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Abstract An important feature of statistical matching is the estimation of the un-
derlying joint distribution of variables separately available from independent sample
surveys. Unless special assumptions are made, the absence of joint information on
the variables of interest leads to uncertainty about the data generating model. The
aim of this paper is to analyze the uncertainty in statistical matching for complex
survey data.
Abstract Uno degli aspetti di maggior interesse delle tecniche di abbinamento
statistico (statistical matching) riguarda la stima della distribuzione congiunta di
variabili casuali che sono state osservate distintamente in due indagini campionarie
indipendenti per le quali non è possibile effettuare abbinamenti esatti delle unità se-
lezionate. A meno di assunzioni restrittive, l’assenza di osservazioni congiunte delle
variabili di interesse produce incertezza sul modello generatore dei dati. L’obiettivo
di questo lavoro è l’analisi dell’incertezza che caratterizza il problema dello statis-
tical matching quando i campioni sono generati secondo piani di campionamento
complessi.
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luigi.conti@uniroma1.it

Daniela Marella
Dipartimento di Scienze della Formazione, Università “Roma Tre”, e-mail:
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1 Introduction

Statistical matching aims at combining information available in different sample
surveys referred to the same target population. Let UN be a finite population of size
N where three characters X ,Y,Z are defined. Denote by xi,yi,zi the values taken by
X ,Y,Z respectively, for unit i (= 1,2 · · · ,N) and by XN , Y N , ZN the sequences:

XN = (x1 . . . , xN), Y N = (y1 . . . , yN), ZN = (z1 . . . , zN). (1)

Let further A and B be two independent complex samples of nA and nB records
selected from UN according to the sampling designs pA and pB, respectively. More
specifically, let Di,A (Di,B) be a Bernoulli random variable, such that i is in the
sample A (B) whenever Di,A = 1 (Di,B = 1), whilst i is not in the sample A (B)
whenever Di,A = 0 (Di,B = 0). In particular πi,A = EpA(Di,A) and πi,B = EpB(Di,A)
are the first inclusion probabilities of unit i in sample A and B, respectively.

Assume that the variables (X ,Y ) are observed in sample A, and that (X ,Z) are
independently observed in B. The main goal of statistical matching, at a macro level,
consists in estimating the joint distribution of (X ,Y,Z). The lack of joint information
on the variables of interest is the cause of uncertainty about the model for (X ,Y,Z),
leading to the lack of identifiability of the model for (X ,Y,Z). A noticeable excep-
tion occurs when Y and Z are independent conditionally on X (CIA, for short).

The uncertainty in statistical matching in a nonparametric setting when A and
B are composed by i.i.d. observations from (X ,Y,Z) has been analyzed in [2], [3].
In [2], the notion of uncertainty in statistical matching is discussed and an overall
measure of uncertainty is proposed. Furthermore, the effect on model uncertainty
due to the introduction of logical constraints is evaluated. Such constraints include
restrictions on the support of the joint distribution of (Y,Z)|X . In [3] the uncertainty
for order categorical variables is thoroughly investigated.

The sample selection in most surveys involves complex sampling designs based
on stratification, different levels of clustering and measures of size. The two main
references for statistical matching in complex sample surveys are [5] and [4]. The
approach proposed by [5] consists in concatenating the two files A and B by com-
puting new sampling weights relative to an artificial design p(S), where S = A

⋃
B,

given by the union of the sampling designs acting in A and B, respectively. Assum-
ing πi,A

⋂
B is negligible, the inclusion probability of a unit i is πi,S = πi,A+πi,B. This

approach has been seldom used since it requires knowledge of inclusion probabili-
ties of the units in one sample under the sampling design of the other sample. The
approach proposed in [4] consists in adapting the actual survey weights of the two
distinct samples A and B in order to have homogeneous common distributions on
X , Y |X and Z|X through the repeated application of calibration procedures. Estima-
tions based on such A and B samples can be easily defined under the CIA (this can
be avoided only through the use of a complete third sample C with joint observations
on X ,Y,Z under two methods: incomplete-two-way stratification and synthetic-two-
way stratification). In this paper we investigate the statistical matching problem by
estimates based on A and B distinctly without using any calibration procedures.
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2 Uncertainty in statistical matching

2.1 Uncertainty in statistical matching for i.i.d. observations

Let

FN(y, x) =
1
N

N

∑
i=1

I(xi≤x)I(yi≤y), GN(z, x) =
1
N

N

∑
i=1

I(xi≤x)I(yi≤y), QN(x) =
1
N

N

∑
i=1

I(xi≤x)

be the joint population distribution functions (p.d.f.s) of (X , Y ), (X , Z) and the
marginal p.d.f. of X , respectively, and let pN(x) be the proportion of population
units such that xi = x. Define further the conditional p.d.f.s

FN(y |x) =
FN(y, x)
pN(x)

, GN(z |x) =
GN(z, x)

pN(x)
, HN(y, z |x) = HN(x, y, z)

pN(x)
(2)

(note that (2) can be arbitrarily defined whenever pN(x) = 0). Knowledge of the
p.d.f.s FN(y |x), GN(z |x) does not imply knowledge of HN(y, z |x). If only the p.d.f.s
(2) were known, then one could only say that

max(0, FN(y |x)+GN(y|x)−1)≤ HN(y, z |x)≤min(FN(y |x), GN(z |x)). (3)

The bounds in (3) are the well-known Fréchet bounds. Fréchet bounds (3) can be
improved when auxiliary information is available. The kind of constraints we con-
sider in the present paper is ax ≤ f (y, z)≤ bx given X = x, where f (y, z) is a mono-
tone function of y (z) for each z (y). In case of i.i.d. observations, such logical
constraints were first discussed in [2], and used in [3] in the special case of dis-
crete ordinal variates Y , Z. Under the constraint, the Fréchet bounds (3) are given
by Kx

N−(y, z)≤ HN(y, z |x)≤ Kx
N+(y, z), where

Kx
N−(y, z) = max(0, GN(z |x)∧GN(γy(ax) |x)+FN(y |x)∧FN(δz(bx) |x)−1)

Kx
N+(y, z) = min(GN(z |x),GN(γy(ax) |x), FN(y |x), FN(δz(bx) |x))

and γy(·), δz(·) being the inverse functions of f (y, z) for fixed y and z, respectively.
Under the above constraint, and using the same arguments as in [2], a natural mea-
sure of uncertainty on HN(y, z |x) conditionally on x is

∆
x(FN ,GN) =

1
N2 pN(x)2

N

∑
i=1

N

∑
j=1

(
Kx

N+(yi, z j)−Kx
N−(yi, z j)

)
I(xi=x)I(x j=x)

=
∫

R2

(
Kx

N+(y, z)−Kx
N−(y, z)

)
d[FN(y |x)GN(y |x)] (4)

while an unconditional uncertainty measure of the (X , Y, Z) joint distribution is

∆(FN ,GN) = ∑
x

∆
x(FN ,GN)pN(x). (5)
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Clearly, the unconditional uncertainty measure (5) is the average of the conditional
uncertainty measures (4), w.r.t. the marginal distribution of X .

2.2 Uncertainty in statistical matching for complex survey data

In order to make inference on the uncertainty measures in complex survey data
it is necessary to make assumptions on the sampling designs according to which
the samples A, B are drawn, as in [1]. The conventional design-based estimator of
FN(y|x) and GN(z|x) are given by

F̂H(y|x) =
∑i∈U

Di,A
πi,A

I(yi≤y)I(xi=x)

∑i∈U
Di,A
πi,A

I(xi=x)

(6)

ĜH(y|x) =
∑i∈U

Di,B
πi,B

I(zi≤z)I(xi=x)

∑i∈U
Di,B
πi,B

I(xi=x)

. (7)

Let ∆̂ x
H be the uncertainty measure (4 ) with p.d.f.s FN(y|x) and GN(z|x) replaced by

estimates (6) and (7), respectively. The following propositions hold.

Proposition 1. Let x ∈ {x1, . . . , xK}, and suppose that

nA p(x)
fA(ςA−1)

nB p(x)
fB(ςB−1)

nA p(x)
fA(ςA−1) +

nB p(x)
fB(ςB−1)

→ α as N→ ∞ (8)

Then, for almost all (xi, yi, zi)s values, conditionally on XN , Y N , ZN , as N increases:√
n̂H,A(x)n̂H,B(x)

n̂H,A(x)+ n̂H,B(x)

(
∆̂

x
H −∆

x(FN , GN

)
d→ N(0,V (F,G; x)) (9)

N(0,V (F,G; x)) denoting a normal r.v. with mean 0 and variance V (F,G; x).

where

lim
N→∞

nA

N
= fA, lim

N→∞

nB

N
= fB, 0 < fA < 1, 0 < fB < 1.

lim
N→∞

1
N

N

∑
i=1

1
πi,A

= ςA < ∞, ; lim
N→∞

1
N

N

∑
i=1

1
πi,B

= ςB < ∞.

and

n̂H,A(x) =
N p̂H,A(x)

1
N ∑

N
i=1 π

−1
i,A −1

, n̂H,B(x) =
N p̂H,B(x)

1
N ∑

N
i=1 π

−1
i,B −1

. (10)
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with p̂H,A(x) and p̂H,B(x) denoting the Hájek estimators of pN(x) obtained from the
two (independent) samples A, B, respectively.

We now turn to the problem of estimating the unconditional measure of uncer-
tainty (5). From the structure of (5), it is clear that the main problem we have to face
is the estimation of the probabilities pN(x). The idea is use a estimator of pN(x) of
the form

p̂τ(x) = τ p̂H,A(x)+(1− τ)p̂H,B(x) (11)

with 0≤ τ ≤ 1. As far as the value of τ is concerned, a fairly natural choice consists
in taking the asymptotically optimal value of τ , i.e. the value of τ that minimizes
the asymptotic variance of (11).

Proposition 2. For almost all (xi, yi, zi)s values, conditionally on XN , Y N , ZN , as N
increases the sequence of r.v.s

√
N(p̂τ(x)− pN(x)) satisfies the relationship:

√
N(p̂τ(x)− pN(x))

d→ N(0, p(x)(1− p(x))(τ2(ςA−1)+(1− τ)2(ςB−1)). (12)

As a consequence, the asymptotic variance of p̂τ(x) is (proportional) to p(x)(1−
p(x))(τ2(ςA−1)+(1− τ)2(ςB−1)), ad the asymptotically optimal value of τ is:

τ
∗ =

ςA−1
ςA + ςB−2

. (13)

Hence, as an estimator of pN(x) we will take

p̂H,AB(x) = τ
∗
N p̂H,A(x)+(1− τ

∗
N)p̂H,B(x). (14)

As a consequence of Proposition 2, it is immediate to see that the estimator
(14) is asymptotically normally distributed with asymptotic variance (ςA−1)(ςB−
1)p(x)(1− p(x))/(ςA + ςB−2). This result can be extended to the (column) vector
of estimates

p̂H,AB(x) =
[
p̂H,AB(x1) · · · p̂H,AB(xK)

]′
(15)

where x =
[
x1 · · · xK

]′. Denote by pN(x) the (column) vector of elements pN(x1),
. . ., pN(xK), and let Σ be the K×K symmetric matrix of elements

σhk =

{
p(xh)(1− p(xh) i f k = h
−p(xh)p(xk) i f k 6= h

; h, k = 1, . . . , K. (16)

We consider the following estimator of the unconditional measure of uncertainty
(5)

∆̂H =
K

∑
k=1

∆̂
xk

H p̂H,AB(xk) (17)
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its asymptotic normality is proved in proposition 3.

Proposition 3. Let

n̂A =
nA

nA
N

(
N−1 ∑

N
i=1 π

−1
i,A −1

) =
N

N−1 ∑
N
i=1 π

−1
i,A −1

, (18)

n̂B =
nA

nB
N

(
N−1 ∑

N
i=1 π

−1
i,B −1

) =
N

N−1 ∑
N
i=1 π

−1
i,B −1

. (19)

For almost all (xi, yi, zi)s values, conditionally on XN , Y N , ZN , as N increases the
following result holds:√

n̂An̂B

n̂A + n̂B

(
∆̂H −∆(FN , GN)

)
d→ N (V (F, G)) as N→ ∞ (20)

with

V (F, G) =
K

∑
k=1

p(x)V (F,G; x)+
(ςA−1)(ςB−1)
(ςA + ςB−2)2 ∆(F, G)′Σ∆(F, G). (21)
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