
Modeling prior knowledge on complex
phenomena behaviors via partial differential
equations
Come descrivere informazione a priori sul
comportamento di fenomeni complessi mediante
equazioni alle derivate parziali

Laura Azzimonti, Laura M. Sangalli and Piercesare Secchi

Abstract In this talk we shall describe an innovative method for the analysis of spa-
tially distributed data, when a prior knowledge on the phenomenon under study is
available and can be formalized in terms of a partial differential model. The prior
knowledge may for instance derive from physics, physiology, morphology, chem-
istry or mechanics of the problem at hand, and may as well concern conditions
characterizing the phenomenon at the boundary of the problem domain. The pro-
posed models exploit advanced numerical techniques and specifically make use of
the Finite Element method.
Abstract In questo seminario presenteremo un metodo innovativo per l’analisi di
dati spazialmente distribuiti, quando una conoscenza a priori del fenomeno sotto
studio è disponibile e può essere formalizzata in termini di un modello alle derivate
parziali. Tale informazione a priori può per esempio derivare dalla fisica, fisiologia,
morfologia, chimica o meccanica del problema in esame, e può altresı̀ riguardare
condizioni che caratterizzano il fenomeno ai bordi del dominio di interesse del prob-
lema. I modelli proposti sfruttano techiche numeriche avanzate ed in particolare
fanno uso del metodo degli elementi finiti.
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1 Introduction

We present a class of regression models for spatially distributed data, where the
estimated entity both adhere to the data and incorporate problem-specific a pri-
ori knowledge on the phenomenon under study, defined by a Partial Differential
Equation (PDE). PDEs are indeed commonly used to describe complex phenome-
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na behaviors in many fields of engineering and sciences, including bio-sciences,
geo-sciences and physical-sciences.

The inclusion of simple forms of PDEs in statistical models has been recently
explored by other researchers. For instance, [7] proposes Bayesian spatial models
that link Gaussian fields and Gaussian Markov random fields via a stochastic PDE
inducing a Matern covariance. [11] considers more general Bayesian inverse prob-
lems. Other recent proposals, such as [9, 12, 6, 4, 10], assume a penalized regression
form, with the roughness term involving the partial differential operator.

The proposed class of models, Spatial Regression with PDE regularization (SR-
PDE), generalizes the method in [10] and considers more complex PDEs with re-
spect to the methods mentioned above. See [3, 2, 1]. An important novelty of the
proposed models is that the PDE is here used to model the space variation of the
phenomenon, using problem-specific a priori information. Moreover SR-PDE al-
lows for important modeling flexibility in this respect, accounting also for space
anisotropy and non-stationarity in a straightforward way, as well as unidirectional
smoothing effects.

2 Data and model

Let {pi = (xi,yi); i = 1 . . . ,n} be a set of n points on a bounded domain Ω ⊂ R2 with
boundary ∂Ω ∈C2. Let zi be the value of a real-valued variable of interest observed
at location pi. Assume the model

zi = f (pi)+ εi (1)

where εi, i = 1, . . . ,n, are independent errors with zero mean and constant variance
σ2, and f : Ω → R is the surface or spatial field to be estimated. Assume that prob-
lem specific prior information is available, that can be described in terms of a PDE,
L f = u, modeling to some extent the phenomenon under study. Moreover, the prior
knowledge can also concern possible conditions that f has to satisfy at the boundary
∂Ω of the problem domain. Generalizing the models in [9] and [10], we propose to
estimate f by minimizing the penalized sum-of-square-error functional

J( f ) =
n

∑
i=1

( f (pi)− zi)
2 +λ

∫
Ω

(
L f (p)−u(p)

)2dp (2)

with respect to f ∈ V , where V is the space of functions in L2 (Ω) with first and
second derivatives in L2 (Ω), that satisfy the required boundary conditions. The pe-
nalized error functional hence trades off a data fitting criterion, the sum-of-square-
error, and a model fitting criterion, that penalizes departures from a PDE problem-
specific description of the phenomenon. This trade off is controlled by the positive
smoothing parameter λ : the smaller this smoothing parameter the more the estimate
will adhere to the observed data, the higher this smoothing parameter the higher the
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strength given the a priori information on f described by the differential regulariza-
tion. Although not itself formalized in a Bayesian framework, the proposed model
can be seen as a regularized least square analogous to the Bayesian inverse problems
presented, e.g., in [11]. In particular, the least square term in J( f ) corresponds to a
log-likelihood for Gaussian errors, while the regularizing term translates the prior
knowledge on the spatial field f , with λ controlling the strength or concentration of
the prior. With respect to [11], besides the different model framework, we are able
to deal with a larger class of operators, including also non-stationary anisotropic
diffusion, transport and reaction terms.

In particular, we consider here phenomena that are well described in terms of
linear second order elliptic operators L,

L f =−div(K∇ f )+b ·∇ f + c f , (3)

where the symmetric and positive definite matrix K ∈ R2×2 is the diffusion ten-
sor, b ∈ R2 is the transport vector and c ≥ 0 is the reaction term. These terms
may be space varying, and they induce non-stationary and anisotropic smoothing
effects, non-stationary unidirectional smoothing effects and non-stationary shrink-
ing effects, thus allowing for a very flexible modeling of the space variation. The
forcing term u ∈ L2(Ω) can be either u = 0 (homogeneous case) or u 6= 0 (non-
homogeneous case), allowing for further model flexibility.

The prior information can moreover concern conditions characterizing the phe-
nomenon at the boundary ∂Ω of the problem domain. In many applicative contexts,
such as the one described in Section 3, accurately complying with this prior knowl-
edge is crucial to obtain meaningful estimates. SR-PDE models can include this
prior information. In particular, the boundary conditions may involve the evalua-
tion of the function and/or its normal derivative at the boundary, allowing for a very
complex modeling of the behavior of the spatial field at the boundary of the domain
of interest.

In [3] we show that, under suitable regularity conditions, the estimation problem
(1) is well posed. The spatial field estimator is obtained solving a coupled system
of PDEs. This infinite dimensional problem is thus reduced to a finite dimensional
one using finite elements, that provide a space of piecewise polynomial surfaces.
Finite element analysis (see, e.g., [8]) is mainly developed and used in engineering
applications, to solve PDEs. The strategy of finite element analysis is very similar
in spirit to that of univariate splines and consists of partitioning the problem domain
into small disjoint subdomains and defining polynomial functions on each of these
subdomains in such a way that the union of these pieces closely approximates the
solution to the estimation problem. The introduction of the finite element space re-
duces the estimation problem to solving a linear system. The resulting estimators are
linear in the observed data values and have a penalized regression form. The clas-
sical inferential tools are thus derived. Moreover, the use of finite elements makes
the method computationally highly efficient. The good numerical properties of the
estimators are analyzed in [2]. The models can also be extended to include space-
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varying covariate information, according to the semi-parametric approach described
in [10].

3 Illustrative problem

The motivating applied problem concerns the estimation of the blood-flow velocity
field on a cross-section of the common carotid artery, using data provided by echo-
color doppler acquisitions. This applied problem arises within the research project
MAthematichs for CARotid ENdarterectomy@MOX (MACAREN@MOX), which
aims at studying atherosclerosis pathogenesis. Carotid Echo-Color Doppler (ECD)
is a medical imaging procedure that uses reflected ultrasound waves to create images
of an artery and to measure the velocity of blood cells in some locations within
the artery. Specifically, the ECD data measure the velocity of blood within beams
located on the considered artery cross-section. For this study, during the ECD scan
7 beams are considered, located in a cross-shaped pattern.

In this applied problem we have a prior knowledge on the phenomenon under
study that could be exploited to derive accurate physiological estimates. There is
in fact a vast literature devoted to the study of fluid dynamics and hemodynamics,
see for example [5] and references therein. This prior information concerns both the
shape of the field, which can be conveniently described via a linear second order
PDE, and the conditions at the boundary of the problem domain, i.e., specifically,
at the wall of the carotid cross-section. The SR-PDE method efficiently uses the a
priori information on the phenomenon under study and returns a realistic and phys-
iological estimate of the dynamic blood flow, which is not affected by the pattern
of the observations. See [3]. Moreover SR-PDE estimates accurately highlight im-
portant features of the blood flow, such as eccentricity, asymmetry and reversion of
the fluxes, that are of interest to the medical doctors, in order to understand how the
local hemodynamics influences atherosclerosis pathogenesis.
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project “Advanced statistical and numerical methods for the analysis of high dimensional func-
tional data in life sciences and engineering”(http://mox.polimi.it/users/sangalli/firbSNAPLE.html).

References

1. Azzimonti L.: Blood flow velocity field estimation via spatial regression with PDE penaliza-
tion, PhD Thesis, Politecnico di Milano (2013)

2. Azzimonti, L., Nobile, F., Sangalli, L. M., Secchi, P.: Mixed Finite Elements for spatial re-
gression with PDE penalization. TechRep. MOX 20/2013, Dipartimento di Matematica, Po-
litecnico di Milano (2013)



Modeling prior knowledge on complex phenomena behaviors via PDEs 5

3. Azzimonti, L., Sangalli, L. M., Secchi, P., Domanin, M., Nobile, F.: Blood flow velocity field
estimation via spatial regression with PDE penalization. TechRep. MOX 19/2013, Diparti-
mento di Matematica, Politecnico di Milano (2013)

4. D’Elia, M., Perego,M., and Veneziani, A.: A Variational Data Assimilation Procedure for
the Incompressible Navier-Stokes Equations in Hemodynamics. SIAM Journal of Scientific
Computing, Vol. 52, Part 4, pp. 340–359. 2012, Volume 52, Issue 2, pp 340-359 (2012)

5. Formaggia, L., Quarteroni, A., and Veneziani, A.: Cardiovascular mathematics: modeling and
simulation of the circulatory system, Springer (2009)

6. Guillas, S. and Lai, M.: Bivariate splines for spatial functional regression models. Journal of
Nonparametric Statistics, Vol. 22, Part 4, pp. 477–497 (2010)

7. Lindgren, F., Rue, H., and Lindström, J.: An explicit link between Gaussian fields and Gaus-
sian Markov random fields: the stochastic partial differential equation approach. Journal of
the Royal Statistical Society Ser. B, Statistical Methodology, Vol. 73, pp. 423–498, with dis-
cussions and a reply by the authors (2011)

8. Quarteroni, A. Numerical Models for Differential Problems. Springer (2013)
9. Ramsay, T.: Spline Smoothing over Difficult Regions. Journal of the Royal Statistical Society

Ser. B, Statistical Methodology, Vol. 64, pp. 307–319 (2002)
10. Sangalli, L. M., Ramsay, J. O., Ramsay, T. O.: Spatial spline regression models. Journal of the

Royal Statistical Society Ser. B, Statistical Methodology, Vol. 75, Part 4, pp. 681–703 (2013)
11. Stuart, A.: Inverse problems: a Bayesian perspective. Acta Numerica, Vol. 19, pp. 451–559

(2010)
12. Wood, S. N., Bravington, M. V., and Hedley, S. L.: Soap film smoothing. Journal of the Royal

Statistical Society Ser. B, Statistical Methodology, Vol. 70, pp. 931–955 (2008)


