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Abstract Cluster-Weighted Models are a wide family of mixture distitions for
modeling the joint probability of data coming from a hetezngous population,
and includes mixtures of distributions and mixtures of esgions as special cases.
Unfortunately, they suffer from non-regular maximum likelod issues, due to pos-
sible spikes and unboundedness in the target function. \&eoge an improved
version of the Gaussian Cluster-Weighted estimation nutlogy, by trimming a
portiona of the data and imposing constraints to the estimated vegmi rimming
provides robustness properties to the estimators andreamtstmove the maximiza-
tion problem to a well-posed setting and allow to avoid spusisolutions, i.e. fitting
a small localized random pattern in the data rather than pgpnanderlying cluster
structure. Theoretical results are illustrated using adewpirical studies.

Abstract | modelli Cluster Weighted sono una ampia famiglia di mistcine com-
prendono, come casi particolari, le misture di distribuzie di regressione e con-
sentono di modellizzare dati eterogenei. Per questi mosla@sservano problemi di
non regolarit. della funzione di verosimiglianza, chedassere illimitata e avere
spikes. In questo lavoro si introduce un nuovo metodo diestied Cluster Weighted
Gaussiano, che consente di eliminare una porziandi dati contaminati e di im-
porre vincoli alla stima delle matrici di covarianza. Le gmoeta di robustezza degli
stimatori sono assicurate dall’eliminazione degli outdiee la stima vincolata fais
che il problema di massimizzazione sia ben posto e riduadlgi®ni spurie, ovvero
I'adattarsi del modello ad un piccolo raggruppamento cdsudi dati invece che ad
unavera e propria componente della mistura. | risultatiriebsono illustrati anche
mediante alcune analisi empiriche.

Luis Angel Garcia-EscuderoAlfonso Gordaliza Agustin Mayo-Iscar
Departamento de Estadistica e Investigacion Operafinaersidad de Valladolid (Spain) e-mail:
lagarcia@eio.uva.es, alfonsog@eio.uva.es, agustinm@eies

Francesca Greselin
Department of Statistics and Quantitative Methods, Usitgof Milano-Bicocca (ltaly). e-mail:
francesca.greselin@unimib.it

Salvatore Ingrassia
Department of Economics and Business, University of Catétaly). e-mail: s.ingrassia@unict.it



2 L.A. Garcia-Escudero, A. Gordaliza, F. Greselin, S. &sgia, and A. Mayo-Iscar

Key words: Constrained estimation, Cluster Weighted Modeling, Migtof re-
gression, Model-Based Clustering.

1 Introduction and Motivation

The analysis of mixture models is a fertile source of norut@gmaximum likeli-
hood problems. For instance, a two-component normal nmaxtours the problem
of unbounded likelihood if the mean parameter of the first gonent is set to be
one of the data values and the standard deviatiemallowed to tend to 0. However,
the singularity does not impose itself urdibecomes extremely small. In many nor-
mal mixture problems susceptible to unbounded likelihdloelie is also, an asymp-
totically consistent local maximum (Redner and Walker, 4)9&ut still spurious
solutions could drive the maximization of the target fuantfar away from the true
value of the parameter. Moreover, it is well known that a $rfnattion of outly-
ing observations (background noise, pointwise contangnatinexpected minority
patterns, etc.) could severely affect ML parameter estonaiVith these consid-
erations in mind, we approach Cluster-Weighted Models (G)/Nhtroduced in
Gershenfeld (1997). They are a flexible family of mixture ralsdfor fitting the
joint density of a pair(X;Y) composed by a response varialflend by a vector
of covariatesX, assuming that data are coming from a heterogenous pamuléti
grassieet al. (2012) show that Gaussian CWM includes, as special casgg)nes
of distributions and finite mixture of regression modelsr @urpose is to modify
the classical ML method, by adding trimming and constramgich a way to make
robust and free from non-regularity conditions the modehestion. We have orga-
nized the rest of the paper as follows. In Section 2 we relealitain ideas about the
CWM and we discuss issues in EM estimation. In Section 3 wegmighe trimmed
CWRM and a feasible algorithm for its implementation. Cawlihg remarks will
end the paper.

2 Cluster Weighted M odeling

Let p(x,y) be the joint density ofX,Y). Suppose tha@ can be partitioned into
G groups, sayQq,...,Qg. In this work, we will focus on CWM linear models
with Gaussian components: assumKi@2g ~ Ny (Lg, Zg), @ linear relationship be-
tweenY andx in theg-th group written a¥ = byx + b8+ gy Wheregg ~ N(O, 05),
andY|x, Qg ~ N(bgx + bJ, 02), thelinear Gaussian CWhMhas the following den-
sity p(x,y;0) = 25:1 oy, bgx + bo,ag)%(x;ug,zg)r@.As usual,@(+; Hg, Zg) IS
the density of thel-variate Gaussian distribution with mean vectgrand covari-
ance matrix® 4, andrg is the weight ofQg in the mixture.The ML estimation of the
Gaussian CWM suffers from a serious lack of robustness, wsiould be taken
into account due to the common presence of noise sourcestan Haillustrate
this problem, Figure 1(a) shows a simulated data Sehdatal generated from
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a linear Gaussian CWM witls = 2, 90 observations from each component. 20
contaminating observations have been added as either foaridgynoise, or point-
wise contamination around the poifit5, 20). The true underlying regression lines
are represented with dotted lines in Figure 1, which shoasdbntaminating data
points seriously affected the estimation.

Fig. 1 Simdatai(a) original data and Cluster Weighted Model fitting; (bigoral data plus back-
ground noise and fitted model; (c) original data plus poiséadgontamination and fitted model.

Another important issue concerns the unboundedness ofatigettfunction
Siqlog [zgzlqo(yi;béxi +b8,0-gz)%(Xi;l.lg,Zg>T@:| , when no constraints are im-
posed on the scatter parameters. In this case, the defingidepn is ill-posed
because the target function tendssowhen eitherp; = Xi and [Zg| — O or
Vi = béxi + bg and 05 — 0. Moreover, as a trivial consequence of the unbound-
edness, the EM algorithms often applied to fit a CWM can bepgdpnto non-
interesting local maximizers and the result of the EM alidponi strongly depends on
the initialization of the algorithm. Spurious solutionsyrze due to very localized
patterns in the explanatory variables, as it will be showa lsgcond simulated data
set,Simdata2In Figure 2, two sets of 90 observations fowere drawn from two
bivariate spherical normal distributions centered, respely, at(2,2) and(4,4).
Furher, 20 almost collinear observations, were added ttoe second group, cen-
tered at(4,4). The same linear functions with equally distributed erssnts have
been considered, to generate the response vaitabiée can see in Figure 2 that
the standard fit of the CWM yields to the determination of autépus” component
with the 20 almost collinear observations and a second coemtqgoining together
the two groups, with 90% of the observations. To overcomésthees we illustrated
in these examples, in the next section we will propose amrateye methodology
which incorporates trimming and constraints to the CWM.

3 Trimmed Cluster Weighted Restricted M odeling

For a given sample af observations, the trimmed CWRM methodology is based
on the maximization of the following log-likelihood funoti

S 2(xi, i) log | $S1 @(yi; byxi + b3, 02) @i (Xi; Hg, Zg) |
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Fig. 2 Simdata2 Scatter plot matrix. Dots in green concern collinear obetions.

wherez(-,-) is a 0-1 trimming indicator function that tell us whether ebstion
(Vi,Xi) is trimmed off ¢(x;,y;)=0), or not ¢(xi,yi)=1). A fixed fractiona (trimming

level) of observations can be unassigned by seffihg z(xi,yi) = [n(1— a)]. Anal-

ogous approaches based on trimmed mixture likelihoods ediound in Neykov
et al. (2007), Gallegos and Ritter (2009) and Garcia-Escudead. (2013). More-
over, we introduced two further constraints, on the setgémvalueg A (Zg) -1, d

of the scatter matricexy

A (Zgy) S exAy(Zg,) forevery 1< 1y # 1, <dand 1< g1 #92 < G
and on the varianc&rg of the regression error terms,

2
091

These constraints can be seen as an extension to CWMs ofittiosduced in In-
grassia and Rocci (2007), Garcia-Escudsral. (2008) and Greselin and Ingrassia
(2010) and go back to Hathaway (1985). Here, they allow fquecHic treatment
when modeling the marginal distribution ¥fand the regression error term, giving
a high flexibility to the model.

Let us consider now the effects of trimming in the two data sktrived from
Simdatal In Figure 3 we can see that setting= 0.1 allows to restore the true
structure of the data, by discarding the outlying obseovesti both in the case of
background noise and huge pointwise contamination. Hereening modifies the
ML estimation in such a way that it is no more influenced by pti& outliers and
drives it far from the previous bad results shown in Figur€ammenting the use
of constraints foiSimdata?2 we can see in Figure 3 how a moderate choicecfor
andc; allows to correctly detect th® = 2 main groups and to avoid the disturbing
effect of the “spurious” pattern in the data. More informatabout the role played
by the parameters, cx andc, could be given, omitted here for the sake of space.

< cgag-2 forevery 1< g1 #0902 <G with 0 < cx,Ce < +0o.

3.1 Algorithm

The maximization of the target function on its parameterdeurthe bounds given
by cx andc; is not an easy task, obviously. We will give a feasible aliponi ob-
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Fig. 3 Left panelsSimdatal Results of fitting the trimmed CWRM witlr = 0.1, cx = ¢c; = 20
for the two data sets in Figure 1, panels (b) and (c). Trimna@dtp are denoted by black circles.
Right panel:Simdata2 Results of fitting the timmed CWRM witr = 0, cx = ¢ = 20 for data
in Figure 2.

tained by combining the EM algorithm for CWM with that (withimhming and
constraints) introduced in Garcia-Escudetal. (2013). The algorithm is initial-
ized nstarttimes, by selecting different values of the initial paraenatectory.
Constraints on scatter matrices and variances of the emmstshould be enforced
(as described below, in the M-step). We will have adapted Ess alternatively
executed until convergence. During the E-step:

 the current mixture density has to be evaluated at eachrdigmn in the sample,
following the CWM methodology

 the proportion - a of observations with highest values of the density is re@jn
so giving the subsdt, of untrimmed observations

 the posterior probabilities of the observationd jnare computed, for trimmed
observations they are set to 0.

During the M-step the parameters are updated, taking intowat only the ob-
servations inly, i.e. tentatively discarding the observations suspicitoube out-
liers. Along the iterations, due to the updates, it may happat the estimated
scatter matrice3y and the estimated variances of the error tesfndo not satisfy

the constraints. To enforce them, the singular-value deasition of Ty = UjEgUq

is considered, withJg being an orthogonal matrix arigy = diag(eg1,€g, ..., €gd)

a diagonal matrix. The truncated eigenvalues are definefbgs = min(cx -

m, (max(eg,m)), with m being some threshold value. The scatter matrices are fi-

| . s
nally updated aié A UgEgUg, with Ej = d|ag([egl]m(>]<pt, [egz]n,ém, s [egp]rrépt)
andrr@}pt minimizing the real valued function

m— Z Té|+l Z (Iog ([egim) + [eeg?]lm)
Analogously, we introduce the truncated variar{sgs1 =min(cg-m, (max(sg, m

The variance of the error terms are finally updatedré(éH) = [%]mépu with mg
minimizing the real valued function
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mi— giré'*” <Iog([%]m) + %) :

Proposition 3.2 in Fritzt al. (2013) shows thainépt andmg,; can be obtained, re-
spectively, by evaluatingi®+ 1 times (respectively@+ 1 times) the correspond-
ing real valued function.

Finally, at convergence, the set of parameters yieldinghtgbest value of the
target function and the associated kebf untrimmed observations are returned as
the final algorithm output.

In this work, we have presented a methodology based on tmgrand con-
straints to robustify and control variabilities in a ling&daussian CWM, moving the
likelihood maximization to a well-posed setting. An algbm, with an affordable
increase in computing time, has been also given for its admplementation.
We have seen that the proposed methodology drives the é¢istim@ocedure to
identify and discard sparse outliers, and even stronglgeoinated contaminating
observations, acting as leverage points, which are so ldimthe framework of
regression mixtures. At the same time, the constraintegeravoid the likelihood

singularities and reduce the detection of spurious saistio

Further research is needed to tune the choice of the invplasneters, and this
is not an easy task, as these parameters are clearly iatedeFirst attempts to
extract such information from the observed sample are ntlyrander study.
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