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Abstract This work proposes an unsupervised classification algorithm for curves. It
extends the density based multivariate cluster approach tothe functional framework.
In particular, the modes of the small-ball probability are used as starting points to
build the clusters. A simulation study is proposed.
Abstract Questo lavoro propone un algoritmo di classificazione per curve. Esso
generalizza al caso funzionale il metodo di classificazionebasato sulla densità del
caso multivariato. In particolare, per costruire i clustervengono usati come punti di
partenza le mode della cosiddetta probabilità delle “piccole-bolle”. L’efficacia del
metodo è valutato tramite simulazioni.

Key words: density based clustering; small-ball probability; Karhunen-Loève de-
composition.

Introduction

Cluster analysis, or unsupervised classification, is a set of techniques to segment a
collection of data into subsets. When data are curves, orfunctional data(see e.g. [3]
and [7] for monographs on this topic), the classical multivariate approaches can
not be directly used, due to problems related to the dimensionality of the space
to which the data belong. Hence, a variety of specific clustering methods have been
introduced in such framework: see for instance [5] and references therein for a recent
survey on this topic.

Among the multivariate clustering approaches, an important class is those of the
so-called “density oriented” methods. The main idea dates back to Hartigan (see
[4]), where clusters are identified as the connected components of the level set (at a
given thresholdc) of the (multivariate) distributionf of the data; i.e. the connected
components of{ f > c}. Differently from the multivariate case, working with func-
tional data, a definition of the density distribution (in theclassical sense) is not avail-
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able. Thus, to implement an equivalent of the Hartigan’s approach in the functional
context, one can refer to surrogate densities, as the one defined in [2] and based on
the Karhunen-Loève truncated expansion (namely, the so-called Functional Princi-
pal Component Analysis). Following this principle, in [6] amodel based clustering
approach has been introduced: in particular, assuming thatthe underlying distribu-
tion of the functional principal scores is a gaussian mixture, the authors use a maxi-
mum likelihood and expectation maximization approach to identify the distribution
parameters and hence the mixture. Clearly, the distributional assumption in [6] can
appear restrictive: in this work we propose a “distributionfree” approach, based on
the non-parametric estimation of the joint density of a fixednumber of principal
component scores. The main idea rests in finding the local maxima of such density
(i.e., the modes) and in defining each cluster as the set of observations included in
the largest level set that contains only one maximum.

The paper is structured as follows. In Section 1, we introduce the theoretical
framework and the clustering method, while, in Section 2, the proposed method
abilities are illustrated through an application to simulated data.

1 The clustering approach

Let (Ω ,F ,P) be a probability space andL 2
[0,1] be the Hilbert space of square inte-

grable real functions on[0,1] endowed with the inner product〈g,h〉= ∫ 1
0 g(t)h(t)dt

and the induced norm‖g‖2 = 〈g,g〉. OnΩ , define theL 2
[0,1] valued Random Curve

(RC) X. Denote byXµ = {E [X (t)] , t ∈ [0,1]} andΣ [·] = E [〈X−Xµ , ·〉 (X−Xµ)]
its mean function and covariance operator respectively. Consider a sample ofn
curvesXi , being i.i.d. as the RCX. Thus the empirical versions ofXµ andΣ are:
Xn (t) = 1

n∑iXi(t), Σ̂n[·] = 1
n∑i〈Xi −Xn, ·〉(Xi −Xn).

Suppose thatΩ is partitioned inK (unknown) groupsΩk (k = 1, . . . ,K) each
one with a RC unimodal specific distributionP(X ∈ · | Ωk). Our aim is to deter-
mine the groups and to classify each observedXi by means of a local version of the
Hartigan’s clustering idea generalized in the functional statistical context. Since it
is not possible to define a probability density (in the sense of the Radon-Nikodym
derivative with respect to some underlying measure) for functional data, we follow
a similar thinking as in [2], where an approximation of the small-ball probability
p(x0,ε) = P(‖X− x0‖< ε) (for small values ofε) is provided.

In this view, a crucial tool is the Karhunen-Loève expansion (see e.g. [1]): de-
noting by

{
λ j ,ξ j

}∞
j=1 the decreasing to zero sequence of non–negative eigenvalues

and their associated orthonormal eigenfunctions of the covariance operatorΣ , the
RC X may be represented by

X (t) = Xµ (t)+
∞

∑
j=1

θ j ξ j (t) , 0≤ t ≤ 1, (1)
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whereθ j =
〈
X−Xµ ,ξ j

〉
are the so-called principal components (PCs) ofX satisfy-

ing
E [θ j ] = 0, Var(θ j ) = λ j , E

[
θ jθ j ′

]
= 0, j 6= j ′.

Proposition 1, whose proof is based on similar arguments of Lemma 13.6 in [3],
provides an asymptotic representation of the small-ball probability in terms of the
density of the firstr PCs.

Proposition 1. Let r be a finite positive integer. Define the r-dimensional random
vectorW = (W1 . . . ,Wr)

′, with Wj =
〈
X− x0,ξ j

〉2
, and assume that

(i) it has density fr continuous and strictly positive atw = (w1, . . . ,wr)
′,

(ii) supj≥1

{
E [Wj ]/λ j

}
= M < ∞, with M a positive constant.

Then there exists an r0 large enough such that for any r> r0 wheneverε tends to
zero, it holds: p(l0,ε)∼ fr (w)ε r π r/2/Γ (1+ r/2).

Thanks to the previous result, we can define the following unsupervised classifica-
tion algorithm:

1. Obtain an estimate of the covariance operator and of eigenelements;
2. Fix r, computef̂r,n (an estimation of the joint distribution densityfr ), and look
for its local maximâmk (k= 1, . . . , K̂);
3. Finding Prototypes: for eachk in {1, . . . , K̂}, thek-th “prototypes” group is
formed by thoseXi whose estimated PCs belong to the largest level set off̂r,n
that contains only the maximummk.
4. Connect the unclassifiedXi with theK̂ prototypes groups by means of a k-NN.

Attention must be payed choosingr: it should be small enough to avoid the well-
known “curse of dimensionality” in estimatinĝfr but it should be large enough
to guarantee a good Karhunen-Loève approximation. For theformer task, a kernel
density approach require a tuning procedure for the bandwidth since the estimated
number of clusters depends on the chosen bandwidth. Note that under the assump-
tion that PCs are independent, the approximation ofp(x0,ε) depends on the product
of the marginal densities of PCs (see e.g. [2]) and, even in this case, the bandwidth
choice still needs attention.

2 A simulation example

Simulation setting -In order to generate the sample mixture process, we use the
functional basis expansion:

X(k)
i (t) =

L

∑
l=0

√
λl τ

(k)
i,l ϕl (t), t ∈ [0,1], i = 1, . . . ,N and k= 1, . . . ,K,

whereK =3 is the number of generated groups for each of whichN= 100 curves are
simulated. The orthonormal basis functions{ϕl (t)} play the role of eigenfunctions
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with the corresponding eigenvalues{λl}, l = 1, . . . ,L. Here, we setL = 150,λl =
0.7−l and we choose the Fourier basis

ϕl (t) =

{√
2sin(2πmt−π), l = 2m−1;√
2cos(2πmt−π), l = 2m.

For eachk∈ {1,2,3} and for a fixedi ∈ {1, . . . ,N}, in order to have uncorrelated but

dependent random coefficients(τ(k)i,l )
L
l=1, they are generated as a multivariate shifted

t-Student with 10 degrees of freedom, with location parameters

µ (k) =





(5
2,− 5

2, . . . ,
5
2,− 5

2) k= 1,
−µ (1) k= 2,
µ (1)+ µ (2) k= 3,

and identity covariance matrix.
Numerical Result -We estimate the empirical mean, the covariance operator andits
eigenelements. Figure 1 shows 30 curves from the sample{Xi}300

i=1 and the empir-
ical mean curves of the three distributions of the used mixture. Since the first two
PCs explain the 93,39% of the variability, we implement the algorithm above with
r = 2. Figure 2 shows the contour plot of̂f2, the estimated modeŝmk and the “pro-
totypes regions” (dashed and bolded contour lines) associated to these modes. After
the k-NN procedure, we obtain three groups containing 112, 99 and 89 processes
respectively, with a missclassification error equal to 8,33%. Figure 3 depicts such
obtained clusters of curves on the sample.
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Fig. 1 On the left, 30 curves from the sample{Xi}300
i=1. On the right, the empirical mean curves of

the three distributions of the used mixture.
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Fig. 2 Contour lines of̂f2, modes and level sets characterizing the prototypes.
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Fig. 3 Computed clusters.

References

1. D. Bosq: Linear Processes in Function Spaces: Theory and Applications. Lectures Notes in
Statistics, 149, Springer–Verlag, Berlin (2000)

2. A. Delaigle, P. Hall: Defining probability density for a distribution of random functions. Ann.
Statist.38, no.2, 1171–1193 (2010)

3. F. Ferraty, P. Vieu: Nonparametric functional data analysis. Theory and practice. Springer
Series in Statistics (2006)

4. J. A. Hartigan: Clustering Algorithm. Wiley, New York (1975)
5. J. Jacques, C. Preda: Functional data clustering : a survey. Adv. Data Anal. Classif. (2014) To

appear
6. J. Jacques, C. Preda: Model-based clustering for multivariate functional data. Comput. Statist.

Data Anal.71, 92–106 (2014)
7. J. O. Ramsay, B. W. Silverman: Functional data analysis, 2nd ed., New York: Springer (2005)


