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Abstract A regression model for binary spatial data with dependence expressed
in terms of cross-ratios is discussed. In order to avoid difficulties associated with
the specification of multivariate binary distributions, a conditional pairwise likeli-
hood method is developed for inferential purposes. The methodology is illustrated
through the analysis of data about the effect of acid rains on trout populations in
Norwegian lakes.
Abstract Si propone un modello di regressione per dati spaziali binari in cui la
dipendenza è modellata attraverso la specificazione dei cross-ratios. Al fine di
evitare le difficoltà associate alla specificazione di una distribuzione congiunta per
dati binari multivariati, l’inferenza è basata sulla verosimiglianza a coppie con-
dizionata. La metodologia è illustrata attraverso l’analisi di dati concernenti gli
effetti della pioggia acida sulla popolazione di trote presenti nei laghi norvegesi.
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1 Introduction

The analysis of data deriving from spatial applications is often cumbersome because
these data are naturally characterized by spatial dependence that should be taken into
account in the model. It is even harder to analyze binary data, since the specification
of a full multivariate distribution of the observations may be cumbersome and the
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calculation of the likelihood usually poses noticeable computational difficulties [3,
8, 10].

A model for spatial binary data, in which dependence is accounted for through
the specification of cross-ratios for couples of observations is proposed. We suggest
to use conditional pairwise likelihood for making inference in the model, hence only
bivariate distributions need to be specified. Section 2 introduces the model proposed
and the composite likelihood estimation. Section 3 illustrates the model through
an application to the reduction in the population of trouts in Norwegian lakes and
Section 4 closes the paper.

2 Regression model for binary spatial data

Let Yi, i = 1, . . . ,n, denote a binary random variable that can assume values 0 or 1.
Suppose that, for each observation a vector of p explanatory variables xi is available.
The marginal probabilities are described through the logistic regression model

πi = P(Yi = 1) =
exp(xT

i β )

1+ exp(xT
i β )

,

where β is a p-dimensional vector of regression parameters.
Dependence in binary observations is often described through the cross-ratio be-

tween the random variables Yi and Yj

ψi j =
P(Yi = 1,Yj = 1)P(Yi = 0,Yj = 0)
P(Yi = 1,Yj = 0)P(Yi = 0,Yj = 1)

.

Spatial dependence between observations decreases with distance. Accordingly,
we propose to model the cross-ratio as

ψi j = exp
{

α

di j

}
,

where di j denotes the distance between observations Yi and Yj and α is a given con-
stant. This specification ensures that the cross-ratio is non negative. If α is zero,
then all cross-ratios are equal to one, and the data are independent. Otherwise, the
cross-ratio decreases as observations become more and more distant, and α allows
to determine the distance at which observations can be considered essentially inde-
pendent.

Given univariate marginal probabilities and cross-ratios, the bivariate marginal
probabilities are

πi j = P(Yi = 1,Yj = 1) =
1+(πi +π j)(ψi j−1)−G(ψi j,πi,π j)

2(ψi j−1)
,
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where G(ψi j,πi,π j) =
√

[1+(πi +π j)(ψi j−1)]2−4ψi j(ψi j−1)πiπ j. Likelihood
inference for a model that describes the multivariate binary distribution of all obser-
vations would require to specify a large set of higher-order cross ratio parameters
and to solve complex high-order polynomials, see [6].

As a feasible alternative, we suggest to employ an estimating method that re-
quires only the specification of univariate and bivariate distributions. This method is
an instance of composite likelihood methods [4, 9]. Composite likelihood is a type
of pseudo likelihood constructed from the combination of likelihoods for subsets of
marginal or conditional events. Following the suggestions in [5], we consider the
conditional pairwise likelihood

PL(θ ;Y ) =
n

∏
i=1

∏
j 6=i

P(Yi|Yj)
wi j ,

where θ = (β ,α) denotes the vector of model parameters, wi j are non nega-
tive weights and Y = (Y1, . . . ,Yn). The computation of conditional probabilities is
straightforward exploiting the formula given in [1]

logitP(Yi = 1|Yj = y j) = γi jy j + log
πi−πi j

1−πi−π j +πi j
,

where γi j = logψi j. Accordingly, the conditional probabilities become

P(Yi|Yj;θ) = P(Yi = yi|Yj = y j;θ) =
exp(γi jyiy j)

πi−πi j
1−πi−π j+πi j

1+ exp(γi jyiy j)
πi−πi j

1−πi−π j+πi j

.

Thus, the conditional pairwise log likelihood is

pl(θ ;Y ) =
n

∑
i=1

∑
j 6=i

(
α

di j
yiy j + yi log

πi−πi j

1−πi−π j +πi j
− log

{
1+

πi−πi j

1−πi−π j +πi j
e

α

di j
y j
})

wi j

=
n

∑
i=1

∑
j 6=i

wi j logP(Yi|Yj).

Under suitable regularity conditions, the maximum pairwise likelihood estimator is
asymptotically normally distributed with variance G(θ)−1 = H(θ)−1J(θ)H(θ)−1,
where H(θ) = E(−∇2 pl(θ ;Y )) and J(θ) = var(∇pl(θ ;Y )), see [7].

3 Trouts data

The data considered here have already been analyzed in [8]. These data concern the
status of the trout population in 542 Norwegian lakes in 1986. After interviewing
local fishermen, the population status is recorded as unaffected or decreased/extinct,
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Fig. 1 Trouts data. Lakes where the population of trouts is unaffected (left panel) and lakes where
the population is decreased/extinct (right panel).

coded as 0 and 1, respectively. Fig. 1 shows the lakes that are unaffected and those
which suffer a reduction in the trout population. Trouts are particularly sensitive to
acidification of lakes and streams which may be caused by acid deposition from
long range transportation of air pollutants. It is of interest to investigate whether the
measured acid neutralizing capacity (ANC) affects the probabilities of observing a
decrease in the population of trouts. The covariate ANC reflects local properties of
soils and the load from current and historic acid deposition.

It is not numerically efficient to consider all the
(n

2

)
possible couples of observa-

tions in the construction of the conditional pairwise likelihood since it is plausible
that couples formed by closest observations are more informative, hence the first
step of the data analysis is their identification. For this purpose, the empirical lorel-
ogram [2] of the data is computed. The data with distance up to 350 kilometers are
divided into 10 bins and the logarithm of the empirical cross-ratio is computed. The
empirical lorelogram decreases as the distance between couples of observations in-
creases. The model based log cross-ratio is α/di j. We consider as distance the center
of each bin and estimate the parameter α using weighted least squares with weights
equal to the number of observations in each bin. The log cross-ratio approaches zero
in the bin between 105 and 140 kilometers. Accordingly, in the conditional pairwise
likelihood, couples of observations which are more than 140 kilometers apart are
excluded (wi j = 0).
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Table 1 Estimates, standard errors, z-values and p-values of the proposed model for the trouts
data.

Estimate Standard error z-value p-value
Intercept 0.798 1.743 -0.458 0.647
ANC -14.909 2.568 -5.806 6 ·10−9

log(area) -0.275 0.168 -1.636 0.102
log(altitude) 0.104 0.296 0.350 0.727

Further covariates on the area and the altitude of the lakes are available, so we fit
the model

logit{E(Yi|xi)}= β0 +β1ANC+β2 log(area)+β3 log(altitude),

Table 1 reports the estimates and their standard errors. The covariate ANC appears
highly significant in keeping the number of trouts stable. The other covariates con-
sidered, area and altitude of the lake, are not significant. The estimate of the parame-
ter α is 0.189, with standard error 0.061, this means that when the distance between
two lakes is larger than 387 kilometers, their cross-ratio is lower than 1.05, so the
related observations may be considered essentially independent.

4 Discussion

This paper proposes a model for the analysis of binary spatial data, in which de-
pendence is accounted for though the specification of the cross-ratio that depends
on the distance between observations. Conditional pairwise likelihood inference has
the clear benefit of avoiding the specification of a joint model for the vector of binary
spatial data.

The model is applied to the data on the reduction of the population of trouts in
542 Norwegian lakes. The analysis shows that the acid neutralizing capacity of the
soil seems to increase the probability that the population of trouts in the lake remains
stable.
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