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Abstract The particular characteristics of geographically distributed data should be 
taken into account in designing a land use/land cover survey. This paper discusses 
several methods for sampling spatial units that have been recently introduced in 
literature. The methodological framework followed is of design-based typology. The 
techniques outlined are: the GRTS, the Cube, the SPCS, and the LPMs. These 
methods will be verified on data deriving from LUCAS 2012. 
Abstract Le particolarità dei dati territoriali dovrebbero essere presi in 
considerazione nella progettazione di una indagine di copertura / uso del suolo. 
Questo articolo discute diversi metodi per il campionamento di unità spaziali 
recentemente introdotte in letteratura. Il quadro metodologico seguito è quello 
basato sul disegno. Le tecniche descritte sono: GRTS, Cube, SCPS e le due varianti 
del LPM. Questi metodi sono stati verificati su dati derivanti da LUCAS 2012. 
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1 Introduction  

In the last decades, the definition of methods for sampling spatial units has become 
so popular that several authors introduced ideas and techniques about this argument. 
In this paper, our interest will be focused on probability samples that are well spread 
over the population of interest. The samples that match this property are defined as 
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spatially balanced. Surprisingly, this concept is mainly based on intuitive 
considerations, and it is not so clear if it could have an impact on the efficiency of 
the estimates. Furthermore, the well-spread property is not uniquely defined, and so 
the methods that aim at satisfying this requirement are based on several 
interpretations of this concept. In design-based sampling theory, if we assume that 
there is not a measurement error, the hypothetical observations that can be surveyed 
cannot be considered dependent. On the other hand, a typical characteristic of spatial 
data is the dependence. It is evident that, within a model-based or a model-assisted 
framework, spatial sampling can be explored postulating an appropriate model of 
spatial dependence. In the past, some survey scientists try to develop methods 
following the intuition to spread the selected units over the space because closer 
observations will provide overlapping information as an immediate consequence of 
the dependence (Benedetti and Palma 1995, Rogerson and Delmelle 2004). This 
approach leads to the research of a sample that is the best representative of the 
whole population. This optimal selection is not surely acceptable in the framework 
of design-based inference. A possible intuitive solution to the problem of the 
production of a well-spread sample is to stratify the units of the population on the 
basis of their location. This strategy has an impact only on the first-order inclusion 
probabilities, but not on the second-order inclusion probabilities. Furthermore, it is 
not very evident how to obtain a good partition of the area under investigation. To 
overcome these drawbacks, the survey practitioners partition the area in as many 
strata as possible and select one or two units per stratum. Unfortunately, this simple 
plan is arbitrary, and so it is needed to move some steps further to define other 
appropriate sampling designs. The main aim of this paper is the application of 
spatially balanced samples to Land Use/Land Cover (LULC) Surveys. Land is very 
important for most biological and human activities on the earth. Land is the one of 
the main economic resource for agriculture, forestry, industries, and transport. Land 
can be divided into two interconnected concepts. The first is land cover that refers to 
the biophysical coverage of land (e.g. crops, grass, broad-leaved forest, or build-up 
area). The second is land use that specifies the socio-economic use of land (e.g. 
agriculture, forestry, recreation or residential use). The layout of this paper is the 
following. Section 2 will be devoted to an outline of the main spatial sampling 
designs that have been recently presented in literature with particular reference to 
Land Use/Land Cover (LULC) Survey. Finally, Section 3 reports some 
considerations about some preliminaries results and concludes the paper. 

2 Methodologies  

The main problems connected to the definition of well-spread samples have 
stimulated many contributions in literature. We start our description introducing the 
Generalized Random Tessellation Stratified (GRTS) design. For the definition of 
GRTS, the underlying idea is the extension of the use of systematic sampling to two 
or more dimensions (Stevens and Olsen 2004). This design systematically selects the 
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units, transforming the two-dimensional population into one dimension while trying 
to preserve some multi-dimensional order. The GRTS is a form of spatially-balanced 
sampling, and ensures design-based inferences to the entire area. The aim is that no 
points in the target population are too far from a sampled point, and few sampled 
points are close together. The concept underlying the GRTS is to apply recursive 
partitioning to create a spatial address. At each step in the procedure, the total 
inclusion probability for each cell is computed as the sum or integral of the inclusion 
probability of all population elements within the cell. The inclusion probability need 
not be constant, and very general variable probability designs can be adapted. The 
recursive procedure is performed until every cell has total inclusion probability less 
than one, and then hierarchical randomization is applied. To each cell is assigned a 
length equal to its inclusion probability, and then the lengths are linked together, 
forming a line with length equal to the total sample size. A systematic sample is 
selected along the line. This one to one recursive map ensures that every point on the 
line agrees to some population elements. The GRTS is essentially based on the use 
of Voronoi polygons that are used to define an index of spatial balance. Denote with 
s = s1, s2,…, sN{ }  the generic element of the set of all the possible random samples S 
of fixed size n, which can be selected from the population U, where si  is equal to 1 
if the unit with label i is selected, and 0 otherwise. Furthermore, define with πi the 
first-order inclusion probability, and with πij the second-order inclusion probability, 
respectively. For a generic sample s the Voronoi polygon for the sample unit si=1 
includes all population units closer to si than to any other sample unit sj=1. If we let 
vi be the sum of the inclusion probabilities of all units in the i-th Voronoi polygon, 
for any sample unit ui, we have E(vi)=1 and for a spatially balanced sample all the vi 
should be close to 1. Thus the index Var(vi) can be used as a measure of spatial 
balance for a sample. For greater details about the GRTS see Stevens and Olsen 
(2004). The GRTS design is a commonly used by the Environmental Protection 
Agency of the United States for aquatic resource monitoring. A possible alternative 
scheme is represented by the balanced sampling and the cube method (Deville and 
Tillé 2004). The rationale behind this method is the following. A practitioner might 
ask to check the quality of the selected sample by verifying how it works on some 
covariates X known for every unit of the population U. The interest is to know 
whether the HT estimator t̂HT ,x j  is close to the known population total tx j  for each of 
the available q covariates. The idea underlying this approach is based on the 
expectation that an error committed in estimating an auxiliary could indicate that 
there is a risk to reproduce the same error on the survey variables. This proposal lead 
to the need of procedures aimed to select samples with the important property: 

wkxkj
k∈s
∑ = t̂HT ,x j

= tx j = xkj
k∈U
∑  ∀ j =1,…,q , (1) 

for all the s∈S such that p(s)>0, and where xkj  is the value of j-th variable for the k-
th unit. Note that the balanced sampling has been defined in a non-spatial context, 
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but for example, it can be applied in a spatial context by using the coordinates of the 
units as covariates and by imposing that any selected sample should respect for each 
coordinate the first p moments, assuming implicitly that the survey variable y 
follows a polynomial spatial trend of order p (Breidt and Chauvet 2012). However, 
these methods do not explicitly use the concept of distance, which is a basic 
statistics to describe the spatial distribution of the sample units. A design based on 
the distance between units supports the intuitive criterion that units that are close, 
seldom appear simultaneously in the sample. This last condition can be considered 
as reasonable under the assumption that, increasing the distance between two units i 
and j, always increases the difference |yi - yj| between the values of the survey 
variable. In this situation it is clear that the HT variance of the estimates will 
necessarily decrease if we set high second-order inclusion probabilities to couples 
with very different y values as they are far each other. Many scientists try to address 
the problem of selecting spatially balanced samples. Grafström (2012) proposed a 
method called Spatially Correlated Poisson Sampling (SCPS) by modifying the 
Correlated Poisson Sampling (CPS), introduced by Bondesson and Thorburn (2008) 
to select units with unequal inclusion probabilities. The CPS is based on a list 
sequential of the visit of the units of the population. Each unit k can be selected in 
the sample according to inclusion probabilities that are adapted step by step in order 
to produce correlations between the indicator variable of the unit visited, Ik, and the 
indicator variables relative to all the other units of the population, Il with l≠k. In the 
case of negative correlation between the indicator variables of the units that are 
closer to those already selected; it is very difficult that these units are included in the 
sample. Obviously, this situation is desirable in order to define spatially balanced 
samples. If unit 1 is included with probability π1

(0) = π1 , we will set I1 =1 and I1 =0 
otherwise. After each step, the inclusion probabilities for the remaining units in the 
list are updated according to a specific rule. Starting with π k

(0) = π k , k≥1. At step t, 
the values of I1, I2,…, It-1 are known, we will select the unit t with probability π t

(t−1) . 

We update the generic unit k ≥ t+1, according to π k
(t ) = π k

(t−1) − It −π t
(t−1)( )wk−t

(t ) , where 

wk−t
(t )  are weights that depend on I1, I2,…, It-1 but not on It (Bondesson and Thorburn 

2008). Grafström (2012) follows the logic of CPS to define SCPS method that is 
based on two different strategies for choosing the weights: maximal weights and 
Gaussian preliminary weights. Maximal weights strategy produces samples of fixed 
size if the inclusion probabilities sum to an integer. Two alternative procedures to 
select samples with fixed πk and correlated inclusion probabilities were derived 
(Grafström et al. 2012). These methods constitute an extension of the Pivotal 
method introduced to select πps samples (Deville and Tillé 1998). They are 
essentially based on an updating rule of the probabilities πk and πl that at, each step, 
should locally keep the sum of the updated probabilities as near constant and differ 
from each other in a way to choose the two nearby units k and l. These two methods 
are referred to as the Local Pivotal Method 1 (LPM1), which, according to the 
suggestion of the authors, is better spatially balanced, and the Local Pivotal Method 
2 (LPM2), which is simpler and faster. The LPM1 randomly chooses the first unit k 
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and then the closer unit l (if two or more units have the same distance to k, the 
method randomly chooses between them) under the assumption that k is the nearest 
neighbor of l. The LPM 2 is very similar to the LPM 1, the only difference is 
represented form the absence of the restriction that the two units should be the 
nearest neighbors each other. If we assume that the phenomenon to be surveyed is 
affected by some spatial effects, the problem of selecting spatially balanced samples 
consists in using a design that will give higher probabilities to samples with higher 
within distance. This design p(s) can be obtained by setting each 
p(s) =M (Ds ) / M (Ds )s∑  proportional to some synthetic index M (Ds )  of the 

matrix Ds  of the distances observed within each possible sample s. The algorithm 
starts at iteration t=0, with an initial point s(0), randomly selected from {0,1}N 

according to a SRS with constant inclusion probabilities. In a generic iteration t the 
elements of s(t) are updated in the subsequent steps: 
1. select at random two units included and not included in the sample in the 

previous iteration, say i and j. Formally one respectively among the units 
within the sample, for which si

(t ) =1 , and another among the units outside the 
sample for which si

(t ) = 0 ; 
2. denote with *si

(t )  the sample where the units in the position i and j exchange 
their status. Randomly decide whether to adopt *si

(t ) , that is: 

s(t+1) =
*s(t )     with probability p =min 1, M D*s( t+1)( ) /M D

s( t+1)( )( )
β{ }

s(t )      otherwise

!

"
#

$#
, (2) 

3. repeat steps (1) and (2) mq times. 
For a detailed review of spatially balanced samples, the reader interested can 

refer to Benedetti et al. (2014). 

3 Preliminary results and conclusions  

The methods described in the previous sections have been verified on LULC data. 
The aim is to compare the schemes highlighting advantages and drawbacks of each 
method. In order to reach this objective, we have constructed an artificial data set 
based on the well-known LUCAS survey. The Land Use/Cover Area frame Survey 
(LUCAS, Gallego and Delincè 2010) is a task by EUROSTAT that was initially 
defined to deliver, on a yearly basis, European crop estimates. 
Our artificial data set has been built considering 2012 as reference year and Italy as 
country under investigation. A sample of 21,013 points was drawn from a 
population (or a first phase sample) obtained overlaying a regular grid of points 
selected every 2 km to the Italian national boundaries map. This sample constitutes 
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our reference population on which it is possible to test the different spatially 
balanced samples methods. We have performed a simulated exercise, comparing the 
different results obtained. The first preliminary results are very encouraging. Note 
that the gain in terms of the relative efficiency of the sample mean compared with 
simple random sampling for each design estimated in many replicated samples is 
remarkable (at least 20%). 
 
Table 1: Relative efficiency of the area estimates for each Land Use (MSE/MSESRS) and for each design 
estimated in 10,000 replicated samples in the Emilia Romagna for n=600. 

Method Agriculture Forestry Urban Unused Other 
CUBE1 0,893 0,858 1,000 0,965 1,005 
CUBE2 0,893 0,854 1,000 0,952 0,997 
GRTS 0,780 0,699 0,881 0,834 0,818 
LPM1 0,893 0,854 1,000 0,952 0,997 
LPM2 0,780 0,699 0,881 0,834 0,818 
SCPS 0,780 0,699 0,881 0,834 0,818 
PPD1 0,893 0,854 1,000 0,952 0,997 
PPD2 0,780 0,699 0,881 0,834 0,818 
PPD5 0,780 0,699 0,881 0,834 0,818 
PPD10 0,730 0,651 0,841 0,767 0,756 
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