
Delayed rejection algorithm to estimate
Bayesian social networks
Algoritmo del rifiuto ritardato per la stima di reti sociali
bayesiane

Alberto Caimo and Antonietta Mira

Abstract The Delayed rejection (DR) strategy is a modification of the Metropolis-
Hastings (MH) algorithms that reduces the variance of the resulting Markov chain
Monte Carlo estimators and allows partial adaptation of the proposal distribution.
This strategy is exploited to estimate dyadic independence network models lead-
ing to an average 40% variance reduction relative to the competing MH algorithm,
confirming that DR dominates, in terms of Peskun ordering, the MH algorithm.
Abstract La strategia del rifiuto ritardato è una modifica degli algoritmi di Metropolis-
Hastings (MH) che riduce la varianza degli stimatori Markov chain Monte Carlo e
permette un parziale adattamento della “proposal distribution”. Questa strategia è
adottata per la stima di modelli di rete con indipendenza diadica portando ad una
riduzione media della varianza del 40% rispetto al concorrente algoritmo di MH e
confermando quindi che il rifiuto ritardato migliora, in termini di ordinamento di
Peskun, l’algoritmo MH.
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1 Dyadic independence network models

Statistical network models (see Salter-Townshend et al. (2012) for a recent review)
are widely used in many scientific areas as they give the possibility to investigate
how an observed network may be related to local relational structures. From a statis-
tical viewpoint, networks are relational data represented as a graph consists of a set
of n nodes and a set of m edges which define some sort of relations between pairs of
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nodes called dyads. The network structure is described by an n×n adjacency matrix
y with elements:

yi j =
{

1, if node i and node j are connected
0, otherwise.

If yi j = y ji then the adjacency matrix is symmetric and the graph is undirected,
otherwise the graph is directed and it is often called digraph.

The interest in network modeling began with a series of papers by Gilbert (1959);
Erdös and Rényi (1961) who set up the definition of random graph under the ba-
sic assumption that the presence of an edge between two nodes occurs with a fixed
probability θ : The resulting likelihood is a binomial distribution and implies a uni-
form distribution over the sample space of possible graphs with exactly m edges.

The p1 model proposed by Holland and Leinhardt (1981) is supposed to satisfy
the dyadic independence property according to which dyads are assumed to be sta-
tistically independent. This model expresses the presence of three tendencies: the
propensity with which a node i will be connected to j; the propensity with which
a node i will attract others; and the degree of reciprocated edges. The p2 model
(van Duijn et al. (2004)) is a random effects version of the p1 which recognizes
dependence between dyads with same nodes.

2 MCMC methods for Bayesian social networks

Bayesian methods are becoming increasingly popular as techniques for modeling
social networks (Caimo and Friel (2011, 2013)). Following the Bayesian paradigm,
prior distribution is assigned to θ . The posterior distribution of θ given the data y
is:

p(θ |y) =
p(y|θ)p(θ)

p(y)
.

Direct evaluation of p(θ |y) requires the calculation of both the likelihood p(y|θ),
which is computationally demanding if not intractable, and the marginal likelihood
p(y) which is typically intractable.

2.1 Delayed rejection strategy

Markov chain Monte Carlo (MCMC) algorithms are general simulation methods for
sampling from posterior distributions and computing posterior quantities of interest.

Delayed rejection (DR) is a modification of the Metropolis-Hastings algorithm
(MH) Tierney (1994); Green and Mira (2001); Mira (2001a) aimed at improving
efficiency of the resulting MCMC estimators relative to Peskun (1973); Tierney
(1998); Mira (2001b) asymptotic variance ordering. The basic idea is that, upon re-
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jection in a MH, instead of advancing time and retaining the same position, a second
stage move is proposed. The acceptance probability of the second stage candidate
preserves reversibility of the Markov chain with respect to the target distribution
of interest (the posterior, in a Bayesian setting). This delaying rejection mechanism
can be iterated for a fixed or random number of stages. The higher stage proposal
distributions are allowed to depend on the candidates so far proposed and rejected.
Thus DR allows partial local adaptation of the proposal within each time step of the
Markov chain still retaining reversibility and the Markovian property.

The advantage of DR over alternative ways of combining different MH proposals
or kernels such as mixing and cycling Tierney (1994), is that a hierarchy between
kernels can be exploited so that kernels that are easier to compute (in terms of CPU
time) are tried first, thus saving in terms of simulation time. Or moves that are more
“bold” (bigger variance of the proposal, for example) are tried at earlier stages thus
allowing the sampler to explore the state space more efficiently following a sort of
’first bold’ versus ’second timid’ tennis-service strategy.

To simplify the notation indicate the posterior distribution of interest, p(θ |y),
simply as p(θ), dropping the conditioning on y. Suppose the current position of the
Markov chain is Xt = θ . As in a regular MH, a candidate move θ1 is generated from
a proposal q1(θ , ·) and accepted with probability

α1(θ ,θ1) = 1∧ p(θ1)q1(θ1,θ)
p(θ)q1(θ ,θ1)

= 1∧ N1

D1
.

Upon rejection, instead of retaining the same position, Xt+1 = θ , as we would do
in a standard MH, a second stage move θ2 is generated from a proposal distribution
that is allowed to depend, not only on the current position of the chain, but also on
what we have just proposed and rejected: q2(θ ,θ1, ·). The second stage acceptance
probability is:

α2(θ ,θ1,θ2) = 1∧ p(θ2)q1(θ2,θ1)q2(θ2,θ1,θ)[1−α1(θ2,θ1)]
p(θ)q1(θ ,θ1)q2(θ ,θ1,θ2)[1−α1(θ ,θ1)]

= 1∧ N2

D2
.

This process of delaying rejection can be iterated and the i-th stage acceptance prob-
ability is, following Mira (2001a):

αi(θ ,θ1 · · ·θi) = 1∧ Ni

Di
= 1∧

{
p(θi)q1(θi,θi−1)q2(θi,θi−1,θi−2) · · ·qi(θi,θi−1 · · ·θ)

p(θ)q1(θ ,θ1)q2(θ ,θ1,θ2) · · ·qi(θ ,θ1 · · ·θi)
[1−α1(θi,θi−1)][1−α2(θi,θi−1,θi−2)] · · · [1−αi−1(θi, · · · ,θ1)]
[1−α1(θ ,θ1)][1−α2(θ ,θ1,θ2)] · · · [1−αi−1(θ ,θ1, · · · ,θi−1)]

}
If i-th stage is reached, it means that N j < D j for j = 1, · · · , i− 1, therefore
α j(θ ,θ1 · · ·y j) is simply N j/D j, j = 1, · · · , i− 1 and a recursive formula can be
obtained: Di = qi(θ · · ·θi)(Di−1−Ni−1) which leads to:

Di = qi(θ · · ·θi)[qi−1(θ · · ·θi−1)[qi−2(θ , · · · ,θi−2) · · ·
[q2(θ ,θ1,θ2)[q1(θ ,θ1)p(θ)−N1]−N2]−N3] · · ·−Ni−1].
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Since reversibility with respect to p is preserved separately at each stage, the
process of delaying rejection can be interrupted at any stage. The user can either
decide, in advance, to try at most, a fixed number of times to move away from the
current position or, alternatively, upon each rejection, toss a p-coin (i.e. a coin with
head probability equal to p), and if the outcome is head move to a higher stage
proposal, otherwise stay put.

Tierney and Mira (1999) prove that the DR strategy provides MCMC estimators
with smaller asymptotic variance than standard MH. This better performance holds
no matter what is the function f whose expectation relative to p we want to estimate
(provided f is squared integrable with respect to p).

3 Example

One popular statistical network model is based exclusively on the node degrees. If y
is the observed network graph with degree sequence d1, . . . ,dn the likelihood of this
model can be written as:

p(y|θ) =
exp

{
∑

n
i θ i di

}
∏i< j 1+ exp{θ i +θ j}

The Zachary’s karate club network (Figure 1, Zachary (1977)) will be used to
compare MH and DR in terms of efficiency. Each iteration of the MH algorithm
consists in generating θ 1 from some proposal distribution q1(·). A block-update
sampler with normal proposal is used to simultaneously update all the parameter of
the posterior distribution. The DR algorithm that we propose here consists of two
stages. The first stage proposal distribution is the same as the proposal used in the
competing MH sampler and the first stage acceptance probability is:

α1(θ ,θ 1) = 1∧ p(y|θ 1)p(θ 1)q1(θ ,θ 1)
p(y|θ)p(θ)q1(θ 1,θ)

The second stage of the DR algorithm, consists in generating θ 2 from a different
proposal distribution q2(·). The second stage acceptance probability is defined as:

α2(θ ,θ 1,θ2) = 1∧ p(y|θ 2)p(θ 2)q1(θ 1,θ 2)q2(θ ,θ 1)[1−α1(θ 2,θ 1)]
p(y|θ)p(θ)q1(θ 1,θ)q2(θ 2,θ)[1−α1(θ ,θ 1)]

The posterior estimates displayed in Table 1 were obtained using very flat normal
prior for each parameter: p(θ i) ∼N (O,σ2) where σ2 = 100, a normal proposal
distribution q1(θ 1|θ)∼N (θ ,σ2

h1In) where σ2
h1 = 0.055 and In is the n-dimensional

identity matrix, and 30,000 MCMC iterations. The second stage proposal is as a
deterministic move in the opposite direction of the move at first stage so that: θ 2 =
2θ−θ 1. We consider, as function of interest, the identity function, i.e. f (θ i) = θ i,∀i
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in other words, we focus on estimating the posterior mean of each parameter of
interest. The efficiency ratios displayed in Table 1 are calculated as:

ESSDR/ESSMH

T IMEDR/T IMEMH

where ESSDR and ESSMH are the effective sample sizes (Kass et al. (1998)) obtained
by the DR and MH respectively, and T IMEDR and T IMEMH are the CPU simulation
times obtained by the DR and MH respectively. The results of Table 1 are consistent
with previous results demonstrating the social prominence of the actors associated
to node 1 and 34.

Table 1 Posterior mean (PM), posterior standard deviation (PSD) and efficiency ratio (ER) esti-
mates for each parameter.

θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ 10 θ 11 θ 12 θ 13 θ 14 θ 15 θ 16 θ 17

PM 1.42 0.13 0.37 -0.63 -1.71 -1.28 -1.28 -1.31 -0.89 -2.27 -1.78 -3.29 -2.44 -0.93 -2.35 -2.33 -2.37
PSD 0.42 0.47 0.45 0.53 0.67 0.60 0.65 0.62 0.59 0.81 0.74 1.11 0.88 0.57 0.81 0.82 0.87
ER 1.32 1.35 1.27 1.45 1.48 1.48 1.30 1.22 1.26 1.66 1.28 1.09 1.20 1.33 1.22 1.46 1.46

θ 18 θ 19 θ 20 θ 21 θ 22 θ 23 θ 24 θ 25 θ 26 θ 27 θ 28 θ 29 θ 30 θ 31 θ 32 θ 33 θ 34

PM -2.31 -2.31 -1.75 -2.28 -2.33 -2.39 -0.91 -1.81 -1.72 -2.31 -1.31 -1.77 -1.30 -1.31 -0.61 0.74 1.57
PSD 0.82 0.80 0.70 0.81 0.83 0.89 0.57 0.69 0.72 0.81 0.64 0.69 0.62 0.62 0.52 0.43 0.41
ER 1.30 1.69 1.29 1.68 1.50 1.09 1.34 1.45 1.54 1.61 1.50 1.32 1.60 1.28 1.46 1.34 1.36

4 Conclusions

The better performance of the delayed rejection strategy relative to the standard
MH sampler is demonstrated in the setting of Bayesian social network models. A
very simple deterministic second stage proposal is considered for the delayed rejec-
tion but more creative strategies could be elaborated. Performance comparison takes
CPU simulation time into account and considers the effective sample size of the two

Fig. 1 Zachary karate club
network graph: social network
of friendships between 34
members of a karate club at
a US university in the 1970.
The more red the color of a
node, the greater its degree.
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competing samplers. For all the 34 model parameters the DR algorithm leads to a
decrease of autocorrelation along the path of the simulated Markov chain which,
in turn, translates into a smaller asymptotic variance and a higher effective sample
size. Averaging over the different parameters, the efficiency ratio of the DR is higher
than the one of the corresponding MH by approximately 40%.
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Erdös, P. and Rényi, A. (1961), “On the strength of connectedness of a random
graph,” Acta Mathematica Scientia Hungary, 12, 261–267.

Gilbert, E. N. (1959), “Random graphs,” Annals of Mathematical Statistics, 30,
1141–1144.

Green, P. J. and Mira, A. (2001), “Delayed rejection in reversible jump Metropolis–
Hastings,” Biometrika, 88, 1035–1053.

Holland, P. W. and Leinhardt, S. (1981), “An exponential family of probability dis-
tributions for directed graphs (with discussion),” Journal of the American Statis-
tical Association, 76, 33–65.

Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998), “Markov chain
monte carlo in practice: A roundtable discussion,” The American Statistician, 52,
93–100.

Mira, A. (2001a), “On Metropolis-Hastings algorithms with delayed rejection,”
Metron, 59, 231–241.

— (2001b), “Ordering and improving the performance of Monte Carlo Markov
chains,” Statistical Science, 340–350.

Peskun, P. (1973), “Optimum monte-carlo sampling using markov chains,”
Biometrika, 60, 607–612.

Salter-Townshend, M., White, A., Gollini, I., and Murphy, T. B. (2012), “Review of
statistical network analysis: models, algorithms, and software,” Statistical Analy-
sis and Data Mining, 5, 243–264.

Tierney, L. (1994), “Markov chains for exploring posterior distributions,” the Annals
of Statistics, 1701–1728.

— (1998), “A note on Metropolis-Hastings kernels for general state spaces,” Annals
of Applied Probability, 1–9.

Tierney, L. and Mira, A. (1999), “Some adaptive Monte Carlo methods for Bayesian
inference,” Statistics in medicine, 18, 2507–2515.

van Duijn, M. A., Snijders, T. A. B., and Zijlstra, B. H. (2004), “p2: a random effects
model with covariates for directed graphs,” Statistica Neerlandica, 58, 234–254.

Zachary, W. (1977), “An Information Flow Model for Conflict and Fission in Small
Groups,” Journal of Anthropological Research, 33, 452–473.


