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Abstract We define a new class of random probability measures, approximating
the well-known normalized generalized gamma (NGG) process. Our new process is
defined from the representation of NGG processes as discrete measures where the
weights are obtained by normalization of the jumps of a Poisson process, and the
support consists of iid points, however considering only jumps larger than a thresh-
old ε . Therefore, the number of jumps of this new process, called ε-NGG process,
is a.s. finite. A prior distribution for ε can be elicited. We will assume the ε-NGG
process as the mixing measure in a mixture model for density and cluster estima-
tion. Moreover, a efficient Gibbs sampler scheme to simulate from the posterior is
provided. Finally, the performance of our algorithm on the Galaxy dataset will be
illustrated.
Abstract Introduciamo una nuova classe di misure di probabilità aleatorie che ap-
prossimano il noto processo gamma generalizzata normalizzato (NGG). Il nuovo
processo qui definito è costruito a partire dalla rappresentazione del processo NGG
come misura discreta, in cui i pesi sono ottenuti dalla normalizzazione dei punti di
un processo di Poisson, e il cui supporto è costituito da punti iid, ma considerando
nella somma che definisce il nuovo processo solo salti più grandi di una certa soglia
ε . Pertanto, questo processo è una misura di probabilità aleatoria discreta con un
numero finito (q.c.) di punti di supporto. Alla soglia ε può essere assegnata una
prior. Considereremo tale nuovo processo come la misura integrale in un modello
mistura per la stima di densità e l’analisi di cluster. Uno dei principali risultati di
questo lavoro è la costruzione di un algoritmo Gibbs sampler per simulare dalla
posterior del modello considerato. Infine, illustreremo il nostro algoritmo utiliz-
zando il dataset Galaxy.
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1 Introduction

The first aim of this work is the definition of a new class of nonparametric pri-
ors, which can be considered as an approximation of the distribution of a homo-
geneous normalized random measure, namely the normalized generalized gamma
process. Any homogeneous normalized random measure can be represented as a
discrete random probability measure: the weights are obtained by normalization of
the jumps (a countable set) of a Poisson process, while the support consists of a
countable number of random points from some distribution. In this case, posterior
inference is made difficult by the presence of infinite unknown parameters. There
are two main approaches to deal with this problem, namely marginal and truncated
algorithms. The former integrate out the infinite dimensional parameter (i.e. the ran-
dom probability), resorting to generalized Polya urn schemes (see[9] for a review
on the subject). Dating back to [8], who built their blocked Gibbs sampler, the latter
approach includes fixed ([2]), random ([12]) or adaptive ([6]) stopping rules.

The solution we propose here can be classified as a truncation algorithm, since
we are going to consider, in the infinite sum representing the discrete random prob-
ability measure, only jumps larger than a threshold ε , which turns out to control the
approximation to the infinite-dimensional parameter prior. In this way, we define a
new “nonparametric” prior, called ε-NGG process prior; observe that the number of
jumps of this process is a.s. finite. A prior distribution for ε can be given, as well as
for all the other potential parameters defining the new process.

As often done in Bayesian Nonparametrics, we will consider this new discrete
random probability measure as the mixing measure in a mixture model, which is
a very flexible tool in density and cluster estimation problems. Among the main
achievements of this work, there is the construction of a Gibbs sampler scheme to
simulate from the posterior; in particular, we have built a conditional algorithm that
uses a finite random number of jumps, but, on the other hand, it is easy to implement.

For illustration purposes, we apply this model to a popular dataset, the galaxy
data, since it is nowadays the favorite test dataset for any new nonparametric model
in a density estimation context. We illustrate the performances of our algorithm for
different sets of hyperparameters, in order to understand in particular the effect of
the “approximation” parameter ε on posterior estimates.



ε-NGG process mixtures 3

2 ε-NGG processes

Any homogeneous normalized random measure with independent increments (see
[11]) on Θ (⊂ Rm) can be represented as a discrete probability where the weights
are obtained by normalization of the jumps of a Poisson process, and the support is
a denumerable set of iid random points from a distribution P0 on Θ :

P =
∞

∑
j=1

Piδτ j =
∞

∑
j=1

J j

T
δτ j . (1)

Here (J j) j are the points of a Poisson process on R+ with mean intensity ρ(ds),
such that 0 < T := ∑∞

j=1 J j <+∞ a.s., and {τ j} and {J j} are independent. See [3].
Of course, when using this process as an ingredient in Bayesian nonparametric

(or semiparametric) models, posterior inference is difficult because of infinite un-
known parameters. Our proposal is to define a random probability measure (r.p.m.)
as in (1), but restricting the sum to jumps larger than a threshold ε > 0; it will turn
out that only a finite number of jumps has to be considered.

Let us fix ε > 0 and let J0,J1, . . . ,JNε iid random variables from the density ρε ,
where Nε ∼Poisson(Λε),

Λε :=
κωσ

Γ (1−σ)
Γ (−σ ,ωε),

and
ρε(x) =

1
ωσΓ (−σ ,ωε)

x−σ−1e−ωxI(ε,∞)(x).

Here κ > 0, ω > 0 and 0 < σ < 1, and Γ (a,x) =
∫+∞

x ta−1e−tdt is the incomplete
gamma function. Observe that Nε is a.s. finite. Then we define

Pε =
Nε

∑
j=0

Pjδτ j =
1
Tε

Nε

∑
j=0

J jδτ j , (2)

where Tε = ∑Nε
j=0 J j, τ j

i.i.d.∼ P0, {τ j} and {J j} independent. We denote Pε in (2) by
ε−NGG(σ ,κ,ω ,P0) process.

Observe that Pε is a proper species sampling model ([10]) with a random number
Nε +1 of different species. The main “theoretical” result on Pε is the following:

Proposition 1. The law of Pε converges weekly to the law of P as ε goes to 0, where
P is a NGG(σ ,κ,ω,P0) process.

By a NGG(σ ,κ,ω,P0) process P we mean a normalized generalized gamma process
(see [7]), that is

P =
+∞

∑
j=1

J j

∑ j J j
δτ j , (3)
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where {τ j} and {J j} independent, τ j
i.i.d.∼ P0 and {J j} are the points of a Poisson

process on R+ with mean intensity ρ(ds) = κ/Γ (1−σ)s−1−σ e−sω ds, s > 0. When
σ = 0 the Dirichlet process is recovered.

The proof of the above proposition is in [1] .

It is straightforward to check that definition (2) is equivalent to consider, in (3),
only jumps larger than the threshold ε . This is true because definition (2) is given
in terms of a Poisson process with intensity measure ρε , which turns out to be fi-
nite (i.e. it is a density), and obtained from ρ(ds) restricted to the interval (ε,+∞).
Moreover, the definition is well-posed since, to avoid degenerate cases (i.e. when
Nε = 0), we add the extra point J0.

3 ε-NGG process mixtures

Often, in Bayesian nonparametric problems, it happens that discrete random proba-
bilities as our ε-NGG process, appear as mixing measures in a mixture context. In
fact, we are going to consider the following model:

Xi|θi
ind.∼ k(·;θi), i = 1, . . . ,n

θ1, . . . ,θn|Pε
i.i.d.∼ Pε (4)

Pε ∼ ε −NGG(σ ,κ,ω,P0) process prior,

where k(·;θi) is a parametric family of densities on X ⊂ Rp, for all θ ∈ Θ ⊂ Rm.
Remember that P0 is a non-atomic probability measure on Θ , expressing the “mean”
of P. Model (4) will be addressed here as ε−NGG hierarchical mixture model. It is
well known that this model is equivalent to data Xi which, conditionally on Pε , are
independently distributed according to the random density

f (x) =
∫

Θ
k(x;θ)Pε(dθ) =

Nε

∑
j=0

Pj k(x;τ j). (5)

The Bayesian model specification may be completed assuming that ε , σ , κ , as well
as potential hyperparameters of P0, are random and distributed according to some
prior specification.

In general, computation of posterior inference for (4) when Pε is substituted by
a NGG process P is not straightforward, since this model assumes an infinite num-
ber of parameters. Indeed, we have proposed such ε−NGG hierarchical mixture to
overcome this issue: we were motivated to introduce the ε-approximation since we
were just looking for a straightforward and simple Gibbs scheme for sampling from
the posterior of a NGG mixture model.

Let θθθ = (θ1, . . . ,θn) be a sample from Pε and set U := Γn/Tε , where Γn ∼
gamma(n,1). The following proposition illustrates a “finite dimensional” version
of a characterization of the posterior law of a NGG process, given in [4]. As for
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the infinite dimensional case, the posterior distribution of an ε−NGG(σ ,κ,ω) pro-
cess, conditionally on U and θθθ , can be expressed as the law of a random probability
measure, which is a mixture between a ε-NGG process and a discrete probability
measure with support given by the (observed) distinct values θθθ ∗ = (θ ∗

1 , . . . ,θ ∗
k ).

Proposition 2. If Pε is an ε−NGG(σ ,κ,ω,P0), then the posterior distribution of Pε
coincides with the law of the random probability measure

P∗
ε (·) = wPε,u(·)+(1−w)

k

∑
j=1

P(a)
j δθ∗

k
(·) (6)

where

(a)Pε,u(·) is distributed according to an ε−NGG(σ ,κ,ω +u,P0) process;
(b)the jumps {P(a)

1 , . . . ,P(a)
k } assigned to the fixed points of discontinuity θθθ ∗ =

(θ ∗
1 , . . . ,θ ∗

k ) of P∗
ε are obtained by normalization of J(a)j

ind.∼ gamma(n j −σ ,u+
ω), for j = 1 . . . ,k;

(c)Pε,u(·) and {J(a)1 , · · · ,J(a)k } are independent.

Moreover w = Tε,u/(Tε,u+∑k
j=1 J(a)j ) where Tε,u is the normalization variable in the

representation of Pε,u(·) as in (2).

The proof of the above proposition is given in [1] .
To simulate from the posterior of (4), when ε,σ ,κ are a priori independent

according to some distributions, we have proposed a Gibbs sampler algorithm,
which includes the latent variables θθθ and the auxiliary variable U (of Propo-
sition 2) in the state space. The algorithm sequentially draws from the follow-
ing full conditionals: L (dε ,dσ ,dκ,dPε |θθθ ,u,X1, . . . ,Xn), L (dθθθ |Pε ,u,X1, . . . ,Xn),
L (du|Pε ,θθθ ,X1, . . . ,Xn). Further details are illustrated in [1].

4 Galaxy data

This super-popular dataset contains n = 82 measured velocities of different galax-
ies from six well-separated conic sections of space. Values are expressed in Km/s,
scaled by a factor of 10−3. We report some of the posterior estimates (mainly density
and number of clusters estimates) for different sets of hyperparameters of model (4)
when k(·;θ) is the Gaussian density on R and θ = (µ ,σ2) stands for its mean and
variance, and P0(dµ,dσ2) = N (dµ ;m0,σ2/κ0)× inv − gamma(dσ2;a,b); here
N (m0,σ2/κ0) is the Gaussian distribution with m0 mean and σ2/κ0 variance,
while inv − gamma(a,b) is the inverse-gamma distribution with mean b/(a − 1)
(if a > 1). We have fixed m0 = x̄n = 20.8315, κ0 = 0.01, a = 2, b = 1 as proposed
first in [5]. We report posterior inference for three sets of hyperparameters, to un-
derstand sensitivity of the estimates when ε varies, but it is not random, then when
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σ varies (but it is not random), and finally when ε is assumed random (and σ and κ
are fixed).

With reference to the first set of hyperparameters, we have fixed σ = 0.4 and κ =
0.45, and ε = 10−6,10−3,10−1,1. Figure 1 shows the density estimates (posterior
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Fig. 1 Density estimates for different values of ε , while σ = 0.4 and κ = 0.45.

mean of the random density “parameter”) under the different values of ε: all the
estimates are quite similar and detect the “right” number of clusters.

Observe that, when ε increases, more jumps J j are cut off from the sum defining
the process Pε (see (2)) and, consequently, less components in the mixture (5) are
considered. Therefore the posterior estimate of the number of groups k will be con-
centrated on smaller integer values as ε increases (see Figure 2). It is worth underlin-
ing that, as another consequence of the smaller number of components in the mixture
(5) when ε increases, we have observed a huge gain in run-time: for instance, with
our machine, the run-time ranges from approximately 7 minutes (ε = 10−6) to less
than 1 minute (ε = 1).

The second set of hyperparameters is specified by ε = 10−6 and κ = 0.45, while
σ ranges in {0.001,0.1,0.2, . . . ,0.8}. The posterior density estimates are similar to
those obtained before, and for this reason they are not reported here. On the other
hand, we are interested to understand the effect of σ on the posterior number of
clusters, as in Table 1. First of all, note that we are also including the Dirichlet
process mixture model here, since, when σ = 0.001 (i.e. σ ≃ 0), and ε is small, this
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Fig. 2 Posterior distribution of the number of clusters k under the first set of hyperparameters.

Table 1 Posterior (and prior) summaries of the number of clusters k under the second set of hy-
perparameters

σ Prior mean Posterior mean Posterior variance

0.001 3 6.13 1.73
0.1 4.06 7.18 2.39
0.2 5.6 8.74 4.25
0.3 7.8 10.49 6.39
0.4 10.9 12.36 9.30
0.5 15.3 14.06 11.49
0.6 21.5 15.90 14.61
0.7 30.2 17.67 17.66
0.8 42.3 19.05 20.16
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well-known mixture is recovered. As expected, the posterior mean of k, as well as
its variance, increases with σ .

We also point out that increasing σ has a positive effect on the MCMC chains, for
example on the posterior of U: see Figure 3 where there is a clear improvement in
the autocorrelation plot of the chain from the left (σ = 0.001) to the right (σ = 0.8).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 3 Autocorrelation of the auxiliary variable U under the second set of hyperparameters, when
σ = 0.001 (left) and σ = 0.8 (right).

For the last experiment, we have considered ε random, uniformly distributed
on the interval (0,δ ), with δ = min(0.1,E(Tε)) and σ ∈ {0.001,0.1,0.2, . . . ,0.9},
while κ = 0.45. When ε is random, the model is expected to be be more flexible,
since it would “adjusts” for the number of jumps of the process Pε that must be con-
sidered. Furthermore, on one hand, if ε increases, the process will be significantly
different from the NGG process, since, in this case, many small jumps will not be
included in (2). On the other hand, when ε is large, the variable Nε , which counts the
number of weights in the mixture, will be generally smaller than when ε is fixed. As
in the previous cases, density estimates are pretty good (see Figure 4); we also men-
tion (but do not report results) that, as expected, the model is more parsimonious
as far as the estimated number of groups k is concerned. The algorithm is faster
in this case too, since it allows to sample less jumps and less points of support as
mentioned before: indeed, this sampling is the most complex part of the algorithm.

As far as robustness with respect to σ is concerned, we should acknowledge that,
as σ increases, more computational problems come up, because of the incomplete
gamma function, appearing in ρε , that is harder to be numerically evaluated.

Looking at the posterior distribution of ε in Figure 5, data suggest that small val-
ues of ε are the “best” fit, when the prior of ε is uniform. In particular, increasing
σ , and consequently increasing the prior expected number of clusters, we get that
the posterior of ε is concentrated on smaller values, which implies a larger poste-
rior number of clusters. Finally, we also point out that there is a strong correlation
between the variables U and ε , especially when σ is small: see the scatterplots in
Figure 6.
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Fig. 4 Density estimation under the third set of hyperparameters with different values of σ .
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Fig. 5 Posterior distribution of ε under the third set of hyperparameters, together with the prior
(dashed) Uni f (0,δ ).
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