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Abstract We define a class of discrete-time capture-recapture models which takes
into account time (t), behavioural (b), observed heterogeneity (o) and unobserved
heterogeneity (h) effects. The resulting Mhotb model is completely general in the tb
part. We specify a model in the class through equality constraints on the conditional
capture probabilities. A general EM algorithm is described to fit the chosen model.
Abstract Definiamo una classe di modelli per cattura-ricattura in tempo discreto.
La classe é in grado di modellare effetti tempo dipendenti, effetti comportamentali,
covariate ed eterogeneitá non osservata. Il modello risultante é del tutto generale
per le prime due parti, e viene specificato attraverso vincoli di uguaglianza per le
probabilitá di cattura condizionate.
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1 Introduction

Capture-recapture is concerned with estimation of the size of a closed population
based on the capture history over repeated occasions. Capture probabilities may
depend on four elements: the specific capture occasion (Mt models), the previous
capture occasions (Mb models), observed heterogeneity (that is, covariates, called
Mo models in Farcomeni and Scacciatelli (2013)) and unobserved heterogeneity
(Mh models). These sources of heterogeneity may be combined, to obtain the most
general possible model, tagged Mhotb in Farcomeni and Scacciatelli (2013). See
also Otis et al (1978). Traditional behavioural models let the capture probability
depend on the past occasions by updating it after the first capture event. There are
generalizations to this approach, see for instance Ramsey and Usner (2003) and
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Yang and Chao (2005). A completely general Mtb model is proposed in Farcomeni
(2011), where a completely arbitrary dependence among capture occasions is ob-
tained. These do not even need to be ordered along a time horizon. The method
is based on equality constraints for the conditional capture probabilities, and sur-
prisingly enough there are closed form expressions for the MLE of nuisance pa-
rameters and a simple estimating equation for the MLE of the population size. In
the approach of Farcomeni (2011) there is no way of including observed or unob-
served heterogeneity, though. We do this in this paper. The inferential approach is
not straightforward anymore, but can anyway be based on a general and very ef-
ficient algorithm for constrained inference in categorical data analysis. The rest of
the paper is as follows: in the next section we revisit Farcomeni (2011) approach.
In Section 3 we extend the approach to observed and unobserved heterogeneity. In
Section 4 we describe a constrained expectation-maximization (EM) algorithm to
obtain the MLE.

2 Set up

Let yi = (yi1, . . . ,yiS), i = 1, . . . ,N, denote the binary capture history for the i-th
subject, where we have S > 1 capture occasions and an unknown population size N.
We observe capture histories of the n subjects for which ∑ j yi j > 0. Let p(y) denote
the probability of a capture history y. A fully general parameterization is given by
the chain rule, so that

p(y) = p(Yi1 = yi1)p(Yi2 = yi2|yi1) · · · p(YiS = yis|yi,S−1, . . . ,yi1).

Call now p1 = Pr(Yi1 = 1), p j(a j−1, . . .a1) = p(Yi j = 1|Yi, j−1 = a j−1, . . . ,Yi1 = a1);
for a j = {0,1}. These conditional capture probabilities are arranged in lexicograph-
ical order in a vector p = (p1, p2(0), p2(1), p3(00), · · · , pS(1, . . . ,1)). Let further C
denote a binary matrix of contrasts, so that equality constraints can be expressed as
C′p = 0. It is shown in Farcomeni (2011) that all possible Mtb models are obtained
by varying C, and that for fixed C the MLE can be found with two simple estimat-
ing equations. Note that the maximum number of parameters is equal to the number
of cells of the contingency table, and therefore the model is always identifiable re-
gardless of C. Further, given usual regularity conditions the MLE is asymptotically
consistent and asymptotically normal under the model (Sanathanan (1972)).

3 Observed and unobserved heterogeneity

In this section we obtain a fully general Mhotb model. We begin by introducing a
mixed-effects logit reparameterization (Coull and Agresti (1999, 2000)), which will
be convenient for inclusion of categorical and continuous predictors. It is straight-
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forward to check assumptions in the previous section are equivalent to

log
(

p j(a j−1, . . . ,a1)

1− p j(a j−1, . . . ,a1)

)
= β ja1,...,a j−1 . (1)

The logit transformation simply maps the 2S−1 parameters p to the 2S−1 param-
eters β ∈R2S−1. Equality constraints are imposed similarly, as C′p = 0 if and only
if C′β = 0.

Let now X ik denote a subject- and time-specific vector of covariates for the i-th
subject. Furthermore, assume that the capture-history probability depends also on a
subject-specific parameter θi, summarizing subject-specific unobserved heterogene-
ity. Our final Mhotb model is expressed as

log
(

p j(a j−1, . . . ,a1,θ ,X)

1− p j(a j−1, . . . ,a1,θ ,X)

)
= β ja1,...,a j−1 +θ + γ

′X . (2)

We make the following assumptions in the model above: (i) additivity, that is, that
the effects of observed and unobserved heterogeneity is additive on the log-scale
(also known as proportionality of the odds) and (ii) slope homogeneity, that is, that
the effects of the covariates γ do not depend on the specific capture occasion, past
capture history, and unobserved heterogeneity. More explicitely, the h, o, and tb ef-
fects do not interact. A consequence of slope homogeneity, which can be easily re-
laxed to some extent if needed, is that all occasion-specific and behavioural effects
are captured by the parameter β . The model is completed by equality constraints
on the adjusted conditional capture probabilities, in the form of an opportune con-
straint C′β = 0 and with an assumption for the random effect of the kind θ ∼ F(α),
where α is a parameter for the random effects model. The constraint C′β = 0 guar-
antees equality of capture-history probabilities for any two subjects with the same
covariate configuration X and the same subject-specific parameter θ . By varying
the matrix C and the distributional assumption on θ a huge number of previously
known and completely new Mhotb models can be obtained. See Farcomeni (2011)
for some examples when θ and γ ′X are omitted. There are many parametric choices
for the mixing distribution F , including Gaussian, Student’s T , univariate symmet-
ric Laplace, logit-Beta, latent class models. Non-parametric assumptions may not
be pursued due to identifiability issues given that we work with the conditional like-
lihood (Link (2003); Farcomeni and Tardella (2012)). It is then recommended that
as usual few options are specified and compared through information criteria like
Akaike Information Criterion (AIC).

4 Inference through the EM algorithm

The covariate configuration of the unobserved subjects, whose capture history is
summarized by Yi j = 0 for j = 1, . . . ,S, is not known. As in Huggins (1989) and
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Alho (1990) we condition the likelihood on the event that the subject is captured
at least once. The resulting expression does not depend on N or on the unobserved
covariates. Additionally, we complete the conditional likelihood, by conditioning
also on the random effects. The complete conditional log-likelihood is defined when
C′β = 0 and is given by the following expression:

lc(β ,θ ,γ,α) =
n

∑
i=1

S

∑
j=1

Yi j log(p j(Yi, j−1, . . . ,Yi1,θi,X i))+ (3)

+ (1−Yi j) log(1− p j(Yi, j−1, . . . ,Yi1,θi,X i))+

−
n

∑
i=1

log(1−
S

∏
j=1

(1− p j(0, . . . ,0,θi,X i)))+
n

∑
i=1

log( f (θi,α)),

with the conventions that p1(0, . . . ,0,θi,X i) = p1(θi,X i). For ease of notation we
illustrate assuming a continuous distribution is used for θ , where f denotes the
density. Latent class models can be accomodated with few adjustments, which are
given at the end of the section (see also Coull and Agresti (1999)). It is now a matter
of setting up a constrained EM algorithm to obtain the MLE. At the E step we must
obtain the expected value of (3) with respect to the current posterior distribution of
the random effects

f (θi|α,Y ,X ,β ,γ) ∝ f (θi|α)p(Y |X ,θi,β ,γ), (4)

where (4) is evaluated conditionally on the current parameter estimates. The result-
ing integral is of the form

Q(β ,γ|β ′,γ ′,α) =
n

∑
i=1

∫
[

S

∑
j=1

Yi j(β jYi1,...,Yi, j−1 +θi + γ
′X i)+ (5)

− log(1+ exp(β jYi1,...,Yi, j−1 +θi + γ
′X i))+

− log(1−
S

∏
j=1

(1+ exp(β j0,...,0 +θi + γ
′X i))

−1)

+ log( f (θi|α))] f (θi|α,Y ,X ,β ′,γ ′) dθi.

Given that θi is one-dimensional, an accurate and computationally efficient way
of computing (5), and similarly the normalizing constant in (4), is given by use
of quadrature. A Gauss-Hermite quadrature would be best for Gaussian random
effects, while a Gauss-Laguerre may be better under other assumptions. In all cases,
integrals reduce to a sum.

At the M step we maximize (5) under the constraints C′β = 0. To this end, we
implement an instance of the Aitchison and Silvey (1958) (AS) algorithm, see also
Bergsma (1997) and Lang (2004). The AS algorithm is an iterative quadratic pro-
gramming algorithm based on indefinite Lagrange multipliers. Optimization of (5)
is equivalent to the system of non-linear equations
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s(η |η ′)+Cλ = 0
C′β = 0,

where η = (β γ), s(η |η ′) denotes the gradient of (5) with respect to η and λ is a
vector of Lagrange multipliers. The AS algorithm proceeds by substituting s(η |η ′)
with a first order linear approximation based on the Hessian −I(η |η ′), that is,

s(η |η ′)≈ s(η t |η ′)− (η−η t)
′I(η t |η ′),

where η t is the value of η at the current iteration of the AS algorithm. The expres-
sion for s(η |η ′) is available in closed form, while I(η t |η ′) is obtained as minus the
numerical first derivative of s(η |η ′).

We now augment C with blocks of zeros to obtain D, so that the constraint C′β =
0 is equivalent to D′η = 0. Once we do this, the approximated system of non-linear
equations is exactly solved by the updating rule

η t+1 =η t +I(η t |η ′)−1s(η t |η ′)−I(η t |η ′)−1D(D′I(η tη
′)−1D)−1(D′I(η t |η ′)−1s(η t |η ′)).

(6)
The updating rule, which is similar to the Newton-Raphson one, is then iterated until
convergence to obtain the current update of β and γ . The M step is terminated by an
update of α obtained through the maximization of∫

log( f (θi|α))] f (θi|α,Y ,X ,β ′,γ ′) dθi.

Under the assumption of Gaussian random effects with variance α2, this is accom-
plished by the updating rule

α
2 =

1
n ∑

i

∫
θ

2
i f (θi|α,Y ,X ,β ′,γ ′) dθi−

(∫
θi f (θi|α,Y ,X ,β ′,γ ′) dθi

)2

,

where both integrals are approximated using the usual Gauss-Hermite quadrature
rule. Similar updating rules are obtained under T and Laplace assumptions, while
under logit-Beta assumptions one can use the method of moments. With latent class
models, F(α) is expressed as Pr(θi = α j1) = α j2 for j = 1, . . . ,k and some k ∈
N (which can be chosen using AIC). One should therefore estimate two sets of
α parameters, the latent locations α1 and the latent masses α2. The first shall be
updated within the AS algorithm, with the same expression as (6) after augmenting
s(η |η ′) and I(η |η ′) with the opportune derivatives. The latent masses are instead
obtained as in (4), based on the updates for the other parameters.

An Horvitz-Thompson estimator for the population size is given by

N̂ =
n

∑
i=1

(
1−

S

∏
j=1

(1− p j(0, . . . ,0, θ̂i,X i))

)−1

,
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where p j(·) is obtained after plug-in the MLE for all parameters and θ̂i is the poste-
rior expectation for θi, that is

θ̂i =
∫

θi f (θi|α,Y ,X ,β ,γ) dθi,

where the posterior for θi is conditional on the MLE and can be evaluated through
the same quadrature rule used at the E step when F is continuous.
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