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Quando non è normale essere gaussiano
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Abstract The parameters characterizing geological formations display spatial pat-

terns that are very often not amenable to be modeled using a multiGaussian random

function. Multimodal marginal distributions, spatially connected low or high values

and curvilinear features are some of the observed characteristics that a multiGaus-

sian random function will fail to reproduce. Hydraulic conductivity is one such pa-

rameter, of great importance for the prediction of the movement of groundwater.

Many efforts have been carried out in the last decades to create algorithms capable

to generate hydraulic conductivity realizations according to non-Gaussian random

functions. And, in the last years, these efforts have shifted to creating algorithms for

the stochastic inverse modeling of hydraulic conductivity in a non-Gaussian con-

text. The ensemble Kalman filter is one of the methods which have been favorited

in stochastic inverse modeling; however, it fails when hydraulic conductivity is best

modeled as non-Gaussian. This paper discusses why it fails and shows an alterna-

tive algorithm based on a simple modification of the standard formulation of the

ensemble Kalman filter.

Abstract I parametri che caratterizzano le formazioni geologiche presentano con-

figurazioni spaziali che non sono spesso suscettibili di essere modellate medi-

ante una funzione aleatoria Gaussiana multivariata. Distribuzioni marginali mul-

timodali, valori bassi o elevati spazialmente collegati e configurazioni curvilinee

sono alcune delle caratteristiche osservate che una funzione aleatoria Gaussiana

multivariata non è in grado di riprodurre. La conducibilità idraulica appartiene

a tali parametri ed è di grande importanza per la previsione del movimento delle

acque sotterranee. Negli ultimi decenni sono stati effettuati molti sforzi al fine di

produrre algoritmi in grado di generare realizzazioni della conducibilità idraulica
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basate su funzioni aleatorie non-Gaussiane. In particolare, negli ultimi anni, questi

sforzi hanno riguardato la predisposizione di algoritmi per la modellazione stocas-

tica inversa della conducibilità idraulica in un contesto non- Gaussiano. L’ensemble

Kalman filter è uno dei metodi preferiti nella modellazione stocastica inversa;

tuttavia tale metodo fallisce se la conducibilità idraulica è modellata come non-

Gaussiana. In questo articolo, si chiarisce il motivo di tale performance e si illustra

un algoritmo alternativo basato su una semplice modifica della formulazione stan-

dard dell’ensemble Kalman filter.

Key words: stochastic inverse modeling, ensemble Kalman filter, non-Gaussian,

hydraulic conductivity

1 Introduction

Back in 1993, we had the opportunity to make a presentation at the Italian Statis-

tical Society meeting warning about “The dangers of parsimony” associated to the

use of multiGaussian models in the Earth Sciences [2]. That presentation gave rise

to a short paper published in the Journal of the Italian Society [3] followed, five

years later!, by a longer paper published in Advances in Water Resources [4] —

after it being rejected for publication in another journal— in which we insisted on

the importance of drifting away from the established hypothesis that earth science

parameters had to be modeled as multiGaussian random functions. The latter paper,

initially dismissed as non-academic, has received, today, more than 150 citations

and is one of our most cited works. Few researchers deny today that the spatial vari-

ability patterns observed in geologic formations are seldom amenable to a multi-

Gaussian model, that the observed channel-like structures, the continuity streaks,

the impermeable barriers are best modeled with stochastic processes that are based

on higher-order statistics, not just the two-point covariance that fully characterizes

a multiGaussian probability distribution.

When multiGaussian models are still used is because there are no better alterna-

tives from a analytical or numerical point of view. For example, in inverse modeling,

the ensemble Kalman filter (EnKF) [1] has been proven to be a very efficient method

for stochastic inverse modeling in many disciplines. The EnKF is a variant of the

Kalman filter [5] aimed at overcoming the inefficiencies of the Kalman filter when

the state equation is non-linear. It is well known that the Kalman filter is optimal

for linear transfer functions and for state parameters that can be modeled as multi-

Gaussian. The EnKF works around the non-linearity of the state function but does

not work well when either the state variables or the parameters controlling the state

equation are non-Gaussian.

Next, we present the standard formulation of the EnKF and show its performance

in a non-Gaussian setting, and we follow with a simple alternative that solves the

problem.
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2 The Ensemble Kalman Filter

The Ensemble Kalman filter is an assimilation algorithm that incrementally updates

the estimates of the parameters controlling a state equation, on the basis of the dis-

crepancy between predictions and observations as new state data are acquired in

time. Consider a phenomenon, such as groundwater flow, in which the state of the

system y at time step k is determined as a function of the system state at time step

k− 1 and the latest estimate of the parameters x controlling the state equation:

Yk = f (Yk−1,Xk−1), (1)

where f represents the numerical model approximating the state equation, and Y

and X are vectors containing state and parameter values, respectively, on all the

cells of the numerical model.

The Kalman filter needs the auto- and cross-covariances of Y and X to compute

the updates of both Y and X once the state variable has been observed at a number of

locations —generally much smaller than the number of cells in the model. When the

state equation is linear, these covariances are easily obtainable after the covariance

of x. The ensemble Kalman filter solves this problem for non-linear state equations

by computing numerically these covariances at any time step k from an ensemble of

realizations of the parameters Xk and their associated responses Yk = f (Xk,Yk−1).
The standard EnKF flowchart would be as follows:

1. Initialization of the ensemble. Generate a set of N realizations, Xi
0, i = 1, . . . ,N.

At this point, no state data has been collected, therefore the generation is only

conditional to whatever x data are available; no inverse conditioning yet. Set the

state initial conditions Y
j
0, j = 1, . . . ,N —generally the same for all X realiza-

tions.

2. Assimilation loop. Repeat for k = 1, . . . ,K with K being the total number of time

steps for which state data will be collected.

a. Forecast. Predict the state of the system for each member of the ensemble at

time step k, Yi
k = f (Y j

k−1,X
j
k−1), j = 1, . . . ,N.

b. Covariance calculation. Compute the experimental auto- and cross-covariances

Cyy,Cxy from the ensemble of realizations, i.e.,

Cyy,i1,i2 =
1

N

N

∑
j=1

(yi1 − yi1
)(yi2 − yi2

), (2)

where Cyy,i1,i2 is the element of the state covariance matrix associated to cells

i1 and i2, and the overbar indicates average value computed through the en-

semble, i.e.,

yi1
=

1

N

N

∑
j=1

yi1 . (3)
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c. Update. For each member of the ensemble, update the parameters based on

the discrepancy between observed and predicted states

Xk = Xk−1 +Cxy(Cyy +CD)
−1(Yobs

k −Yfor
k ), (4)

where Yobs
k is a vector containing just the observed state at the measurement

locations —we will assume that the measurement locations coincide with pre-

diction locations by the numerical model—, Yfor
k is a vector containing the

forecast values predicted by the model at measurement locations, and CD is a

prescribed measurement error covariance matrix —generally diagonal.

As we have already mentioned, the numerical calculation of the covariance in

step 2b circumvents the problem of the non-linearity of the transfer function, as is

the case in groundwater modeling, where x will be permeability, y will be piezo-

metric head, and f will be a groundwater flow model. However, the fact that the

update step relies exclusively in two-point statistics such as covariances and cross-

covariances makes that the repeated application of this updating equation —as new

state data are assimilated— will render the parameter estimates Gaussian, even if at

the initialization step they were far from Gaussian.
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Fig. 1 Logpermeabiliy histograms for (a) the initial ensemble of 500 realizations and (b) after 50

time steps of data assimilation.
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Figure 1 top shows the histogram of the initial set of logpermeabilities displaying

a clear bimodal distribution related to the two distinct facies associated to channel

and non-channel materials in the aquifer. Figure 1 bottom shows the histogram of the

updated logpermeabilities after repeatedly applying the update equations for 50 time

steps. It is quite noticeable how the bimodal distribution is shifting towards a more

Gaussian-like one. This departure of the marginal distribution from the initial one

is not affecting the reproduction of the state variables at the measurement locations.

Figure 2 shows how the initial ensemble of logpermeabilities fails to predict the state

at a given location, whereas all realizations of the updated ensemble are capable of

a good reproduction of the observed state.
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Fig. 2 Reproduction of the observed piezometric heads at a given location (a) for each member of

the initial ensemble of 500 realizations and (b) for each of the updated realizations after 50 time

steps of data assimilation.

3 A variant of the EnKF

Since, the non-linearity of the state function is not a problem for the EnKF to gen-

erate realizations matching the observed state data, Zhou et al. [6] have proposed

to apply a univariate transformation to parameters and state variables so that the

transformed variables are marginally Gaussian (not yet multiGaussian) maintaining

a relationship through a new state equation that is even more non-linearly than the

original one. If we apply normal-score transforms to both x and y, to yield new vari-

ables x′ = Φx(x) and y′ = Φy(y), we can envision applying the EnKF on these two

new variables, which, now will be related by a new state equation:

Y′

k = g(Y′

k−1,X
′

k−1), (5)

where g represents a convolution of the groundwater flow equation and the normal-

score transform functions.
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This simple transformation produces results that respect the bimodal distribution

of logpermeability without compromising the reproduction of the observed state

data, as can be seen in Figure 3
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Fig. 3 Applying the EnKF to the normal-score transformed variables. Results after 50 time steps

of data assimilation: (a) Logpermeability histogram after 50 assimilation steps, (b) reproduction of

the observed piezometric heads at a given location for each member of the 500 updated realizations.
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