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Abstract Species sampling problems have regained popularity in recent years due to
their frequent appearance in challenging applications arising from ecology, genetics,
linguistic, etc. Interest often lies in estimating the number of rare species that ap-
pear in a sample, that is species with a frequency smaller than a specific abundance
threshold. The Bayesian nonparametric approach has proved successful by provid-
ing closed form estimators for rare species variety. In this paper we present a novel
methodology for endowing such estimators with asymptotic credible intervals. We
illustrate it through the analysis of some genomic datasets.

Abstract Il campionamento di specie è un tema di ricerca che, di recente, ha rac-
colto un rinnovato interesse per via della sua comparsa in applicazioni legate
all’ecologia, la genetica, la linguistica, etc. Spesso l’interesse si concentra sulla
stima del numero di specie rare, cioè specie con frequenza minore di una certa
soglia, che compaiono in un campione. L’approccio Bayesiano nonparametrico si
è dimostrato uno strumento potente che ha portato ad ottenere espressioni in forma
chiusa per stimatori del numero di specie rare. In questo lavoro proponiamo una
nuova metodologia per associare intervalli di credibilità a tali stimatori e la illus-
triamo con l’analisi di una dateset genomico.
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1 Introduction

We consider the framework where an experimenter is sampling from a population
of individuals belonging to different species with unknown proportions. Assuming
an ideally infinite number of species, species labels are denoted by (X∗i )i≥1 and
their respective proportions in the population by (pi)i≥1. Given an initial sample
of size n, the object of our study is Mn,m(l), the number of species with specific
abundance l in an enlarged sample of size (n+m), where the additional sample of
size m has not been observed. More specifically, estimation of rare species variety
consists in determining the number of species for which l is not greater than a certain
abundance threshold τ .

The estimation of rare species variety has regained popularity in recent years due
to its frequent appearance in challenging applications arising from a wide range of
fields such as ecology, biology, bioinformatics, genetics, linguistic, etc. As a remark-
able example, in genetics one is interested in estimating the number of individuals
with rare genes, the reasons being that rare genes of a type may be associated with
a deleterious disease. We refer to [2] for a detailed account on this topic.

1.1 Bayesian nonparametric estimators

Recent literature (see [3], [4]) has proved that the Bayesian nonparametrics ap-
proach provides a powerful tool which naturally leads to a simple and exact ex-
pression for the estimator M̂n,m(l). Such approach, first introduced in [6], is based
on the randomization of the unknown species proportions pi’s. Specifically, let
P̃ = ∑i≥1 piδX∗i

be a discrete random probability measure, namely (pi)i≥1 are non-
negative random weights with some distribution such that ∑i≥1 pi = 1 almost surely,
and (X∗i )i≥1 are random locations independent of (pi)i≥1 and independent and iden-
tically distributed according to a nonatomic probability measure ν0. A sample of n
individuals (X1, . . . ,Xn) is taken from a population with composition directed by P̃,
namely

Xi | P̃
iid∼ P̃ i = 1, . . . ,n (1)

P̃ ∼ Π ,

for any n≥ 1, with Π playing the role of the prior. Then, according to the de Finetti
representation theorem, (Xi)i≥1 is an exchangeable sequence. Although in litera-
ture the number Mn,m(l) has been studied under more general settings, for the sake
of simplicity hereafter we assume that Π is the distribution of a two parameter
Poisson-Dirichlet process that we denote by P̃σ ,θ , with σ ∈ (0,1) and θ >−σ (see
[7] and [8] for details).
Let Kn = j≤ n be the number of distinct species featured by the sample (X1, . . . ,Xn)
with corresponding frequencies (Mn,0(1), . . . ,Mn,0(n)) = (m1, . . . ,mn) such that
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∑
n
i=1 Mn,0(i) = Kn and ∑

n
i=1 iMn,0(i) = n. Moreover, let (Xn+1, . . . ,Xn+m) be an addi-

tional unobserved sample of size m≥ 1. A Bayesian nonparametric estimator of the
number K(n)

m of new distinct species in the additional unobserved sample was de-
rived in [6] and [3], whereas [4] determined the Bayesian nonparametric estimator
for Mn,m(l), with l ∈ {1, . . . ,n+m}. We can write, for any l = 1, . . . ,n+m,

M̂n,m(l) =
l

∑
i=0

(
m

l− i

)
mi(i−σ)(l−i)

(θ +n− i+σ)(m−l+i)

(θ +n)(m)
, (2)

where, for simplifying the notation, we agree that m0 := −(θ +σ j)/σ and we de-
note by (a)q = Γ (a+q)/Γ (a) the q-th ascending factorial of a.

Moreover one has that, for every l ∈ {1, . . . ,n+m},

Mn,m(l)
mσ

w−→ σ(1−σ)l−1

l!
Sσ ,θ ,n, j (3)

where
Sσ ,θ ,n, j

d
= B j+θ/σ ,n/σ− jSσ ,(θ+n)/σ , (4)

Ba,b being a random variable distributed according to Beta distribution with param-
eter (a,b), and Sσ ,θ a random variable with density function

fSσ ,q(y) =
Γ (qσ +1)
σΓ (q+1)

yq−1−1/σ fσ (y−1/σ ), (5)

where fσ is the density function of a positive σ -stable random variable. Moreover,
the random variables B j+θ/σ ,n/σ− j and Sσ ,(θ+n)/σ are assumed to be independent.
When interest is in estimating the number of rare species, then one can resort to the
cumulated estimator

M̂n,m(1, . . . ,τ) =
τ

∑
i=1

M̂n,m(i). (6)

More generally, if {l1, . . . , lτ} are distinct integers such that li ∈ {1, . . . ,m+m} for
every i, then the number of species that appear with frequency l in {l1, . . . , lτ} in the
enlarged sample of size n+m can be estimated by

M̂n,m(l1, . . . , lτ) =
τ

∑
i=1

M̂n,m(li). (7)

Finally, [1] derived closed form expressions for the joint conditional distribu-
tion of vectors (Mn,m(l1), . . . ,Mn,m(lτ)), with all the li’s being distinct indexes in
{1, . . . ,n+m}. This allows us to prove that,

Mn,m(l1, . . . , lτ)
mσ

w−→

(
τ

∑
i=1

σ(1−σ)li−1

li!

)
Sσ ,θ ,n, j. (8)
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2 Methodology

While deriving the closed form expressions in (2) and (7), [4] did not consider the
problem of associating a measure of uncertainty to M̂n,m(l) and M̂n,m(l1, . . . , lτ). We
present a novel methodology to approximately quantify the uncertainty of the esti-
mators in (2) and (7).
To this end, fluctuations (3) and (8) provide a useful tool for approximating the dis-
tribution of the random probabilities Mn,m(l) and Mn,m(l1, . . . , lτ). Specifically, we
aim at exploiting such limiting distribution in order to construct asymptotic credible
intervals for the estimators.

First, we observe that the same limiting results would clearly hold true for any
scaling factor r(m) such that r(m) ≈ mσ . Numerical investigations show that, as
soon as θ and n are not overwhelmingly smaller than m, the asymptotic estimator

M̂′n,m(l) = mσ σ(1−σ)l−1

l!
E[Sσ ,θ ,n, j] (9)

can be far from the exact estimator M̂n,m(l). For this reason we introduce the scal-
ing r∗(m, l) ≈ mσ such that M̂n,m(l) = r∗(m, l)(σ(1−σ)l−1/l!)E[Sσ ,θ ,n, j], and we
define the unbiased estimator

M̂∗n,m(l) = r∗(m, l)
σ(1−σ)l−1

l!
E[Sσ ,θ ,n, j]. (10)

Similar observations hold true for the estimator M̂n,m(l1, . . . , lτ). According to
(8), the asymptotic counterpart of this estimator coincides with M̂′n,m(l1, . . . , lτ) =
∑1≤i≤τ M̂′n,m(li). In particular, we introduce the scaling r∗(m, l1, . . . , lτ) ≈ mσ such
that

M̂n,m(l1, . . . , lτ) = r∗(m, l1, . . . , lτ)
τ

∑
i=1

(
σ(1−σ)li−1

li!

)
E[Sσ ,θ ,n, j]

and we define the unbiased estimator

M̂∗n,m(l1, . . . , lτ) = r∗(m, l1, . . . , lτ)

(
τ

∑
i=1

σ(1−σ)li−1

li!

)
E[Sσ ,θ ,n, j]. (11)

To keep the exposition as simple as possible we do not provide the expression for the
factors r∗(m, l) and r∗(m, l1, . . . , lτ). See [3] for a similar approach in the context of
Bayesian nonparametric inference for the number of new distinct species generated
by the additional sample.

The strategy we follow, in order to obtain asymptotic credible intervals for
M̂n,m(l) and M̂n,m(l1, . . . , lτ), starts with evaluating appropriate quantiles of the dis-
tribution of the limiting random variable Sσ ,θ ,n, j. For instance let s1 and s2 be quan-
tiles of the distribution of Sσ ,θ ,n, j such that (s1,s2) is the 95% credible interval with
respect to this distribution. Then, according to (3) and (10), the set
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r∗(m, l)

σ(1−σ)l−1

l!
s1,r∗(m, l)

σ(1−σ)l−1

l!
s2

)
(12)

is a 95% asymptotic credible interval for M̂n,m(l). Analogous observations hold true
for the estimator M̂n,m(l1, . . . , lτ). In order to determine the quantiles s1 and s2, we
devised an algorithm for sampling the limiting random variable Sσ ,θ ,n, j that involves
sampling from the distribution (5). To this end, we combine the algorithm proposed
in [3] with the so-called fast rejection algorithm for sampling from an exponentially
tilted positive σ -stable random variable (see [5]).

3 Illustration

In order to illustrate the proposed methodology we consider two cDNA libraries
of the amitochondriate protist Mastigamoeba balamuthi. The two libraries differ
since one is non-normalized, whereas the other one is normalized, namely it un-
dergoes a normalization protocol which aims at making the frequencies of genes
in the library more uniform so to increase the discovery rate. See [9]. Due to the
high cost of such protocols, an accurate estimate of the number of rare species in
an unobserved sample can be of great importance in deciding whether it is worth
applying them. For the non-normalized Mastigamoeba dataset the observed sam-
ple consists of n = 715 ESTs with j = 460 distinct genes whose frequencies are
mi,715 = 378,33,21,9,6,1,3,1,1,1,1,5 with i ∈ {1,2, . . . ,10} ∪ {13,15}. For the
normalized Mastigamoeba dataset the observed sample consists of n = 363 with
j = 248 distinct genes whose frequencies are mi,363 = 200,21,14,4,3,3,1,0,1,1
with i ∈ {1,2, . . . ,9}∪{14}.
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(a) Non-normalized Mastigamoeba
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(b) Normalized Mastigamoeba

Fig. 1: Mastigamoeba libraries. Exact estimates M̂n,m(1) (red solid curves) and M̂n,m(1,2,3) (black
solid curves) together with asymptotic 95% credible intervals (dashed curves). The size m of the
additional sample ranges in [0,3000].
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As for our analysis, we call a species unique if it has frequency 1 and consider rare
those species that have abundance not greater than τ = 3. For both datasets, after
setting the parameters θ and σ by means of the empirical Bayes procedure sug-
gested in [3], we compare the estimated numbers of rare and unique species, that
is M̂n,m(1) and M̂n,m(1,2,3), for a size m of the additional unobserved sample in
[0,3000]. By applying the introduced methodology we endow the exact estimate
with asymptotic credible intervals. Figure 1 suggests that, for the non-normalized
library, the estimated number of both rare and unique species grows slightly faster
than the same quantity for the normalized library. Moreover, by inspecting Fig-
ure 1(a) and Figure 1(b), it is apparent that most of the rare species are unique. This
fact is confirmed by the estimates in Table 1 and holds true in both the observed and,
according to the estimators M̂n,m(1) and M̂n,m(1,2,3), the enlarged sample.

Table 1: Mastigamoeba libraries. Number of observed unique (m1) and rare (m1+m2+m3) species;
estimated number of unique (M̂n,3000(1)) and rare (M̂n,3000(1,2,3)) species after an unobserved
sample of size 3000; corresponding 95% credible intervals.

m1 M̂n,3000(1) 95% c.i. m1 +m2 +m3 M̂n,3000(1,2,3) 95% c.i.
Mast. 378 1354.4 (1268.0,1450.7) 432 1568.7 (1468.7,1680.2)

Mast. norm. 200 984.8 (906.0,1067.2) 235 1191.4 (1096.0,1291,1)
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