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Abstract We develop a Bayesian hierarchical model for predicting rain occurrence
and amount on a fine-pixel grid, by modelling the relationship between rain gauge
and radar data. An enrichment consists in including neighbourhood information as
a covariate for dealing with spatial misalignment. A focus of this work is on evalu-
ation of the predictions, which can consist in point or probabilistic forecasts. In the
first case, competing models can be assessed and ranked on thebasis of consistent
scoring functions. On the other hand, probabilistic forecasts consist in full predic-
tive distributions and ought to be calibrated and sharp. Suitable adaptation to the
zero-inflated model of standard tools for evaluation are applied to the prediction of
hourly rainfall in Emilia-Romagna region.
Abstract In questo lavoro viene presentato un modello gerarchico Bayesiano per
la previsione della presenza e della quantitá di pioggia, che considera la relazione
tra misurazioni da pluviometro e da radar; informazioni spaziali intorno al sito plu-
viometro permettono di correggere il misallineamento. Le previsioni sono ottenute
in forma probabilistica, fornendo l’intera distribuzionepredittiva, e sono riassunte,
tramite l’applicazione di un funzionale, in previsioni puntali. Strumenti per la valu-
tazione e il confronto tra modelli zero-inflated sono proposti e applicati alla previ-
sione di pioggia oraria in Emilia-Romagna.
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1 Motivating example: Emilia-Romagna rainfall data

Rainfall measurements are essential for public authorities, being the basis for hydro-
logical models and risk monitoring; knowledge of rainfall amounts with high spatial
resolution can be useful for water resource planning and management. Direct mea-
surements are provided by rain gauges in sparsely distributed locations. Radar data
are available on fine-pixel grids, thus overcoming the problem of sparseness of the
rain gauge network. However they consist in indirect measurements and are not reli-
able for the assessment of rain amounts, despite accurate pre-processing performed
by removing systematical and occasional biases. We focus onhourly rainfall data in
Emilia-Romagna Region, in Italy. Radar data consist of hourly rainfall maps with
1x1 km grid cell resolution, within a circle of 125 km radius,centered near Bologna;
in this area, about 300 rain gauges are available. The data are heterogeneous in space
and time, and many zero values are present, corresponding todry hours. Table 1 re-
ports summaries of 8 rain events of September-October 2010,analysed in a previous
paper ([1]), characterised by different duration and features.

Table 1 Descriptive statistics of 8 rainfall events in September-October 2010: event ID (Event),
number of hours characterizing the event (H.rs), percentage of zero measurements (Zeros), first
(Q1), second (Med) and third (Q3) quartiles of positive amounts, maximum (Max) and correlation
between rain gauge and radar measurements (Corr)

Event H.rs Zeros Q1 Med Q3 Max Corr
E1 6 24 0.4 1.0 2.4 19.4 0.81
E2 9 49 0.6 2.0 4.4 31.2 0.80
E3 10 30 0.4 0.8 2.2 34.4 0.55
E4 6 49 0.6 1.8 3.8 27.0 0.59
E5 7 53 0.2 0.8 3.4 37.2 0.76
E6 5 61 0.2 0.6 1.8 12.4 0.79
E7 11 67 0.2 0.8 2.0 15.0 0.46
E8 16 43 0.4 0.8 1.6 10.8 0.43

2 Model specification for spatial prediction

A flexible choice for dealing with the remarkable quantity ofzero measurements is
proposed in ([8]), consisting in a zero-inflated model:

p(Yst|Rst,πst) = πstIYst=0+(1−πst)p(Xst)IYst>0 s∈ SG t = 1, . . . ,T

whereπst, Yst andRst are the probability of zero and the rain gauge and radar mea-
surements at locations and timet respectively,p(Xst) = p(Yst|Yst > 0), andSG is
the set of rain gauge locations (when dealing with radar, thepixel containing the
locations is considered in this first formulation).



Assessment of Bayesian models for rainfall field reconstruction 3

Both rain occurrence and rain accumulation are modeled by exploiting radar as a
covariate, and the spatial information is captured by normal random effects whose
correlation decreases exponentially with the euclidean distanced between locations.
Previous work ([1]) encourages separate modeling of different hours and suggests
a slight preference for the gamma distribution over the competing lognormal for
modeling positive rain amounts. This is our “base” model:

•Rain occurrence: probit(1−πst) = γ1t + γ2t log(Rst)+ εst (1)

where εt |σ2
εt ,φε ∼ MVN(0,σ2

εtΣ ε) and Σ ε (s,s
′) = exp(−φε dss′) (2)

• Rain accumulation:

Xst|µst,τt ∼ Gamma(τt ,τt/µst) where logµst = β1t +β2t log(Rst)+αst (3)

αt |σ2
αt ,φα ∼ MVN(0,σ2

αtΣα) and Σ α(s,s
′) = exp(−φα dss′). (4)

Noninformative hyperpriors are exploited for hyperparameters.

In order to enrich the model and to address misalignment we consider the in-
clusion of the meanRst of the radar pixels around the rain gauge locations∈ SG

as a further covariate when modelling both rain occurrence and rain accumulation;
moreover, as suggested in ([8]), we added an indicator function detecting when the
radar pixel containing locationsmeasures less then 0.2 mm (equivalent to rain gauge
sensibility). In the following, we use the denomination “neigh” for referring to the
model in which equations (1) and (3) are modified in the following way:

probit(1−πst) = γ1t + γ2t log(Rst)+ γ3t log(Rst)+ γ4t I{Rst>0.2}+ εst (5)

logµst = β1t +β2t log(Rst)+β3t log(Rst)+β4t I{Rst>0.2}+αst. (6)

Parameter estimation is performed through Markov chain Monte Carlo algo-
rithms, implemented in C for real-time rainfall field reconstruction.

3 Evaluation of the predictions

Point forecasts are required in many practical situations.We evaluate and rank our
predictions from models “base” and “neigh” according to themean absolute error
and the mean squared error, which are consistent with respect to the median and
mean respectively (see [4]).
Predictive intervals are often associated with point forecasts for providing informa-
tion about their uncertainty. If we are looking for centeredcredibility intervals, when
their left extremes coincide with zero, precautions for calculating the coverage are
needed.
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To realize their full potential, forecasts ought to be probabilistic in nature, taking
the form of probability distributions ([3]). When probabilistic forecasts are avail-
able, the assessment of their adequacy should address calibration and sharpness.
The former refers to the statistical consistency between the probabilistic forecasts
and the observations; the latter corresponds to the concentration of the predictive
distributions and is a property of the forecasts only. The more concentrated the pre-
dictive distributions, the sharper the forecasts, and the sharper the better, subject to
calibration (see [5]).
The most common tool for assessing probabilistic calibration is the histogram of
the Probability Integral Transform (PIT). In the case of precipitation, the distribu-
tion is zero-inflated, thus requiring a correction in correspondence to zero obser-
vations. Literature proposes two alternative approaches:the predictive CDFF can
be randomized in zero by multiplying it for a standard uniform variable, or a non-
randomized method can be adopted, as introduced in [2] for the case of count data.
The second approach deals with discrete data and is thus not directly applicable in
our case, due to the continuous nature of the distribution onpositive amounts; in
this work we propose an adjustment for zero-inflated distributions with continuous
modeling of the positive values. The procedure consists in:

1 fixing a numberJ of bins in which [0,1] will be divided
2 calculating the CDF of the PIT, conditioning on the observed value, inu j =

j/J, j = 1, . . . ,J

FPIT(u j |y= 0) =







0 u≤ π
u/π 0≤ u≤ π
1 u≥ π

FPIT(u j |y,y 6= 0) =

{

0 u< F(y)
1 u≥ F(y)

(7)

(we dropped the subscriptssandt from y, π andF for simplicity of notation)
3 calculating the mean̄FPIT(u j) over the observationsy1, . . . ,yn for each

u j = j/J, j = 1, . . . ,J;
4 computingf j = F̄PIT(u j)− F̄PIT(u j−1), j = 1, . . . ,J;
5 drawing a PIT histogram with heightsf j .

If the distribution of all the potential predictive values is considered, aggregating
over the individuals, a check for marginal calibration can be done, verifying its
statistical compatibility with the empirical distribution of all the observations ([5]).

Summary measures of predictive performance addressing calibration and sharpness
simultaneously are provided by scoring rules. They consistin functionsS(F pred,yobs)
of the predictive distributionF pred and of the observationyobsquantifying a penalty
the forecaster aims to minimize, and they should be proper ([5]). Comparisons are
made on the means of the scoring rule values over the observations. The Brier Score
(BS) is a useful and proper scoring rule when the interest is on the exceedance of a
certain threshold; in particular, we focus on the detectionof rainfall occurrence (i.e.
zero threshold). The continuous ranked probability score (CRPS) is the integral of
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the BS over the thresholds, and is a wide used proper scoring rule; [6] provides a
useful formulation for computing it when a big sample from the predictive distribu-
tion is available, as happens with Markov chain Monte Carlo outputs.

4 Assessment and comparison between two model specifications

The competing models “base” and “neigh” are compared in terms of predictive per-
formances at a random set of 50 validation sites. When assessing point forecasts,
we also compare the predictions with the raw radar data. Results are reported in
Table 2, showing both models succeed in correcting radar data. The additional co-
variates (model “neigh”) improve point forecasts, according both to MAE and MSE.
Coverages of the centered 50% and 90% predictive intervals are close to the nomi-
nal levels (not shown). Also CRPS is slightly lower for the second model (“neigh”).
Graphical displays assessing calibration look very similar. In Fig. 1 we show proba-
bilistic and marginal calibration displays for model “base”; the corresponding plots
for model “neigh” look very similar. Non-randomized PIT histogram is almost uni-
form in both cases, meaning that probabilistic calibrationis achieved. The marginal
calibration plot reports the predictive and empirical CDFsobtained pooling together
all the observations; only small discrepancies are detected.

Table 2 Assessment of point forecasts via MAE and MSPE, of probabilistic forecasts via CRPS,
and of the ability in predicting the probability of rain via BS (with respect to zero threshold)

Event MAE MSE CRPS BS
base neigh radarbase neigh radarbase neighbase neigh

E1 0.33 0.32 0.940.34 0.32 2.57 0.25 0.25 0.08 0.07
E2 0.90 0.89 1.40 5.4 5.32 8.57 0.67 0.66 0.07 0.07
E3 0.58 0.57 1.382.05 2.18 5.06 0.42 0.42 0.10 0.10
E4 0.79 0.73 1.864.27 4.62 13.400.57 0.54 0.07 0.07
E5 0.95 0.92 1.547.12 6.36 11.950.69 0.66 0.11 0.11
E6 0.23 0.23 0.680.53 0.44 1.48 0.18 0.18 0.09 0.09
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Fig. 1 Graphical tools for the assessment of probabilistic forecasts
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