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Abstract In this paper we analyze the problem of variable selection in regression

analysis when the response variable, Y , follows a lognormal distribution and ob-

servations are right censored. The use of conventional priors, namely g-priors and

Zellner-Siow priors are analyzed in the context of censored data. Of particular in-

terest is the understanding of the covariance matrix that must be used for specifying

such priors in the presence of censored data. A comparison among different options

is made through a simulation study.

Abstract In questo lavoro analizziamo il problema della selezione di regressori

quando la variabile risposta, Y , segue una legge log-normale e le osservazioni sono

censurate a destra. L’uso di prior convenzionali come le g-prior e la Zellner-Siow

prior sono analizzate nel contesto di dati censurati. In particolare è di interesse la

determinazione della matrice di covarianza che deve essere utilizzata per specificare

queste prior quando si è in presenza di dati censurati. Un confronto, tra le diverse

opzioni, è effettuato tramite uno studio di simulazione.
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1 Introduction

In this paper we analyze the problem of variable selection in regression analysis

when the response variable, Y , follows a parametric distribution (e.g. lognormal)

Stefano Cabras

University of Cagliari (Italy), Department of Mathematics, e-mail: s.cabras@unica.it and Univer-

sity Carlos III de Madrid (Spain), Department of Statistics, e-mail: stefano.cabras@uc3m.es

Mara Eugenia Castellanos

Rey Juan Carlos University (Spain), Department of Statistics and O.R. e-mail:

maria.castellanos@urjc.es

1



2 Cabras, et al.

and observations are right censored. From a Bayesian perspective the most widely

used tools to compare models are the Bayes factors (BFs) .

More formally, let (ti,δi,xi) be the survival time, censoring indicator and covari-

ates, respectively for individual i = 1, . . . ,n, where δi = 0 if right censored and 1

if uncensored, and where ∑n
i=1 δi = nu = n− nc is the number of uncensored ob-

servations. Consider yi = log(ti), y = (y1, . . . ,yn)
T , the vector collecting all log of

survival times, and the following regression model Mk that includes the k-th set of

covariates through the design matrix X̃k ∈ Rn×pk ,

Mk : y = 1nβ0,k + X̃kβββ k +σkεεε ,

where k is the model index, 1n is a vector of ones of length n, β0,k represents the

intercept for model k, βββ k is the pk dimensional vector of regression coefficients, σk

is a scale parameter and εεε = (ε1, . . . ,εn) is the error term. When no covariates are

selected, we have the simplest model explaining y, that we call the “null” model:

M0 : y = 1nβ0 +σ0εεε, (1)

So the index model k takes values in {0,1,2, . . . ,K = 2p − 1}. In all these models,

if the error term εi defining εεε , is distributed as a standard normal distribution then

survival times would be lognormally distributed, while if they are distributed as

a standard Gumbel distribution, times will follow a Weibull one. For purposes of

exposition, we consider only normal distributed errors.

The aim is to select the most probable model Mk given the observed data through

BFs and posterior probabilities of each model (see Kass and Raftery (1995); Berger

(1999); Berger and Pericchi (2001)). In order to calculate BFs we need to specify a

prior distribution πk(θθθ k) where θθθ k = (β0,k,βββ k,σk), for k = 0, . . . ,K = 2p −1, sepa-

rately for each model. This can be complicated, because one often initially entertains

K models leading to the impossibility of careful subjective prior elicitation. Hence,

Bayesian model selection is usually done by means of default methods (Berger and

Pericchi, 2001). In literature there exist at least four methods under the label of

default Bayesian model selection: the Conventional Prior (CP) approach, Intrinsic

and Fractional BFs and the Bayesian Information Criterion (BIC). In this paper we

focus on the first method applied to censored data, while more details about In-

trinsic, Fractional BFs and the Bayesian Information Criterion (BIC) for censored

data can be found in Perra et al. (2013). The problem is that, in general, the use of

improper priors for model specific parameters is not allowed in model selection, be-

cause improper priors are determined only up to an arbitrary constant. To avoid that,

conventional proper priors over model specific parameters, βββ k, are used leading to

a procedure named conventional prior approach (Berger and Pericchi, 2001).

Once prior distributions πk(θθθ k) are specified for each model, the predictive den-

sity of y, under Mk, is mk(y) =
∫

Θk
fk(y | θθθ k)πk(θθθ k)dθθθ k,, where fk is the induced

density of Y from equation (1).

The BF of Mi against M j is given by
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Bi j(y) =
mi(y)

m j(y)
, (2)

and the posterior probability of Mi is

p(Mi | y) =
mi(y)p(Mi)

∑K
j=1 m j(y)p(M j)

=

(
1+∑

j 6=i

p(M j)

p(Mi)
B ji(y)

)−1

, (3)

Choices for model prior probabilities in default Bayesian analysis are the uniform,

p(Mi) = 1/2p (when dimension of models is not large), or the hierarchical uniform

prior discussed by Scott and Berger (2010) when the number of covariates is large,

in order to account for the multiplicity of comparisons.

2 Conventional priors: g-prior and mixture of g-priors

The conventional prior approach, first used by Jeffreys (1961, Chapter 5), treats the

problem of indeterminacy of noninformative priors using: i) noninformative priors

only for common orthogonal parameters in all models, so that the arbitrary multi-

plicative constants for the priors cancel in all BF, and ii) conventional proper priors

for model specific parameters. This procedure has been used by many other authors

(for instance, Zellner and Siow (1980); Berger and Pericchi (2001); Berger et al.

(1998); Bayarri et al. (2012).

In order to follow the conventional prior approach, we consider the null model de-

fined in (1), and for the rest of k = 1, . . . ,2p−1, we adopt the following parametriza-

tion:

Mk : y = 1nβ0 +Xkβββ k +σ0εεε, (4)

where we assume that the columns of Xk have been centered, so that 1T
n Xk = 0,

in this way the intercept β0 may be regarded as common to all models. Also σ0 is

considered a common parameter to all 2p models.

Arguments based on orthogonal parametrizations and invariance to scale and

location transformations (Jeffreys, 1961; Liang et al., 2008; Berger et al., 1998)

have guided to adopt the following prior under model Mk, π(βββ k,β0,σ0) = πk(βββ k |
β0,σ0)π(β0,σ0) ∝ πk(βββ k | β0,σ0)/σ0. A common choice of prior for βββ k | β0,σ0 is

the normal prior, called g-prior in Zellner (1986).

π
g
k (βββ k | β0,σ0) = Npk

(0,gσ2
0 (X

T
k Xk)

−1), (5)

where g is a hyper parameter to be specified. Common choices are, under the unit

information prior criterion (Kass and Wasserman, 1995), to fix g as the amount

of information about parameters equal to the amount of information in one ob-

servation. For regular parametric families the amount of information is quantified

through Fisher information. In the case of the normal regression, without censoring,
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this leeds to take g = n. While in the case of censored data, Volinsky and Raftery

(2000) proposed to use g = nu. Along the paper we consider the g-prior using g = n

and g = nu, varying the variance matrix for βββ k according to the information in all

the sample without distinguishing between censored and uncensored observations

or that provided by only uncensored data.

In order to avoid some paradoxes of g-priors (Liang et al., 2008), and to avoid

fixing g to a specific value, the Zellner-Siow prior (ZS) (Zellner and Siow, 1980) is

constructed as a mixture of g-priors. The ZS prior can be expressed as a mixture of

g-prior with respect to an Inv-Gamma(1/2,n/2), that is,

πZS
k (βββ k | β0,σ0) =

∫
Npk

(βββ k | 0,gσ2
0 (X

T
k Xk)

−1)π(g)dg =Capk
(0,nσ2(XT

k Xk)
−1)

(6)

with π(g) = (n/2)1/2/Γ (1/2)g−3/2e−n/(2g). Again, in the context of censoring, it

is interesting to analyze the behavior of the ZS prior, when using n, or nu in the

definition of π(g), and the appropriate covariance matrix.

The specification of these priors leads to coherent prior specifications for a pair

of hypothesis. But in the context of variable selection in regression models, there

is a multiple hypothesis testing problem, that produces many non-nested compar-

isons. In order to define all possible BFs comparing any pair of hypothesis, we

adopt the encompassing approach of Zellner and Siow (1980), where each sub-

model Mi is compared with a reference model, for example the null one M0,

Bi j = Bi0/B j0, i, j = 1, . . . ,K, i 6= j.

3 Application to the lognormal model under censoring

To obtain the above BFs it is necessary to calculate the marginal predictive distribu-

tions, for which there is not an analytical form. In this section, we drop the model

subscript k, and consider the calculation of the predictive distributions of the log-

time for a Normal regression model with s regressors. Under prior defined as in the

above section, the posterior kernel is

π(θθθ | y,X)∝
1

σ

n

∏
i=1

(
1

σ
fε

(
yi −βββ

T

xi

σ

)]δi
[

Sε

(
yi −βββ

T

xi

σ

)](1−δi)

π∗(βββ | β0,σ0),

where fε and Sε are the density and survival functions of ε , and π∗(βββ | β0,σ0)
denotes πg or πZS. π(θθθ | y,X) has been approximated using Markov Chain Monte

Carlo (MCMC). In particular, we employed a Random Walk Metropolis-Hastings

(RW-MH) for parameters (βββ , log(σ)) where the proposal is a standard multivariate

normal distribution. The marginal predictive distribution of Y , for each model Mk,

m(y | Mk), has been obtained using the method proposed in Chib and Jeliazkov

(2001) (Subsection 2.1).
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4 Simulation Study

The conditional distribution of yi | xi has been simulated from the normal regression

model and the censoring indicator has been simulated according to a normal distri-

bution, considering 90% of censored data and different sample sizes. The generating

model for Y has been chosen by fixing the coefficients of the following regression

model:

Yi = log(Ti) = β0 +β1xi1 +β2xi2 +β3xi3 +σεi i = 1, . . . ,n,

where β0 = 0 and σ = 1 for all generated samples, while 4 different sets of co-

efficients are considered: i) M0=Null model: (β1,β2,β3) = (0,0,0); ii) M1=Model

with 1 covariate: (β1,β2,β3)= (2,0,0); iii) M2=Model with 2 covariates: (β1,β2,β3)=
(2,2,0) and iv) M3=Model with 3 covariates: (β1,β2,β3) = (2,2,2). Results are

summarized in Figure 1. The main differences appear between priors πg and πZS,
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Fig. 1 Results for 100 replications of the simulation study: distribution of the posterior model

probability for the generating model (top), the proportion of times that the true model is selected

according to the highest posterior probability (bottom left) model criteria along with the posterior

expected model size (PEMS) (bottom right).
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being πZS the one that performs better. Secondly, differences between using nu or n

and the appropriate covariance matrix, are not very significative, except for the πg

at smaller sample sizes and complex models.
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