GDP is particularly appealing for creating species sampling models because
it allows for a multitude of asymptotic behaviors for the expected number of species.

Lemma 2. The expected number of clusters ea,b(Kn) for the species sampling model
induced by a generalized Dirichlet process where zk ∼ Beta(a,b) is given by
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ea,b(Kn) =
n

∑
i=1

iaΓ (a+b)Γ (b+ i−1)
Γ (b)Γ (a+b+ i)−Γ (a+b)Γ (b+ i)

. (4)

Note that for a = 1, equation (4) simplifies to ea,b(Kn) =∑
n
i=1

b
b+i−1 ∼ o(logn), a

well known result for the Dirichlet process. For more general values of a, Stirling’s
approximation can be used to show that

naΓ (a+b)Γ (b+n−1)
Γ (b)Γ (a+b+n)−Γ (a+b)Γ (b+n)

≈C(a,b)n−a.

where C(a,b) = {aΓ (a+b)/Γ (b)}exp{−2(a+1)}. Hence, for a≤ 1 the expected
number of distinct species will grow slowly but without bound as n increases, with
ea,b(Kn)∼ o(n1−a). This behavior is similar to the one associated with the Poisson
Dirichlet process [12]. However, for a > 1 the expected number of species instead
converges to a finite constant.

4 Bayesian inference for species sampling models

Given a prior p(θ), the posterior distribution of the parameters of the SSM is triv-
ially given by

p(θ | mn
1, . . . ,m

n
Kn) ∝ pθ (mn

1, . . . ,m
n
Kn)p(θ),

where pθ (mn
1, . . . ,m

n
Kn) was given in (3). Since θ is typically a low dimensional

vector, exploring this posterior distribution using a Markov chain Monte Carlo al-
gorithm should be in principle straightforward. However, for realistic applications,
evaluating the sum over all possible permutations of the set {1,2, . . . ,Kn} is infea-
sible.

We can get around this issue by reinterpreting gθ (mn
σ1
, . . . ,mn

σKn ) as describ-
ing a joint distribution over both the permutation σ and the vector of observations
mn

1, . . . ,m
n
K , and treating σ as a latent variable to be imputed as part of an augmented

sampler. The joint posterior distribution of this augmented model can be written as

p(θ ,σ | mn
1, . . . ,m

n
Kn) ∝ gθ

(
mn

σ1
, . . . ,mn

σKn

)
p(θ),

which can be explored by alternatively sampling from the full conditional associ-
ated with the parameters θ that control the prior size of the weights, and the full
conditional distribution of the permutation σ controlling the assignment of species
to atoms. For sampling θ we favor a Metropolis-Hasting step with a multivariate
Gaussian random walk proposal on a suitable transformation of θ . For sampling
σ we use a combination of symmetric proposals that update blocks of elements of
the permutation. Furthermore, this MCMC algorithm can be easily extended to es-
timate the predictive distribution of K̃ñ, the number of new species to be observed if
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the current sample size is extended from n to n+ ñ using “order-dependent” EPPFs
derived from gθ .

5 Illustration

We consider a real dataset discussed in [9], [8], and [7]. The data consists of n =
2574 randomly selected expressed sequence tags taken form a large cDNA library
made from the 0 mm to 3 mm buds of tomato flowers. The number distinct tags
observed in this sample is K = 1814; Table 1 shows the number of times each species
size was observed in the sample (e.g., 1423 tags were observed only once).

Table 1 Data on the number of expressed sequence tags from a cDNA library made from the 0
mm to 3 mm buds of tomato flowers.

Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 23 27
Frequency 1423 253 71 33 11 6 2 3 1 2 2 1 1 1 2 1 1

We compare the species sampling model associated with the GDP against a the
species sample models induced by the DP and the PDP. For this illustration, the
algorithm described in Section 4 was used to generate of 20000 samples from the
posterior distribution, obtained after a burn-in of 100000 iterations and thinning
every 80 observations. The parameters a and b of the GDP are given exponential
prior distributions with means 0.1 and 1000 respectively; the corresponding pos-
terior means are e(a | m) = 0.053 and e(b | m) = 1345, while the respective 95%
symmetric credible intervals are (0.001,0.186) and (1172,1584). The equivalent
sample sizes for these parameters are 3385 for a and 5431 for b. In the case of
the PDP, the parameters are given a uniform distribution on the (0,1) interval and
an exponential prior with mean 800; the corresponding posterior means are 0.61
and 735.9, with 95% credible intervals of (0.53,0.67) and (515.6,1017.4). Finally,
for the DP an exponential prior with mean 1000 is employed for the concentration
parameters, which leads to a posterior mean of 2724.9 and 95% posterior credible
interval of (2491.3,2972.1).

Figure 1 presents the distribution of the number of unique species in a new sam-
ple of size 500 taken from this population under these three models as well as the
posterior expected number of species for a new sample of size ñ. Not surprisingly
given the large number of singleton species, the PDP favors a larger number of new
species than the DP. On the other hand, the GDP seems to offer a compromise be-
tween both predictions, with a forecast of the number of species that seems to be in
between those generated by the DP and the PDP.
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Fig. 1 Prediction for the number of new species for the expressed sequence tag data of [9]. The
left panel shows the posterior distribution of the number of new species in a new sample of 500
individuals under each of three competing models: the generalized Dirichlet process (GDP), the
Poisson-Dirichlet process (PDP) and the Dirichlet process (DP). The right panel shows the pos-
terior expected number of species for a new sample of size ñ under each of the three competing
models.


