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Abstract Cluster-Weighted Models are a wide family of mixture distributions for
modeling the joint probability of data coming from a heterogeneous population,
and includes mixtures of distributions and mixtures of regressions as special cases.
Unfortunately, they suffer from non-regular maximum likelihood issues, due to pos-
sible spikes and unboundedness in the target function. We propose an improved
version of the Gaussian Cluster-Weighted estimation methodology, by trimming a
portionα of the data and imposing constraints to the estimated variances. Trimming
provides robustness properties to the estimators and constraints move the maximiza-
tion problem to a well-posed setting and allow to avoid spurious solutions, i.e. fitting
a small localized random pattern in the data rather than a proper underlying cluster
structure. Theoretical results are illustrated using a fewempirical studies.
Abstract I modelli Cluster Weighted sono una ampia famiglia di misture che com-
prendono, come casi particolari, le misture di distribuzioni e di regressione e con-
sentono di modellizzare dati eterogenei. Per questi modelli si osservano problemi di
non regolarit̀a della funzione di verosimiglianza, che può essere illimitata e avere
spikes. In questo lavoro si introduce un nuovo metodo di stima del Cluster Weighted
Gaussiano, che consente di eliminare una porzioneα di dati contaminati e di im-
porre vincoli alla stima delle matrici di covarianza. Le proprietà di robustezza degli
stimatori sono assicurate dall’eliminazione degli outliers, e la stima vincolata fa sı̀
che il problema di massimizzazione sia ben posto e riduce le soluzioni spurie, ovvero
l’adattarsi del modello ad un piccolo raggruppamento casuale di dati invece che ad
una vera e propria componente della mistura. I risultati teorici sono illustrati anche
mediante alcune analisi empiriche.
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1 Introduction and Motivation

The analysis of mixture models is a fertile source of non-regular maximum likeli-
hood problems. For instance, a two-component normal mixture incurs the problem
of unbounded likelihood if the mean parameter of the first component is set to be
one of the data values and the standard deviationσ is allowed to tend to 0. However,
the singularity does not impose itself untilσ becomes extremely small. In many nor-
mal mixture problems susceptible to unbounded likelihood,there is also, an asymp-
totically consistent local maximum (Redner and Walker, 1984), but still spurious
solutions could drive the maximization of the target function far away from the true
value of the parameter. Moreover, it is well known that a small fraction of outly-
ing observations (background noise, pointwise contamination, unexpected minority
patterns, etc.) could severely affect ML parameter estimation. With these consid-
erations in mind, we approach Cluster-Weighted Models (CWMs), introduced in
Gershenfeld (1997). They are a flexible family of mixture models for fitting the
joint density of a pair(X;Y) composed by a response variableY and by a vector
of covariatesX, assuming that data are coming from a heterogenous population. In-
grassiaet al. (2012) show that Gaussian CWM includes, as special cases, mixtures
of distributions and finite mixture of regression models. Our purpose is to modify
the classical ML method, by adding trimming and constraintsin such a way to make
robust and free from non-regularity conditions the model estimation. We have orga-
nized the rest of the paper as follows. In Section 2 we recall the main ideas about the
CWM and we discuss issues in EM estimation. In Section 3 we present the trimmed
CWRM and a feasible algorithm for its implementation. Concluding remarks will
end the paper.

2 Cluster Weighted Modeling

Let p(x,y) be the joint density of(X,Y). Suppose thatΩ can be partitioned into
G groups, sayΩ1, . . . ,ΩG. In this work, we will focus on CWM linear models
with Gaussian components: assumingX|Ωg ∼ Nd(µg,Σ g), a linear relationship be-
tweenY andx in theg-th group written asY = b′

gx+b0
g+ εg whereεg ∼ N(0,σ2

g ),
andY|x,Ωg ∼ N(b′

gx+ b0
g,σ2

g ), the linear Gaussian CWMhas the following den-
sity p(x,y;θ ) = ∑G

g=1 φ(y;b′
gx + b0

g,σg)φd(x;µg,Σg)πg.As usual,φd(·;µg,Σg) is
the density of thed-variate Gaussian distribution with mean vectorµg and covari-
ance matrixΣg, andπg is the weight ofΩg in the mixture.The ML estimation of the
Gaussian CWM suffers from a serious lack of robustness, which should be taken
into account due to the common presence of noise sources in data. To illustrate
this problem, Figure 1(a) shows a simulated data set,Simdata1, generated from



An adaptive method to robustify ML estimation in Cluster Weighted Modeling 3

a linear Gaussian CWM withG = 2, 90 observations from each component. 20
contaminating observations have been added as either background noise, or point-
wise contamination around the point(15,20). The true underlying regression lines
are represented with dotted lines in Figure 1, which shows that contaminating data
points seriously affected the estimation.
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Fig. 1 Simdata1: (a) original data and Cluster Weighted Model fitting; (b) original data plus back-
ground noise and fitted model; (c) original data plus pointwise contamination and fitted model.

Another important issue concerns the unboundedness of the target function

∑n
i=1 log

[

∑G
g=1φ(yi ;b′

gxi +b0
g,σ2

g )φd(xi ;µg,Σg)πg

]

, when no constraints are im-

posed on the scatter parameters. In this case, the defining problem is ill-posed
because the target function tends to∞ when eitherµg = xi and |Σg| → 0 or
yi = b′

gxi + b0
g and σ2

g → 0. Moreover, as a trivial consequence of the unbound-
edness, the EM algorithms often applied to fit a CWM can be trapped into non-
interesting local maximizers and the result of the EM algorithm strongly depends on
the initialization of the algorithm. Spurious solutions may be due to very localized
patterns in the explanatory variables, as it will be shown bya second simulated data
set,Simdata2. In Figure 2, two sets of 90 observations forX were drawn from two
bivariate spherical normal distributions centered, respectively, at (2,2) and(4,4).
Furher, 20 almost collinear observations, were added closeto the second group, cen-
tered at(4,4). The same linear functions with equally distributed error terms have
been considered, to generate the response variableY. We can see in Figure 2 that
the standard fit of the CWM yields to the determination of a “spurious” component
with the 20 almost collinear observations and a second component joining together
the two groups, with 90% of the observations. To overcome theissues we illustrated
in these examples, in the next section we will propose an alternative methodology
which incorporates trimming and constraints to the CWM.

3 Trimmed Cluster Weighted Restricted Modeling

For a given sample ofn observations, the trimmed CWRM methodology is based
on the maximization of the following log-likelihood function

∑n
i=1z(xi ,yi) log

[

∑G
g=1φ(yi ;b′

gxi +b0
g,σ2

g )φd(xi ;µg,Σg)πg

]

,
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Fig. 2 Simdata2: Scatter plot matrix. Dots in green concern collinear observations.

wherez(·, ·) is a 0-1 trimming indicator function that tell us whether observation
(yi ,xi) is trimmed off (z(xi ,yi)=0), or not (z(xi ,yi)=1). A fixed fractionα(trimming
level) of observations can be unassigned by setting∑n

i=1z(xi ,yi) = [n(1−α)]. Anal-
ogous approaches based on trimmed mixture likelihoods can be found in Neykov
et al. (2007), Gallegos and Ritter (2009) and Garcı́a-Escuderoet al. (2013). More-
over, we introduced two further constraints, on the set of eigenvalues{λl (Σg)}l=1,...,d

of the scatter matricesΣg

λl1(Σg1)≤ cXλl2(Σg2) for every 1≤ l1 6= l2 ≤ d and 1≤ g1 6= g2 ≤ G

and on the variancesσ2
g of the regression error terms,

σ2
g1
≤ cε σ2

g2
for every 1≤ g1 6= g2 ≤ G with 0< cX ,cε <+∞.

These constraints can be seen as an extension to CWMs of thoseintroduced in In-
grassia and Rocci (2007), Garcı́a-Escuderoet al. (2008) and Greselin and Ingrassia
(2010) and go back to Hathaway (1985). Here, they allow for a specific treatment
when modeling the marginal distribution ofX and the regression error term, giving
a high flexibility to the model.

Let us consider now the effects of trimming in the two data sets derived from
Simdata1. In Figure 3 we can see that settingα = 0.1 allows to restore the true
structure of the data, by discarding the outlying observations, both in the case of
background noise and huge pointwise contamination. Hence,trimming modifies the
ML estimation in such a way that it is no more influenced by potential outliers and
drives it far from the previous bad results shown in Figure 1.Commenting the use
of constraints forSimdata2, we can see in Figure 3 how a moderate choice forcX

andcε allows to correctly detect theG= 2 main groups and to avoid the disturbing
effect of the “spurious” pattern in the data. More information about the role played
by the parametersα, cX andcε could be given, omitted here for the sake of space.

3.1 Algorithm

The maximization of the target function on its parameters under the bounds given
by cX andcε is not an easy task, obviously. We will give a feasible algorithm ob-
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Fig. 3 Left panels:Simdata1: Results of fitting the trimmed CWRM withα = 0.1, cX = cε = 20
for the two data sets in Figure 1, panels (b) and (c). Trimmed points are denoted by black circles.
Right panel:Simdata2: Results of fitting the trimmed CWRM withα = 0, cX = cε = 20 for data
in Figure 2.

tained by combining the EM algorithm for CWM with that (with trimming and
constraints) introduced in Garcı́a-Escuderoet al. (2013). The algorithm is initial-
ized nstart times, by selecting different values of the initial parameter vectorθ 0.
Constraints on scatter matrices and variances of the error terms should be enforced
(as described below, in the M-step). We will have adapted EM steps, alternatively
executed until convergence. During the E-step:

• the current mixture density has to be evaluated at each observation in the sample,
following the CWM methodology

• the proportion 1−α of observations with highest values of the density is retained,
so giving the subsetIα of untrimmed observations

• the posterior probabilities of the observations inIα are computed, for trimmed
observations they are set to 0.

During the M-step the parameters are updated, taking into account only the ob-
servations inIα , i.e. tentatively discarding the observations suspiciousto be out-
liers. Along the iterations, due to the updates, it may happen that the estimated
scatter matricesTg and the estimated variances of the error termss2

g do not satisfy
the constraints. To enforce them, the singular-value decomposition ofTg =U ′

gEgUg

is considered, withUg being an orthogonal matrix andEg = diag(eg1,eg2, ...,egd)
a diagonal matrix. The truncated eigenvalues are defined as[egl ]m = min(cX ·
m,(max(egl ,m)), with m being some threshold value. The scatter matrices are fi-

nally updated asΣ (l+1)
g =U ′

gE∗
gUg, with E∗

g = diag
(

[eg1]mX
opt
, [eg2]mX

opt
, ..., [egp]mX

opt

)

andmX
opt minimizing the real valued function

m 7→
G

∑
g=1

π (l+1)
g

d

∑
l=1

(

log
(

[egl ]m
)

+
egl

[egl ]m

)

.

Analogously, we introduce the truncated variances[s2
g]m=min(cε ·m,(max(s2

g,m)).

The variance of the error terms are finally updated asσ2(l+1)
g = [s2

g]mε
opt
, with mε

opt

minimizing the real valued function
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m 7→
G

∑
g=1

π (l+1)
g

(

log
(

[s2
g]m
)

+
s2
g

[s2
g]m

)

.

Proposition 3.2 in Fritzet al. (2013) shows thatmX
opt andmε

opt can be obtained, re-
spectively, by evaluating 2pG+1 times (respectively 2G+1 times) the correspond-
ing real valued function.

Finally, at convergence, the set of parameters yielding thehighest value of the
target function and the associated setIα of untrimmed observations are returned as
the final algorithm output.

In this work, we have presented a methodology based on trimming and con-
straints to robustify and control variabilities in a linearGaussian CWM, moving the
likelihood maximization to a well-posed setting. An algorithm, with an affordable
increase in computing time, has been also given for its practical implementation.
We have seen that the proposed methodology drives the estimation procedure to
identify and discard sparse outliers, and even strongly concentrated contaminating
observations, acting as leverage points, which are so harmful in the framework of
regression mixtures. At the same time, the constraints serve to avoid the likelihood
singularities and reduce the detection of spurious solutions.

Further research is needed to tune the choice of the involvedparameters, and this
is not an easy task, as these parameters are clearly interrelated. First attempts to
extract such information from the observed sample are currently under study.
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