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Abstract We exploit the connections between measurement error and data pertur-
bation for disclosure limitations in the context of small area estimation. Our starting
point is an area level model in which some of the covariates (all continuous) are
measured with error. Using a fully Bayesian approach, we extend such model in-
cluding continuous and categorical auxiliary variables, both perturbed by disclosure
limitation methods, with masking distributions fixed according to the assumed pro-
tection mechanism. In order to investigate the feasibility of the proposed method,
we conduct an extensive simulation study exploring the effect of different protec-
tion scenarios on the small area mean predictions. We also perform a comparative
analysis of the proposed estimator.
Abstract In questo lavoro esploriamo le connessioni tra la stima in presenza di er-
rore di misurazione e l’analisi di dati perturbati per motivi di confidenzialità per i
modelli di stima per piccole aree. Il punto di partenza è un modello di area in cui
alcune covariate, tutte continue, sono misurate con errore. Mediante un approccio
bayesiano, includiamo in tale modello variabili sia continue che categoriche, en-
trambe perturbate per tutelare la riservatezza dei rispondenti secondo uno schema
probabilistico noto. Al fine di valutare l’efficacia del metodo proposto, viene effet-
tuato uno studio di simulazione che esplora gli effetti di diversi scenari di protezione
sulle previsioni di area. Lo stimatore proposto viene confrontato con i metodi attual-
mente noti in letteratura.
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1 Introduction

In recent years, small area estimation has emerged as an important area of statis-
tics as private users and public agencies need to extract the maximum information
from sample survey data. Sample surveys are generally designed to produce reliable
estimates of totals and means of variables of interest for given domains. However,
governments and general users are more and more interested in obtaining statisti-
cal summaries for smaller domains, called small areas, created by cross classifying
demographic and geographical variables. Due to budget constraints, the samples in
these subdomains are often too small and direct survey estimates may be unreliable,
and exhibit exceedingly high standard errors. In order to obtain improved estimates,
model-based approaches, usually based on mixed effects regression models, are in-
troduced to link the small areas and borrow strength from similar domains (see[10],
[3] and [9] for a review).

There is a strong and increasing pressure from the reasearch community to ex-
tract from survey data the largest amount of information, small area estimation being
one instance of the possible analyses of legitimate users. The mission of statistical
agencies is supplying society with useful statistical information, under the commit-
ment of protecting confidentiality of the respondents. Statistical Disclosure Control
(SDC) aims at protecting statistical data in such a way that these can be released
without disclosing confidential information that can be linked to specific individ-
uals or entities (see [11]). SDC can be defined as the set of techniques designed
to measure and reduce the risk of disclosure to an acceptable level while releasing
as much information as possible. Reduction of the risk of disclosure of individ-
ual information can be achieved by aggregating or suppressing data, referred to as
non perturbative methods, or by applying perturbative methods, that mask the data
purposely. Quoting [8], “masking is primarily concerned with identification of in-
dividual records, whereas statistical analysis is concerned with making inference
about aggregates”, so that the information loss can in principle be confined to the
individual level.

The model proposed by [4] is the most popular small area model when data are
available at area-level. It borrows strength from data available from all areas by as-
suming a hierarchical structure and incorporates auxiliary information from other
data sources such as administrative records or censuses. Properties of the predictors
of small area means, such as bias and mean squared error, are derived conditionally
on the auxiliary information and under the assumption that auxiliary data are mea-
sured without error. [12] considered the situation in which the auxiliary information
is measured with error. Suppose there are m small areas of interest and suppose θi
is the population characteristic of interest in area i. The quantity of interest may be
a total, a mean or a proportion. Let yi be a direct estimator of θi for area i. [12] con-
sidered the situation in which the p−vector Xi of auxiliary data is measured with
error as X∗i , with known MSE(X∗i ) =Ci. [12] proposed to use the auxiliary informa-
tion X∗i to improve prediction of θi and to incorporate the mean squared error of X∗i
into the error bounds of the small area estimator. [1] rewrite the measurement error
model as a hierarchical Bayesian model; they use improper noninformative priors
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on the model parameters and show, under a mild condition, that the joint posterior
distribution is proper and the marginal posterior distributions of the model param-
eters have finite variances. The Bayesian predictors show smaller empirical mean
squared errors than the frequentist predictors of [12] and are more stable in terms of
variability and bias.

As discussed, it is often difficult to obtain unperturbed microdata that allow one
to estimate the small area aggregates of interest: indeed, perturbative disclosure lim-
itation techniques are often applied to survey data to prevent reidentification of re-
spondents; examples of such tecnhiques include noise addition ([7, 5, 2]) and PRAM
([6]). The focus of this paper will be the analysis of data treated by such techniques
for prediction of small area means.

As far as data analysis is concerned, there is a strong analogy between random
data perturbation schemes such as PRAM and noise addition on one hand, and
measurement/misclassification errors, on the other. The measurement error mod-
els proposed in [12] and [1] only considered the particular and somehow unrealistic
situation in which the auxiliary covariates measured with error are all continuous
variables. However it may happen, as in the case under analysis, that auxiliary cate-
gorical variables are of interest and they are measured with error, that is are subject
to misclassification. We exploit the analogy between data perturbation and measure-
ment errors in variables to propose a Bayesian area-level model allowing for mea-
surement errors in both continuous and categorical auxiliary variables and explicitly
introducing the error distributions of both categorical and continuous variables in-
duced by the above mentioned SDC techniques. As in [12], we assume that the
observed continuous variable X∗i may be obtained as a perturbation of the original
variable Xi: the perturbation mechanism is specified as X∗i |Xi ∼ N(Xi,Ci), with Ci
known positive definite, i = 1, . . . ,m, independently. With respect to the categorical
variables, we consider the distribution induced by the Post Randomization Method
(PRAM); see Section 2 for the definition of the above mentioned protection tech-
niques. The proposed model is presented in Section 3.

2 Masking techniques: Post Randomization and Noise Addition

The Post Randomization Method was proposed in [6] to protect a microdata file
of categorical variables by allowing the original scores of certain variables on all
records to change to possibly different scores according to a prescribed probability
mechanism. PRAM is defined through a transition matrix that specifies the prob-
ability with which each record’s categories are transformed into each of the other
categories.

Consider for simplicity applying PRAM to a single categorical variable Z, with
categories {1, . . . ,K}. Let Z∗ denote the corresponding perturbed variable. Let
plh = Pr(Z∗ = h|Z = l) be the probability of transition from category l of Z to
category h of Z∗. PRAM consists of the following: given Z j = l for subject j in the
original microdata file, the score on Z∗ for this record, namely Z∗j , is determined by
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sampling from a discrete probability distribution with masses pl1, ..., plK at scores
1, . . . ,K. All records in the original data set are protected, with the procedure be-
ing applied independently to each unit. The K×K matrix of transition probabilities
P = {plh}l,h=1,...,K is referred to as the PRAM matrix. PRAM can also be applied
to p > 1 categorical variables Z1, . . . ,Zp, independently or simultaneously. In the
latter case, PRAM can be defined by specifying the transition matrix for the com-
pounded variable whose K1×K2 · · ·×Kp categories are formed by combination of
all K1,K2, . . . ,Kp scores for all variables considered; in the former case, the PRAM
transition matrix P is the Kroneker product of the transition matrices P1, . . .Pp for
the p variables considered: P = Pp⊗Pp−1⊗·· ·⊗P1. Clearly the application of in-
dependent PRAM is likely to destroy observed information about the structure of
assciation among variables. On the other hand, under the second instance of PRAM,
certain dependencies between the variables used to form the compounded variable
can be taken into account. Also, if there are variables that must be kept as in the orig-
inal data file, a compounded variable may include those variables that must remain
unchanged. The characteristics and the specific values of the elements of the tran-
sition matrix P depend on the extent of protection that is deemed adequate and on
particular data features that are to be maintained in the released data. Indeed PRAM
may be designed so as to preserve approximately the distribution of the protected
variables (see [6]). Moreover, including variables that must be kept unchanged and
specifying block-diagonal PRAM matrices makes it possible to preserve the distri-
bution in pre-specified subpopulations.

Let us denote by TZ ( TZ∗ , respectively) the vector of frequencies of the scores
on the original (perturbed) variable Z (Z∗), and by z the vector of scores on Z ob-
served on all n units of the original microdata file. Since plh = Pr(Z∗ = h|Z = l) =
E(I(Z∗ = h)|Z = l), where I(·) is the indicator function, V (I(Z∗ = h)|Z = l) =
plh(1− plh) := {Vl}h,h, and Cov(I(Z∗ = h), I(Z∗ = j)|Z = l) =−plh pl j := {Vl}h, j,
it is easy to verify that

P′TZ = E(TZ∗ |z).

Therefore, if the transition matrix P is invertible, we have that T̂Z = (P−1)′TZ∗ is an
unbiased estimator for TZ .

The conditional variance of the estimator is V (T̂Z |z)= (P−1)′V (TZ∗ |z)P−1, where
V (TZ∗ |z) = ∑l TZ∗lVl ; here TZ∗l denotes the frequency associated with the l-th score
on the perturbed variable and Vl is the covariance matrix of the transition process
from original score l, whose elements {Vl}h, j, h, j = 1, . . . ,K, are reported above.
[6] propose the following plug-in variance estimator for T̂Z :

V̂ (T̂Z) = ∑
l

T̂ZlVl (1)

An interesting application of the post randomization method is the so-called invari-
ant PRAM, that amounts to choosing the transition matrix P such that P′TZ = TZ .
Such a choice for P defines a frequency-invariant transformation of the original vari-
able Z; in this case the perturbed frequency table is itself an unbiased estimator for
the original table. As long as point estimation is concerned, knowledge of the tran-
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sition matrix is not needed. Full knowlege of the PRAM matrix is needed in (1) for
variance estimation even under invariant post randomization.

The simplest form of noise addition ([7, 5, 2]) amounts to adding independent
random noise η to the observed variables. Let Σ denote the variance-covariance
matrix of the continuous variables of interest. The random noise η is given a
known distribution (usually, the Normal) with mean zero and covariance matrix
Ση = αΣ ,α > 0. The level of noise introduced clearly depends on the parameter α .

Choice of Ση = αΣ implies that the perturbed variable X∗ = X +η has the same
mean as the original variables and covariance matrix V (X∗) = (1+α)Σ . Correla-
tions are exactly preserved, and [7] shows that the covariance matrix of the original
data can be consistently estimated from the masked data as long as α is known.

Work by [5] and [8] shows how to account for some SDC methods using stan-
dard statistical methods for the analysis of incomplete data when the values of the
masking parameters are disclosed.

3 The proposed model

Suppose there are m areas labelled 1, . . . ,m, each with n1, . . . ,nm individual ob-
servations. We denote by yi the response of the i−th area (i = 1, ...,m). For ease
of notation, we consider a single continuous auxiliary variable, but generalization
to a vector of covariates, possibly observed exactly, is straightforward and pro-
ceeds as in [1]. Let X∗i be the observed continuous area-specific covariate measured
with error or resulting from perturbation of the original variable Xi. Moreover, let
Z∗i j, j = 1, . . . ,ni be the score of the discrete auxiliary variable observed for record
j within area i, and obtained by post randomization of the original variable Zi j. We
assume that the categorical variables Z, Z∗ have K possible categories.

The proposed measurement error model can be written as the following multi-
stage model:

Stage.1 yi|θi ∼ N(θi,ψi),ψi known , i = 1, . . . ,m, independently;
Stage.2 θi|β0,β1,β2,σ

2
v ∼ N(β0 +β1Xi +β2Zi,σ

2
v )

Stage.3 X∗i |Xi ∼ N(Xi,ci),ci known variance and Xi ∼ N(µ,σ2
x )

Zi =
(

Z(1)
i , . . . ,Z(k)

i , . . . ,Z(K−1)
i

)
, Z(k)

i =
ni

∑
j=1

I(Zi j = k), k = 1, ..,K−1,

Pr(Z∗i j = k|Zi j = k′) = pk′k known transition probabilities (k = 1, ...,K−1)

Pr(Zi j = k)∼Uni f
(

1
K

)
Stage.4 β0,β1,β2,µ,σ

2
x ,σ

2
v are mutually independent with β0,β1,β2,µ ∼ N(0,τ2),

σ
2
x ∼ IG(ax,bx) and σ

2
v ∼ IG(av,bv).
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Stage 3 specifies the perturbation mechanism for continuous and discrete auxiliary
variables. For ease of notation, we have considered a single continuous auxiliary
variable, but generalization to a vector of covariates, possibly observed exactly, is
straightforward and proceeds as in [1]. In Stage 4 we define the prior distributions
for the unknown parameters: we use flat normal prior (τ2 = 105) for the regres-
sion coefficients and for the µ and flat inverse gamma distribution for the variance
parameters (ax = bx = av = bv = 0.001). The posterior distributions cannot be ob-
tained analytically; however, full conditional distributions can be easily derived and
samples from the joint posterior distribution can be obtained using standard Markov
Chain Monte Carlo algorithm.
The properties of the obtained small area estimator θ̂i are investigated using an ex-
tensive simulation study: the bias and mean squared error of the estimator are stud-
ied under different scenarios, also investigating the tradeoff between disclosure risk
and data utility in this specific setting. We evaluate the effect on the estimator of
ignoring or misspecifying the perturbation mechanism in both continuous and cate-
gorical auxiliary variables for comparison. Moreover we examine the impact of the
choice of the prior distributions through a sensitivity analysis.
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