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Abstract Several models with conditional heterosckedasticity have been studied in

financial econometrics, with the simple GARCH(1,1) with Gaussian innovation rep-

resenting the standard benchmark. There is evidence of asymmetry in some daily

data and more flexible models, which take such an asymmetry into account, have

become recently popular. Understanding the extremal behaviour of asymmetric pro-

cesses becomes very important to build proper inference about extremal events. For

processes satisfying mild mixing conditions the clustering of extreme values is char-

acterzied by a single key-parameter, known as the extremal index, which represents

the average clusters size of values which exceed a high-level threshold. An approach

extending results for the GARCH(1,1) is presented, with skew-t innovation.

Abstract In finanza econometrica si sono studiati diversi modelli condizionata-

mente eteroschedastici, tra qui il semplice GARCH(1,1) rappresenta lo standard

di riferimento. In alcuni dati finanziari, con cadenza giornaliera, vi evidenza di

asimmetria nella distribuzione marginale e modelli flessibili che tengono in con-

siderazione tale aspetto sono divenuti popolari. Comprendere le propriet di questi

modelli, quando si considerano gli avvenimenti estremi, dimportanza cruciale per

sviluppare un’opportuna inferenza. Per processi che soddisfano certe condizioni di

regolarit, la tendenza a formare gruppi di valori estremi caratterizzata da un sin-

golo parametro-chiave, noto come l’indice estremo. Quest’ultimo esprimile in fun-

zione della dimensione media di un gruppo di eventi estremi oltre una certa soglia.

Si presenta un risultato per il modello GARCH(1,1) con innovazione skew-t.
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1 Introduction

Consider the daily log-returns Xt = logPt − logPt−1, where Pt , t = 1,2, . . . , is the

price of a generic asset. Then a broad class of models, mostly adopted to describe

the market volatility, is the generalized autoregressive conditionally heteroscedastic

(GARCH). For market risk management one of the most important issue is the pres-

ence of extreme values of daily log-returns. Therefore, understanding the extreme

properties for such processes is fundamental, and this can be achieved by consider-

ing the marginal and the clustering properties of GARCH processes.

GARCH(p,q) processes, for integers p and q, and parameters λi, i = 1, . . . ,q and

β j, j = 1, . . . , p which satisfy stationarity, have the form

Xt = σtZt with σ2
t = α0 +

q

∑
i=1

λiX
2
t−i +

p

∑
j=1

β jσ
2
t− j , t = 1,2, . . . , and α0 > 0.

(1)

For fixed t Zt and σt are independent. In the sequel, the innovation {Zt} will be

assumed strict white noise (SWN).

GARCH(p,q) processes {Xt} have mixing properties, so that the key parame-

ter for quantifying the impact of extreme values is the extremal index θX ∈ (0,1].
The extremal index θX measures the level of clustering of extreme values, with the

clustering of extreme increasing for θX decreasing. The special case θX = 1 means

no clustering of extremes. Another interpretation of the extremal index is provided

using the cluster size distribution πX(i), i = 1,2, . . ., since ∑∞
i=1 iπX (i) = (θX )

−1, so

θX is the reciprocal of the limiting mean cluster size of extreme values.

When {Zt} is symmetric the extreme properties of processes (1) have been stud-

ied by Basrak et al. (2002), which discuss extreme properties for the squared of the

GARCH(p,q) process. For the special case of GARCH(1,1) processes, results for

θX are available (see Laurini and Tawn, 2012) but generalization to higher-order are

still under investigation.

Nevertheless, there are studies in the financial and econometric literature which

support asymmetry in the log-return process. To accommodate such empirical find-

ing it is necessary to relax the assumption of symmetric marginal distribution of

Z (provided some moments conditions are satisfied). Even for the Exponential

GARCH, which allows for asymmetric response on the volatility {σt}, the {Xt}
process is still symmetric about zero, provided that Z is a symmetric zero-mean

random variable.

We provide a Monte Carlo algorithm for the numerical evaluation of θX , and the

associated cluster size distribution πX(·). We first obtain the cluster size distribution

πX2(·) and the extremal index θX2 for the square of the process, and then derive the

desired quantities with proper thinning of the squared process. For sake of simplicity

we discuss details only for GARCH(1,1) with Z following a skew-t innovation (with

degree of freedom such that the variance exists), and contrast results with other

asymmetric models.
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The outline of the paper is the following: in Section 2 we list the class of

GARCH-type models that can be considered and introduces all restrictions and con-

ditions. Section 3 provides and overview of the tail chain properties. Section 4 gives

results of non-symmetric thinning. Further comments will be provided in Section 5.

2 Models, conditions and technicalities

Let us focus on the simpler form of model (1), with p = q = 1 and Zt as SWN

following a skew-t. The representation of skew-t requires some preliminaries. For a

skew-normal random variable Y , a natural form of skew-t is given by the transform

Z = Y/
√

(χ2
ν)/ν , that has density

fZ(z) = 2tν(z)Tν+1(w(z)), with w(z) = αz

√

ν + 1

ν + z2
,

with tν and Tν representing, respectively, the density and distribution of a Student-t

with ν degree of freedoms. The parameter α is the shape parameter that regulate the

skewness. When α = 0 we have symmetric Z, while with α > 0 we have positively

skew distribution. We rescale Z so that it is a zero-mean unit-variance random vari-

able. Further details on skew-normal and other generalizations are given in Azzalini

and Capitanio (2003).

Now, consider the quantity

Ct = λ Z2
t−1 +β , (2)

then, for stationarity of this process, λ and β must satisfy the constraint E{log(Ct)}<
0, and for finite variance λ +β < 1.

The function E(Cζ ) is continuous and convex in ζ , with ζ = κ being the unique

solution of the equation E(Cζ ) = 1 for ζ > 0. Then, under our assumptions about

{Zt}, κ satisfies

∫ ∞

−∞
(λ z2 +β )κ fZ(z)dz = 1, (3)

where fZ(z) is the marginal density of the iid sequence {Zt}. Therefore, κ can be

found by numerical solution of equation (3) is trivial and solution to find κ > 0 is

immediate as the function is convex with one root being zero. As a function of ζ ,

we plot E(Cζ ) in Figure 1 for λ = 0.11 and γ = 0.88 for a variety of Zt .

Given the value of κ one result of Mikosch and Starica (2000) is that σt and |Xt |
are both regularly varying random variables with index 2κ , i.e.

Pr(σt > x)∼ δ0x−2κ and Pr(|Xt |> x)∼ E(|Zt |
2κ)Pr(σt > x) for x → ∞,

where δ0 is a positive constant.
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The root κ does not depend on the sign of the shape parameter, due to the squared

power into (3). There is a non-trivial link between the clustering of extremes and the

value of κ . Here, we simply highlight that the marginal distribution of X has heavier

tail when Z is Skew-t.
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Fig. 1 Plot of E(Cζ ) for λ = 0.11 and γ = 0.88 and a variety of choices for Z. The solid grey is

for Z standard Gaussian, the dashed grey is for Z Student-t and the black dotted is for Z Skew-t

with (absolute value of the) shape set equal to 3. The sign of the shape parameter do not affect the

value of E(Cζ ). The root κ is found when E(Cζ ) = 1, which is represented by the horizontal black

thin line (dotted and dashed).

For the given value of κ we then want to consider |·| be any norm, and define

ℵ = {x ∈ R2h : |x| = 1}. Then Mikosch and Starica (2000) show that for all h the

vector Y
(2)
h = (X2

1 ,σ
2
1 , . . . ,X

2
h ,σ

2
h ) exhibits a joint tail behaviour corresponding to

multivariate regular variation with index κ , i.e. for any Borel set B ⊆ ℵ

Pr
(

|Y
(2)
h |> rq,Y

(2)
h /|Y

(2)
h | ∈ B

)

Pr(|Y
(2)
h |> q)

→ r−κ Pr
{

Ω ∈ B
}

for r > 0,q → ∞, (4)

and with Ω being an angular random variable on the space, of dimension 2h− 1,

defined by this norm. The distribution of Ω , termed the spectral measure, is given

by

Pr{Ω ∈ ·}=

E

{

|Z
(2)
h |ν I

{Z
(2)
h

/|Z
(2)
h

|∈·}

}

E
{

|Z
(2)
h |ν

} , (5)



The clustering of extreme values for some asymmetric GARCH-type models 5

where I is the indicator function, and Z
(2)
h =

(

(Z2
1 ,1),C2(Z

2
2 ,1), . . . ,{∏h

i=2 Ci}(Z
2
h ,1)

)

.

For our purposes, selecting h = 1 will suffice.

3 Conditional simulation of extremes

Very often it may be desirable simulating directly a cluster of exceedances instead of

simulating the whole time series and extracting clusters of values above a threshold.

The technique we are going to set up comes from the study of bivariate extremes,

and we use the L 1 norm, thus |x|= ∑ |xi|.
We have seen that expression (4) is the product of independent radial and angular

pseudo-polar components, where the radial is x−κ and the angular is Pr{Ω ∈ ·}.

Our aim is to simulate contemporaneously a couple (X2
1 ,σ

2
1 ) but, in practice

we can concentrate on the vector Z
(2)
h . To understand this argument observe that

(X2
t ,σ

2
t ) = σ2

t (Z
2
t ,1), so we focus on the pair (Z2

t ,1). Due to the connections with

bivariate extremes we also need to define the pseudo-polar coordinates as R = 1+ z

and Ω = 1
1+z

. Pseudo-polar coordinates are useful because, in bivariate extremes,

the limit process factorizes across radial and angular components, which are in-

dependent each other. This property was used in Laurini and Tawn (2012). After

simulating from the radial and angular component we map the original (X2
t ,σ

2
t )

through the transformations X2
t = R(1−Ω) and σ2

t = RΩ .

The simulation of (4) is simple du to the independence. The radial component can

be simulated directly from inversion. On the contrary, a Monte Carlo technique is

required from simulating the angular component in (5), and a subsequent empirical

inversion is required.

To build the tail chain, from (X2
t ,σ

2
t ) we keep only those X2

t sufficiently large,

and we use again regular variation. Since

Pr(R > xq)

Pr(R > q)
= x−κ ,

then it can be thought as the conditional probability Pr(R > xq|R > q), for x > q;

for this reason we can argue that sampling from R correspond to sample from the

conditional distribution

FR
q >1

(x;ν) = Pr

{

R

q
> x |

R

q
> 1

}

= x−κ .

This argument suggests to adopt q = 1 as threshold for X2
t ; values in the (X2

t ,σ
2
t )

space for which X2
t ≤ 1 will be then discarded. Some improvement can be achieved

if we could directly simulate from the distribution of R and Ω such that X2
t = (1−

Ω)R > 1.
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4 Thinning of the squared process

We can move from the cluster size distribution of the square of a GARCH(1,1), to

the cluster size distribution πi, of the corresponding GARCH(1,1) process. We need

to rule out observations of the square GARCH that do not appear in the GARCH.

More precisely, we denote with γ = 1/Pr(Z > 0), so that for α = 0 γ = 2, and using

Π(·) as the probability generating function of the cluster size probability, we have

that, for the limiting squared time-normalized process of exceedances N(2)(0,1),

Pr(max(X2
1 , . . . ,X

2
n )< un)→

∞

∑
k=0

Pr(N(2)(0,1) = k)γ−k.

By using conditional arguments, as in Embrechts et al. (1997), we can rewrite such

limiting form, using the above thinning as

πi =
(

1−Π(1/γ)
)−1 ∞

∑
m=i

(

m

m− i

)

π
(2)
m γ−m, i = 1,2, . . . .

5 Final remarks

The dependence of extreme values involving θX is rather complicated, when λ and

β are fixed. The dependence on α , from which γ is computed, makes the extreme

clustering slightly weaker. For fixed λ , θX decreases monotonically with increasing

β . Similarly, for fixed β , θX decreases monotonically with increasing λ . Though θX

changes in a largely consistent way with ν , with smaller θX occurring for smaller

ν , this property breaks down when λ + β ≈ 1, i.e. when the process is close to

non-stationary.
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