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Abstract Adaptive randomization schemes are designed for obtaining a more de-
sirable assignment of competing treatments to the overall group of patients enrolled
in the study compared to balanced designs. I discuss major tools in this area of
research, including (i) the development of testing procedures and decision rules
for adaptive phase II trials,(ii) the comparison of designs with different levels of
complexity to provide recommendations about their relative advantages and disad-
vantages and (iii) subgroup-based adaptive designs that simultaneously search for
patients subgroups and adaptively allocate patients to the best subgroup-specific
treatments during the course of the trial.

Gli schemi di randomizzazione adattavi sono sviluppati per ottenere, in confronto ai
disegni bilanciati, migliori assegnazioni di trattamento nel gruppo di pazienti parte-
cipanti alla prova clinica. Discuto i principali strumenti in questa area di ricerca,
includendo (i) regole di decisione che producono raccomandazioni al termine dello
studio, (ii) confronti con disegni alternativi per prove cliniche e (iii) disegni adattavi
per lo studio di trattamenti in un contesto di medicina personalizzata.
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1 Introduction

Adaptive clinical trials have been proved attractive for testing novel anticancer tar-
geted therapies. These treatments, due to their mechanisms of action, can have
highly variable effects across tumor profiles. Biomarkers become essential for test-
ing novel treatments, and delineating groups of patients sensitive to the targeted
therapy. Bayesian adaptive trials, in this context, can classify the enrolled patients
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with biomarkers-defined groups, and predict during the course of the trial, which
tumor profiles are likely to be responsive to a targeted therapy [4, 2, 6, 1, 13]. Multi
arm adaptive trials use Bayesian predictions at the patient level, for calibrating the
randomization probabilities [5, 10, 11, 12]. These designs increase during the trial
the probability that patients benefit of a positive treatment effect.

I briefly summarizes major goals in this area. First, the development of testing
procedures and -go / no go- decision rules for adaptive phase II trials. These are
decision rules that indicate if a new treatment should be further studied in a con-
firmatory phase III trial or not. The phase III trial can be limited to a subset of
biomarkers-defined groups. The approach can combine Bayesian modeling with fi-
nal decision rules having frequentist interpretations, with the control of type I errors
at a desired level. Second, it is necessary to compare designs with different lev-
els of complexity to provide recommendations about their relative advantages and
disadvantages. Third, subgroup-based adaptive designs simultaneously search for
prognostic subgroups and allocate patients adaptively to the best subgroup-specific
treatments throughout the course of the trial. The main features of these designs are
the inclusion of continuous reclassification of patient subgroups based on a bayesian
models and the adaptive allocation of patients to the best treatment arm based on
posterior predictive probabilities.

The majority of new anticancer drugs that need to be tested target specific ge-
netic events. New agents and combinations with systemic therapies are currently in-
vestigated, and heterogeneous treatment effects across biomarkers-defined patients
subgroups are hypothesized based on molecular targets and preclinical studies in
tumor models. The standard approaches for testing systemic treatments present sev-
eral limitations in the setting of personalized medicine. Multi-arm adaptive clinical
trial designs have been proposed for new targeted agents [3]. Pairing genetic traits
with targeted treatment options is a main focus. Patients subpopulations are typically
defined by classifying patients tumors based on genomic characteristics. Subpopu-
lations are defined because of the likely event of treatments effects variations across
tumor profiles. The rational for testing several agents in a single trial is the opportu-
nity of higher efficiency levels compared to two arms comparative trials. Bayesian
randomization has been used for testing several treatments in complex trials on het-
erogeneous populations [8]. Major goals of outcome adaptive randomization are (i)
to randomize patients with increasing probabilities to effective arms, by leverag-
ing on the available data, and (ii) efficiency, i.e. the balance between uncertainty
on primary findings and the amount of resources to perform the study. Biomark-
ers, such as cancer driver mutations, can guide patients’ randomization. Response
adaptive trials are designed to sequentially learn treatments performances within
biomarkers-defined subgroups. Recent applications suggest that outcome adaptive
approaches can accelerate drug development processes.
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2 Bayesian Adaptive Trials

Adaptive randomization schemes are designed for obtaining a more desirable as-
signment of competing treatments to the overall group of patients enrolled in the
study compared to balanced designs. Several contributions consider two arm com-
parative trials and provide motivations for adaptively tuning the randomization prob-
abilities during the study on the basis of the available data. Both frequentist and
Bayes methods for sequentially varying the probability that the enrolled patient re-
ceives a specific treatment have been studied. In the two arm setting a relevant mo-
tivation for the adaptive approach is ethical; these methodologies, when treatment
effects differ substantially, assign (at least on average) a higher proportion of indi-
viduals to the superior treatment than balanced randomized trials. Ethical motiva-
tions, at least in some cases, make adaptive randomization preferable than balanced
allocation.

Response adaptive randomization can be defined as the application of a map,
used each time a patient is enrolled in the trial, transforming available data into
suitable randomization probabilities. The frequentist approach is direct, in that, in-
tuitive and heuristic maps of the data have been proposed and assessed using both
simulation studies and asymptotic theoretical results describing the performances
of the adaptive design under the assumption of a large sample size [7]. In contrast
Bayesian randomization strategies are indirect and model based. Bayesian modeling
allows meaningful prediction during the trial. It is typically used to answer funda-
mental questions such as: (i) ”What is the probability that treatment A, conditionally
on the data, has a higher efficacy than the control therapy?”, (ii) ”What is the prob-
ability, conditionally on design, protocol and available data that, at completion of
the trial, there will be statistically significant evidence that treatment A outperform
the control therapy?” (iii) What is the predicted proportion, conditionally on pro-
tocol and available data, of enrolled patient receiving a non inferior treatment?”
These questions can be answered by updating a probability model describing the
uncertainty, when the trial start enrolling the 1st patient, over relevant unknown
quantities such as median survival times for each arm. The model is formalized as a
probability distribution p and it is updated using Bayes formula. Here, for example,
we mention the application of the formula for obtaining probabilistic statements,
given the data, over two treatment effects (θA,θB) assuming a binary outcome, say
long vs short survival. In this case we only need a prior for the unknown quantities
θA = (efficacy of treatment A) and θB, one possible choice is to have θA and θB a
priori independent and uniformly distributed.

Mainstream Bayesian adaptive strategies are indirect, meaning that they sequen-
tially map probabilistic statements obtained using the Bayesian model into random-
ization probabilities. In the above example the updated model p(θA,θB| available DATA)
can be used for specifying the probability πA that a new patient is randomized to
treatment A. Note that πA varies during the trial. Such maps can easily take into
account also other elements such as the number of individuals already enrolled and
planned overall sample size. The choice of the Bayesian model is fundamental; key
guidelines for model choice are (i) simplicity and interpretability of the model, (ii)
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low sensitivity of posterior distributions to prior parametrization and (iii) robust-
ness of posterior inference under reasonable deviations from model assumptions,
such as proportional hazards. It is also of primary importance the choice of the map
transforming probabilistic statements into randomization probabilities; we adopted
a mainstream approach in the literature to our setting and performed extensive sim-
ulation studies for tuning the adaptive assignment.

2.1 Example

We consider a k arm trial with k = 0 corresponding to the control arm. We use
Fk for denoting the unknown survival probabilities and assume a proportional haz-
ards structure, meaning that, given unknown positive parameters θ = (θ1,θ2,θ3),
the equalities Fk(t) = [F0(t)]θk hold, for every t ≥ 0 and k = 1,2,3. We use identical
symmetric distributions with null mean for the unknown quantities log(θ1), log(θ2) and log(θ3);
this choice has a clear interpretation: we assign identical prior probabilities to the
scenarios that treatment k has a positive or negative effect compared to the control
regimen.

As detailed in [9] one can perform semi-parametric Bayesian analyses and obtain
proper posterior distributions for the relative hazards (θ1,θ2,θ3) without specifying
a prior model for the baseline function F0. Accordingly, we construct the adaptive
assignment algorithm starting from the updating equation

p(θ conditionally on DATA) ∝ p(θ a priori)×Partial-Likelihood(θ ,DATA) .

In the above expression we have the partial-likelihood routinely used for performing
inference under proportional hazards model. We consider time varying randomiza-
tion probabilities

π
k
i = p(i-th enrolled patient is randomized to treatment k)

defined by the following expressions: We consider time varying randomization
probabilities

π
k
i = p(i-th enrolled patient is randomized to treatment k)

defined by the following expressions:

π
k
i ∝

p(θi > 1 conditionally on available DATA)γ(i)

3

∑
k=1

p(θk > 1 conditionally on available DATA)γ(i)
if k = 1,2,3, and

π
0
i ∝ 1/3× exp

(
max

k=1,2,3
[# of patients randomized to arm k]

)η(i)

×
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exp(−[# of patients randomized to arm 0])η(i) .

The above two expressions have clear interpretation. The first one shows that for any
choice of the tuning parameters γ(i) > 0 the algorithm assigns with higher proba-
bilities patients to those experimental arms k = 1,2,3 for which there is evidence
of a positive treatment effect θk < 1. Natural candidates for the tuning parameters
γ(i) are non decreasing functions with nearly null values during the initial stage of
the trial (i.e. γ(1)≈ 0). The second expression aims at approximately matching the
number of patients assigned to the control treatment and the number of individu-
als on the experimental arm that has been assigned more frequently. In our study
the choice of the parameters η(i) > 0 appears of little importance. Values approxi-
mately equal to 0.25 of the η function during the final stage of the trial suffices to
obtain the desired balance without making treatment assignment highly predictable.

Figure 1 consists in 4 dynamic representations; by starting the animation we can
observe a sequence of photograms representative of the trial at different stages. Each
photogram corresponds to the instant an enrolled patient get randomized. The first
panel represents of the available data by mean of four Kaplan-Meier curves. The
second shows the updated distributions of the log-relative-hazards (log(θk), k =
1,2,3). The third provides the randomization probabilities. Finally, the fourth shows
the number of patients already assigned to each arm.

The need for an accurate choice of the tuning parameters γ(i) becomes evident
by considering two extreme cases. If γ(i) ≈ 0 for i = 1, . . . ,N, trivially the design
becomes similar to a balanced randomized trial, loosing the ability of increasing the
randomization probabilities for regimens that appears, with substantial evidence,
to have a positive effect. On the opposite extreme, with excessive values for γ(i),
a handful of poor responses on an experimental arm with positive effect can be
translated into nearly null randomization probabilities during the rest of the trial.
That is, the trial operating characteristics depends on γ(i).

The investigator can choose the tuning parameters by exploring the operat-
ing characteristics corresponding to alternative γ functions. The approach can be
summarized as follows: (i) we select realistic scenarios including accrual rate
and (Fk;k = 1,2,3), (ii) considere plausible classes such as γ(i) = a× (i/N)b or
γ(i) = a×I (i > b), where a and b are positive constants and I (i > b) is equal to
one if i > b and zero otherwise, (iii) specified a grid of possible values for (a,b) and
(iv) computed, by iteratively simulating trials, operating characteristics of interest
corresponding to combinations of scenarios and γ functions.

3 A Retrospective Simulation Study

In [11] we considered historical data from glioblastoma trials assessing four alter-
native regimes. We then used as simulation sampling model a partial representation
of the data by means of Kaplan Meir estimators, one for each treatment, truncated
at 70 weeks. The approach allowed for (i) obtaining hypothetical identical survival
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Fig. 1 Adaptive randomization.

functions for the control therapy and non superior treatments by pooling together
the survival data into a single Kaplan Meier curve or (ii) tuning positive treatment
effects. This produces plausible scenarios for a specific clinical context. After set-
ting these scenario we compare the Bayesian adaptive approach with the multi-arm
balanced randomization scheme, with four arms: the control regimen and three ex-
perimental therapies. Our comparison considers also the hypothesis of three separate
two-arms balanced comparative trials for assessing three novel therapies.

The main conclusions of this retrospective study contrasts the eficiency of multi
armed adaptive trials. Moreover Bayesian adaptive trial design for patients with
glioblastoma would result in trials with fewer overall patients with no loss in sta-
tistical power and in more patients being randomly assigned to effective treatment
arms.
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