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Frazionalizzazione e polarizzazione

Giovanni Pistone and Maria Piera Rogantin

Abstract Fractionalization is a measure of concentration of a qualitative distribu-
tion, while Polarization is a measure of its bimodality. We study the steepest ascent
lines of these indexes on the probability simplex using the notion of natural gradient
of Amari. An index of variation is suggested.
Abstract La frazionalizzazione di una distribuzione qualitativa è una misura di
concentrazione; la polarizzazione è una misura di bimodalità. Studiamo le curve di
massima pendenza di questi indici sul simplesso delle probabilità tramite la nozione
di gradiente naturale secondo Amari. Si suggerisce un indice di variazione.
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1 Introduction

Given a discrete distribution π on n+ 1 classes, say x = 0,1, . . . ,n, we consider
two indexes, the fractionalization measure FRAC(π) = 1−∑x π2

x and the polar-
ization measure POL(π) = ∑x π2

x (1− πx). If d is the discrete distance d(x,y) =
(x 6= y), x,y = 0,1, . . . ,n, and X , Y are independent samples of π , then FRAC(π) =
E [d(X ,Y )], hence the fractionalization measure is a discrete version of the Gini
index. It reaches its maximum value n/(n+ 1) on the uniform distribution πx =
1/(n+1), i = 0,1, . . . ,n, and the minimum zero value if the distribution is concen-
trated on one class, see Fig. 1 (left).
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Fig. 1 Normalized fractionalization (left) and normalized polarization (right), discrete distance.
Representation in barycentric coordinates. The usual gradient flow does not converge to the ex-
tremal point on the border of the simplex.

This index has been used in Economics by Alesina et. al [2]. The polarization
measure has been introduced in full generality by Esterban and Ray [4]; the discrete
version we consider here was used by Pino and Vidal-Robert [6, p. 10]. Let X ,Y,Z
be iid ∼ π and consider the indicator of exactly two equal I2 = (X =Y 6= Z)+(X =
Z 6=Y )+(Y = Z 6= X). Then E [I2] = 3∑x π2

x (1−πx) = 3POL(π), see Fig. 1 (right).
The polarization measure has an unstable critical point at the uniform distribution,
it is zero in the case of concentration in one class, and reaches its maximum 1/4 on
distributions on two classes with equal probabilities.

In Fig. 1 the simplex is represented as an equilateral triangle, the Cartesian coor-
dinate being related with the probabilities by π1 = −(u− 1/2)− ( 1√

3
)(v−

√
3/2),

π2 = (u−1/2)− ( 1√
3
)(v−

√
3/2), while the probabilities are the barycentric coor-

dinates: [
u
v

]
= π0

[
1/2√
3/2

]
+π1

[
0
0

]
+π2

[
1
0

]
.

We want to study this indexes in a dynamical context, i.e. to characterize evolu-
tions that maximize or minimize the relevant index. This study requires tools from
Information Geometry, see e.g. [3, 8, 5, 7].

Note that the curve of steepest variation of FRAC from π is the mixture model
of π and (1/3,1/3,1/3) but in general the minimum on this line is not reached at
a vertex. A similar situation arises for POL. As the ordinary gradient flow does not
lead to the extrema of interest on the border of the simplex, we turn to a different
way to compute the gradient.
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2 Natural gradient

Let π be a strictly positive multinomial on 0,1, . . . ,n, that is

π ∈ ∆
◦
n =

{
π ∈ Rn+1

∣∣∣∣∣ n

∑
x=0

πx = 1,πx > 0,x = 0,1, . . . ,n

}
.

and define Bπ to be the vector space of random variables U that are π-centered,
Eπ [U ] = 0.

The set T ∆ ◦n = {(π,u)|π ∈ ∆ ◦n ,u ∈ Bπ} is the tangent bundle of the multinomial
model. If t 7→ π(t) ∈ ∆ ◦n is a curve, its score dlπ(t) = π̇(t)/π(t) = d logπ(t)/dt
belongs to Bπ(t), hence t 7→ (π(t),dlπ(t)) is a curve in the tangent bundle.

For example, consider the immigration process πx(t) ∝ πx(0)+αt(x = 0), x =
0,1, . . . ,n. Then ∑

n
x=0 πx(t) = 1 + αt and log(πx(t)) = log(πx(0)+αt(x = 0))−

log(1+αt) and

dlπx(t) =
α(x = 0)

πx(0)+αt(x = 0)
− α

1+αt
=

α

π0(0)+αt
(x = 0)− α

1+αt
,

so that it is easy to check Eπ(t) [dlπ(t)] = 0.
A vector field F is a mapping on the multinomial model such that F(π) ∈ Bπ ,

i.e. such that (π,F(π))∈ T ∆ ◦n for all π . A differential equation is an equation of the
form dlπ(t) = F(π(t)). Given a real function φ : ∆ ◦n → R, its gradient is the vector
field ∇φ such that for all curves π(·) we have

d
dt

φ(π(t)) = 〈∇φ(π(t)),dlπ(t)〉
π(t) , 〈u,v〉

π
= Eπ [uv] , u,v ∈ Bπ . (1)

The gradient flow equation is the differential equation dlπ(t) =±∇φ(π(t)), which
implies that dφ(π(t))/dt =±〈∇φ(π(t)),∇φ(π(t)〉

π(t) is of definite sign.
Computations are usually performed in a parameterization π : Θ 3 θθθ 7→ π(θθθ) ∈

∆ ◦n , Θ being an open set in Rn. The random variables dl j π(θθθ) = ∂ logπ(θθθ)/∂θ j,
j = 1, . . . ,n, form a vector basis of Bπ(θθθ) and the representation of the scalar product

in the basis is
〈

∑
n
i=1 αi dli π(θθθ),∑n

j=1 β j dl j π(θθθ)
〉

π(θθθ)
= ∑

n
i, j=1 αiβ jIi j(θθθ), where

the Fisher information matrix is:

I(θθθ) = [Eπ [dli π(θθθ)dl j π(θθθ)]]ni, j=1 =
[〈

dli π(θθθ),dl j π(θθθ)
〉

π(θθθ)

]n

i, j=1
.

If θθθ 7→ φ̃(θθθ) is the representation of a function φ in the parameters and t 7→ θθθ(t)
is the expression of a generic curve in the parameters, then the components of the
gradient in (1) are expressed in terms of the ordinary gradient by observing that

d
dt

φ(p(t)) =
d
dt

φ̃(θθθ(t)) =
n

∑
j=1

∂

∂θ j
φ̃(θθθ(t))θ̇ j(t),
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and dlπ(t) = ∑ j dl j π(θθθ(t))θ̇ j(t). The vector ∇̃φ̃(θθθ) = ∇φ̃(θθθ)I−1(θθθ) is the natural
gradient.

3 Computation of the natural gradient in a parameterization

The simplest possible example where the notion of parameterization is meaningful
happens for example in case of an electoral competition with 3 parties. In this sce-
nario, te maximum polarization corresponds to the outcome where one of the parties
wins zero members of Parliament (MP), while the other two parties win the same
number of MPs.

The most common parameterization of the flat simplex ∆ ◦n is the projection on
the solid simplex, that is π : θθθ 7→ (1−∑

n
j=1 θ j,θ1, . . . ,θn), in which case ∂ jπ(θθθ)

is the random variable with values −1 at x = 0, 1 at x = j, 0 otherwise, or
dl j π(θθθ) = ((x = j)− (x = 0))/πx(θθθ). The elements of the Fisher information ma-
trix are I jh(θθθ) = θ

−1
j ( j = h)+(1−∑k θk)

−1, hence

I(θθθ) = (1−
n

∑
j=1

θ j)
−1

(
diag

(
θ
−1
j : j = 1, . . . ,n

)
+(1−

n

∑
j=1

θ j)
−1[1]ni, j=1

)
.

The inverse I−1(θθθ) is computable in closed form. For example, for n = 2,

I(θ1,θ2) =

[
θ
−1
1 +(1−θ1−θ2)

−1 (1−θ1−θ2)
−1

(1−θ1−θ2)
−1 θ

−1
2 +(1−θ1−θ2)

−1

]
,

I−1(θ1,θ2) =

[
(1−θ1)θ1 −θ1θ2
−θ1θ2 (1−θ2)θ2

]
.

In the solid simplex parameterization, the fractionalization measure is

F̃RAC(θθθ) = 1− (1−
n

∑
j=1

θ j)
2−

n

∑
j=1

θ
2
j ,

with partial derivatives ∂ jF̃RAC(θθθ) = 2(1−∑
n
h=1 θh−θ j). If n = 2, the gradient is

∇F̃RAC(θθθ) = (2(1−2θ1−θ2),2(1−θ1−2θ2)) and the natural gradient is

∇̃F̃RAC(θθθ) = 2
(
2θ

3
1 +2θ

2
1 θ2 +2θ1θ

2
2 −3θ

2
1 −2θ1θ2 +θ1,

2θ
2
1 θ2 +2θ1θ

2
2 +2θ

3
2 −2θ1θ2−3θ

2
2 +θ2

)
.

On the vertices of ∆n, i.e. π = δx, the polarization is zero. On 1-faces of ∆n, i.e.
π = (1−θ)δx+θδy, x 6= y, θ ∈ [0,1], we have POL(π) = (1−θ)2θ +θ 2(1−θ) =
θ(1−θ), then values outside the vertices are strictly larger than 0, with maximum
value 1/4 obtained with equal probabilities on the two classes x,y. It follows that
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Fig. 2 Polarization measure in the solid simplex parameterization (left) and its natural gradient
field (right)

this polarization measure is larger in 2 clusters than in 1 cluster, and the maximum
in the case of 2 clusters is obtained with equal (probability of) classes. Interpretation
is less clear in 2 faces (3 clusters). If π = θ1δx +θ2δy +(1−θ1−θ2)δz, x 6= y 6= x,
then POL(π) = θ 2

1 (1−θ1)+θ 2
2 (1−θ2)+ (1−θ1−θ2)

2(θ1 +θ2), hence it is not
true that all 2 faces values are larger that the values in the 1 faces of the border.
Among all 3 clusters, the maximum is obtained a equal probabilities.

In the solid simplex parameterization we have

P̃OL(θθθ) =

(
1−

n

∑
j=1

θ j

)2( n

∑
j=1

θ j

)
+

n

∑
j=1

θ
2
j (1−θ j) ,

with gradient

∇P̃OL(θθθ) =
(
6θ1θ2 +3θ

2
2 −2θ1−4θ2 +1, 3θ

2
1 +6θ1θ2−4θ1−2θ2 +1

)
and natural gradient

∇̃ P̃OL(θθθ) =
(
−9θ

3
1 θ2−9θ

2
1 θ

2
2 +2θ

3
1 +14θ

2
1 θ2 +5θ1θ

2
2 −3θ

2
1 −5θ1θ2 +θ1,

−9θ
2
1 θ

2
2 −9θ1θ

3
2 +5θ

2
1 θ2 +14θ1θ

2
2 +2θ

3
2 −5θ1θ2−3θ

2
2 +θ2

)
See in Fig. 2 the natural gradient field. Note that the increase near the maxima is not
very sharp with this measure.
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4 Applications

Consider a study of the evolution in time of the polarization measure, see [6]. In the
time series π(1),π(2), . . . , the evolution of the polarization, POL(π(1)) ,POL(π(2)) , . . . ,
could be misleading, because an increase in the index could be associated to a shift
from a basin of attraction to a different basin of attraction. We suggest, given a
movement from π(t) to π(t + 1) to compare an estimate

−−−−−−−−→
π(t)π(t +1) of the ve-

locity vector to the gradient field of the polarization measure, that is compute〈−−−−−−−−→
π(t)π(t +1),∇POL(π(t))

〉
π(t)

. An estimate of the velocity of change is a map-

ping from a couple of densities πinitial, πfinal to the tangent space at the initial den-
sity Tπinitial∆

◦
n . Such a mapping goes under the name of inverse retraction in the

literature about optimization on manifold e.g., [1], the simplest example here be-
ing −−−→πtπt+1 = (πt+1−πt)/πt = πt+1/πt −1. Other authors suggest the use the initial
velocity of the Riemannian geodesic connecting πt to πt+1, but this requires the
computation of the geodesic itself.
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