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Abstract Benjamini and Hochberg introduced, in 1995, a simple but very suc-
cessful procedure which bounds the False Discovery Rate at απ0, where π0 is the
unknown proportion of true null hypotheses [1]. Since that time, various Authors
have tried to achieve adaptive control of the FDR by incorporating an estimate of π0
into the Benjamini and Hochberg procedure.
We propose a two-stage procedure in which Simes inequality [2] is used to de-
rive an upper bound for π0 in the first stage, providing an adjusted level for use
of the Benjamini and Hochberg procedure in the second stage. The advantage of
this approach lies in the link between Simes inequality and Benjamini-Hochberg
procedure, thereby making the first stage a very natural way to estimate π0.
Abstract Benjamini e Hochberg hanno introdotto nel 1995 una semplice procedura
capace di controllare il False Discovery Rate al livello απ0, dove π0 rappresenta
la proporzione di ipotesi nulle vere [1]. Da allora, diversi Autori hanno proposto
di modificare la procedura di Benjamini-Hochberg incorporando una stima di π0
nella procedura. Proponiamo di modificare la procedura di Benjamini-Hochberg
utilizzando la diseguaglianza di Simes [2] per stimare π0.
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1 Introduction

The seminal paper in which Benjamini and Hochberg [1] introduced the concept of
the False Discovery Rate (FDR) has changed thinking about multiple testing quite
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radically, showing that Familywise Error Rate (FWER) control is not only way to
do of multiple testing, and stimulating the field of multiple testing enormously [3].

Suppose we have a collection H1, . . . ,Hm of hypotheses of interest, and an un-
known number m0 of these hypotheses is true, while the other m1 = m−m0 is false.
We denote the proportion of true hypotheses π0 = m0/m. The goal of a multiple
testing procedure is to choose a collection of hypotheses to reject. Let V denote the
number of true null hypotheses that are erroneously rejected and let R be the total
number of hypotheses that are rejected. Then, the FDR is defined by E(V/R∨1),
where R∨1 = max{R,1}.

Suppose we have p-values p1, . . . , pm for each of the hypotheses H1, . . . ,Hm, and
let p(1) ≤ . . .≤ p(m) be their ordered values. The Benjamini & Hochberg (BH) pro-
cedure is a linear step-up procedure that compares each ordered p-value p(i) with
the critical value iα/m, finds the largest j such that p( j) is smaller than its corre-
sponding critical value, and rejects the j hypotheses with the j smallest p-values.

The BH procedure controls the FDR at a desired level απ0 when the p-values are
independent or positively dependent. This suggests the possibility of an alternative,
more powerful BH procedure that uses critical values iα/(π̂0m) rather than iα/m if
a good estimate π̂0 of π0 would be available. Such a procedure might have an FDR
closer to the chosen level α , and would be even more powerful than the original
procedure if many hypotheses were false.

Such procedures are called adaptive procedures, and many have been proposed
based on various estimates of π0. A problem with the adaptive approach, however,
is that estimates of π0 can have high variance, especially if p-values are strongly
correlated. Naive plug-in procedures, in which this variance is not taken into ac-
count, will therefore generally not have FDR control, especially if π0 ≈ 1. More
sophisticated methods are needed that do take the estimation error of π0 into ac-
count. One such procedure, by Benjamini, Krieger and Yekutieli (BKY) [4], adjusts
the α-level slightly from α to α∗ = α/(1+α) to adjust for the additional variance
from estimation of π0. This procedure estimates π0 by first performing an initial
BH procedure at the slightly reduced level α∗, estimating π0 by π̂0 = (m− m̂1)/m,
where m̂1 is the number of rejections obtained in this first step. In the second and
final step, a subsequent BH procedure is done at level α∗/π̂0. Note that the BYK
procedure is not guaranteed to give more rejections than the regular nonadaptive BH
procedure, because α∗/π̂0 may be smaller than α . FDR control for the BKY pro-
cedure has only yet been proven under independence, although simulations suggest
FDR control under positive dependence as well.

2 A simple improvement based on Simes inequality

The BH method is closely related to Simes inequality [2], which says that

P
( m⋂

i=1

{
p(i) >

iα
m

})
≥ 1−α. (1)
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The close connection between the BH method and Simes inequality is immediately
obvious from the fact that the BH and Simes critical values are identical. Weak
control of FWER, a necessary condition for FDR control for the BH method follows
immediately from Simes’ inequality.

Consider the following adaptive BH procedure based on Simes inequality (BH-S
in short):

1. If Simes inequality in (1) is not violated, i.e. p(i) > iα/m for all i = 1, . . . ,m, then
accept all the hypotheses.

2. If Simes inequality in (1) is violated, i.e. p(i) ≤ iα/m for at least one i, then
perform the BH procedure at αm/(m−1)> α .

In the first stage, the BH-S procedure verifies whether Simes inequality in (1) is
violated or not. Violation of the Simes inequality provides evidence that at least one
hypothesis is false, i.e. m0 < m and thus π0 is at most (m− 1)/m. This additional
information is used in the second stage by performing the BH procedure at αm/(m−
1). The following theorem shows that the BH-S procedure controls the FDR at α

under the same assumption of the BH procedure.

Theorem 1. Under the same assumption of the BH procedure, the BH-S procedure
controls the FDR at level α .

Proof. It has been shown that the BH procedure controls the FDR under a posi-
tive dependence assumption. This assumption implies that Simes inequality holds
for the p-values corresponding to the true null hypotheses. Thus, if m0 = m, the
event

⋃m
i=1{p(i) ≤ iα

m } happens with probability at most α by Simes inequality. This
guarantees weak control of the FWER at α , and thus FDR control at α .

On the other hand, if m0 <m, it is easy to see that performing the BH procedure at
αm/(m−1) guarantees FDR control at α because the FDR is bounded by αm/(m−
1)×π0 = αm0/(m−1)≤ α .

Theorem 1 shows that the BH-S procedure represents a negligible but uniform
improvement over the BH procedure. In the same spirit, we can also adapt the Ben-
jamini & Yekutieli procedure by using Rütgers inequality [5].

3 The BH-GS procedure

A more powerful two-stage adaptive BH procedure can be obtained by using the
estimator of π0 proposed by Goeman and Solari [6]. This estimator is based on the
Closed Testing procedure which uses Simes local tests [5,6]:

π̂0 = max
{

i ∈ {1, . . . ,m} : p(m−i+k) >
kα

i
for k = 1, . . . , i

}
/m. (2)

If the maximum does not exists, then set π̂0 = 0. Goeman and Solari [6] showed that
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P(π̂0 ≤ π0)≤ α. (3)

when the p-values corresponding to true null hypotheses satisfy Simes’ inequality.
Using π̂0 in (2) yields the following adaptive BH procedure (BH-GS in short):

1. Compute π̂0 in (2).
2. If π̂0 = 0 reject all hypotheses; otherwise perform the BH procedure at α/π̂0.

It is easy to see that, under the same assumption of the BH procedure, the BH-
GS guarantees FDR control at α when m0 = m. However, if m0 < m, the BH-GS
procedure is not guaranteed to have FDR control at α . Indeed, it can be shown
that the BH-GS procedure has FDR equal to α +α2/4 under the Dirac-Uniform
configuration with m = 3 and m0 = 2. In this case, to control the FDR at α , we have
to perform the BH-GS at the adjusted level of α∗ = 2 · (−1+

√
(1+α)).

For the specific multiple problem described in detail in Benjamini and Hochberg
[1], the significance of the treatment effect on each of the 15 endpoints is given by
the ordered p(i)s: 0·0001, 0·0004, 0·0019, 0·0095, 0·0201, 0·0278, 0·0298, 0·0344,
0·0459, 0·3240, 0·4262, 0·5719, 0·6528, 0·7590 and 1·000. Four hypotheses were
rejected using the BH procedure at level α = 0 ·05. The BH-GS procedure estimates
π0 equal to 0 · 8 at the first stage, and uses the BH procedure at level α∗/0 · 8 =
0 ·06173769 at the second stage, resulting in the rejection of five hypotheses.
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