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Abstract The identification of the best model in terms of volatility forecast accuracy
is a troublesome task and many evaluation methods have been proposed on the basis
of a statistical or economic approach. The aim of this work is to investigate the
opportunity to use a statistical approach in a VaR framework, i.e. evaluating the VaR
measures by means of a loss function. By using high-frequency data it is possible
to achieve a consistent estimate of the VaR bootstrapping the intraday increments
of an asset. Hence, the performances of the volatility models are compared with
that employing the VaR consistent estimate. In particular, the ‘true’ VaR is used to
find a threshold discriminating low from high loss function values for each volatility
model. The proposed procedure is assessed by means of a Monte Carlo simulation.
Abstract L’identificazione del miglior modello in termini di accuratezza delle pre-
visioni di volatilità rappresenta un arduo compito e diversi metodi di valutazione
sono stati proposti, sulla base di un approccio statistico o economico. L’obiettivo di
questo lavoro è investigare l’opportunità di usare un approccio statistico in un VaR
framework, valutando le misure del VaR con le funzioni di perdita. Una stima con-
sistente del VaR si ottiene attraverso il bootstrap degli incrementi infragiornalieri
di un generico asset. Quindi, si valutano le performance dei modelli con quella
derivante dall’utilizzo del ‘vero’ VaR. Inoltre, la stima consistente del VaR è usata
per ottenere una soglia che discrimini tra valori bassi e alti delle funzioni di perdita.
La procedura è valutata attraverso una simulazione Monte Carlo.
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1 Introduction

The identification of the best model in terms of volatility forecast accuracy is a trou-
blesome task and many evaluation methods have been proposed, on the basis of a
statistical or economic approach. The statistical approach based on the use of clas-
sic loss function suffers from the latent nature of the volatility [7]. The economic
approach evaluates the volatility predictions indirectly by using utility functions [3]
or other risk measures like the Value at Risk (VaR) [5]. The evaluation of volatility
predictions through the VaR measures concerns some coverage tests - like the Un-
conditional and Conditional Coverage (CC) tests [2] - that may have low statistical
power, as highlighted in [6].

The aim of this work is to investigate the opportunity to use the loss functions in
a VaR framework in order to evaluate the volatility predictions of a set of competing
models. In other words, the statistical and economic approaches are jointly used.
The loss function in a VaR framework analyses the distance between the observed
daily return of an asset and the VaR. As far as we know, except the proposal of [6],
there are not many loss functions employed to evaluate this distance. We propose an
asymmetric loss function, where the term asymmetric means that the models with
an actual number of violations larger than the expected one are over penalized.

The mean-variance approach is used to derive the VaR measures of a set of com-
peting volatility models while, following [1], a nonparametric method is used to find
the ‘true’ VaR measures, that will be used as benchmark. This method is based on
the bootstrap of the intraday increments of a generic asset and the VaR measure is
obtained as a quantile of the estimated distribution of the bootstrapped daily returns.
Then, the loss function employing this ‘true’ VaR is used to obtain the threshold
discriminating low from high loss function values. Finally, the performances of the
volatility models belonging to the family of the GARCH models are compared look-
ing at the exceeding of the threshold as well as the loss function value.

The work is organized as follows. Section 2 presents the bootstrap method used
to estimate the daily VaR measure. In Section 3 the two loss functions in a VaR
framework are illustrated. The results of the Monte Carlo experiment are showed in
Section 4 and Section 5 concludes.

2 Bootstrapping the intraday increments

Let χt,N = {qt,1, · · · ,qt,N} be a sequence of N intraday increments for a generic
day t and a generic asset, such that qt,n = log(Pt,n)− log(Pt,n−1), with Pt,n denoting
the observed intraday price. The open-to-close daily return rt,N is given by rt,N =

∑
N
n=2 qt,n. Because of the dependence in the sequence χt,N , the Stationary Bootstrap

(SB) of [9] is used. In the SB, for each day t, B re-sampled intraday sequences
are calculated, each of length N. A re-sampled intraday sequence is formed by N
sampled blocks, whose average block length relies on the dependence exhibited
within χt,N . As [1], we use the procedure described in [8] in order to estimate the
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average block length. Once the bootstrapped sequence is obtained, the resulting
summation represents a re-sampled daily return, independent of the original one,
but generated by the same distribution, as {N,B} → ∞. The assumptions needed
to assure that the bootstrapped daily returns and the original daily return converge
in distribution are provided by [4]. Hence any moment or quantile of the original
return can be now estimated by means of this B i.i.d. sequence. We focus on V̂aRt ,
a consistent estimate of the 5% VaR for the day t, obtained as:

V̂aRt = r∗t,N,[0.05B]−E∗r∗t,N , (1)

where r∗t,N,[0.05B] indicate the 5% quantile of the bootstrapped daily returns for the
day t and E∗r∗t,N ≡ rt,N .

3 Loss function in a VaR framework

A loss function (LF) compares rt,N to the VaR measure. In this work we consider
two loss functions, illustrated in Table 1.

Table 1 Loss Functions

Magnitude Loss Function (MLF) Asymmetric Loss Function (ALF)

LossM,t =

{
1+(rt −VaRt)

2 if rt ≤VaRt
0 if rt >VaRt

LossA,t =

{
1+P∗ (rt −VaRt)

2 if rt ≤VaRt
0 if rt >VaRt

NSM = T−1
∑

T
t=1 LossM,t NSA = T−1

∑
T
t=1 LossA,t

The first LF due to [6] is called Magnitude loss function (MLF). The second is
the new proposed Asymmetric loss function (ALF), that penalizes more the models
with an actual number of violations (α̂) greater than the expected one (α0). For
the ALF, P is the penalizing quantity that over penalizes the model if α̂ > α0. The
average of the LS is called numerical score (NS) and it is denoted by NSM and NSA
for the MLF and the ALF, respectively. Once the consistent estimate of the VaR has
been obtained, it is possible to find a threshold that discriminates between low from
high NS. The procedure is again based on the block bootstrap: the threshold is an
empirical quantile of the bootstrapped distribution of the NS, when V̂aR is used. If a
NS of a volatility model lies above the threshold, that model is considered rejected.

4 The Monte Carlo Simulation

In this section the setting of the Monte Carlo simulation is illustrated. The data
generating process has the following GARCH representation: rt = htzt , with zt ∼



4 Alessandra Amendola and Vincenzo Candila

N (0,1) and h2
t ∼ GARCH(1,1) process. In particular:

h2
t = 0.01+0.10r2

t−1 +0.85h2
t−1, t = 1, · · · ,1099. (2)

The first 99 observations are used as a warm-up period. The rest of the sample is
used to simulate the intraday returns in order to have an estimate of the VaR for each
period by means of the stationary bootstrap. For sake of simplicity, the sequence of
increments is assumed to be independently drawn from a Normal distribution whose
variance is constant and equal to (1/N)h2

t . More specifically, we set a number of
intraday increments N equal to 390 and a number of replicates R equal to 200. Once
obtained the sequence of increments, the stationary bootstrap, as illustrated above, is
used to have V̂aRt , for t = 100, · · · ,1099 and R = 1, · · · ,200. Finally, the thresholds
for each loss function and each replicate are obtained.

The set of competing models are showed in Table 2. We consider a RiskMetrics
(RM), three GARCH(1,1), noted as G(1,1), and three GJR-GARCH(1,1) models,
indicated as GJR(1,1). All the models are misspecified.

Table 2 The configuration of the models used in the simulation

M1 M2 M3 M4 M5 M6 M7

Model RM G(1,1) G(1,1) G(1,1) GJR(1,1) GJR(1,1) GJR(1,1)
α1 - 0.07 0.05 0.25 0.05 0.01 0.15
β1 - 0.88 0.90 0.70 0.88 0.90 0.70
γ - - - - 0.02 0.04 0.10

Because we aim to compare the MSE function within the Monte Carlo frame-
work, the frequency at which each model has the smallest MSE is calculated. As re-
gards to the economic approach, the Conditional Coverage (CC) test is reported. In
particular, the null hypothesis of the CC test jointly checks if the violations are inde-
pendent distributed over time and the actual number of violations are coherent with
the expected one. We calculate the frequency at which the CC test is not rejected.
With reference to the loss function approach in a VaR, we calculate a global accuracy
measure for each loss function, varying between zero and one. More specifically, the
global accuracy measure, AM, is given by the linear combination of three accuracy
measures. Recall that the benchmark of the loss function values is represented by
the numerical score obtained when V̂aRt is used. The first accuracy measure, Acc1,i,
checks the performance of the model i compared to that of the process that employs
V̂aRt . The second accuracy measure, Acc2,i, reports the frequency of not exceeding
of the thresholds. The third, Acc3,i, is the frequency at which each model i has the
smallest numerical score. Formally, let
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v = R−1
R

∑
r=1

1
(NS0,r>T̂ Rr)

and {v}= {∪R
r=1r ·1

(NS0,r>T̂ Rr)
};

Ji = R−1
R

∑
r=1

1
(NSi,r>T̂ Rr)

and {Ji}= {∪R
r=1r ·1

(NSi,r>T̂ Rr)
},

where NS0,r and NSi,r are the rth numerical scores when V̂aRt and the model i are
used, respectively; T̂ Rr is the threshold for the rth replicate when V̂aRt is plugged
into the loss function and 1(·) is the indicator function that is equal to one when the
argument is true. Hence, the formalization of the accuracy measures is in Table 3.

Table 3 The specifications of the accuracy measures

Acc1,i Acc2,i Acc3,i

card [{v}∩{Ji}]/v 1 1− Ji/R

RFi = R−1
∑

R
r=1 CFi,r ,

where

CFi,r =

{
1 if NS∗i,r : 6∃ NSl,r < NS∗i,r,∀l 6= i
0 otherwise

1 card [·] stands for the cardinality of the argument.

By construction, each accuracy measure lies in the interval [0,1]. The global
accuracy measure for the model i is AMi = 3−1 [Acc1,i +Acc2,i +Acc3,i]. The higher
AMi is, the better the performance of the model i is, because it has all the replicates
below the threshold, it has the same performance of the process that uses a consistent
estimate of the VaR and its numerical scores are low compared to those of the other
models.

The results of the volatility evaluation are showed in Table 4.

Table 4 The results of the volatility evaluation

M1 M2 M3 M4 M5 M6 M7

MSE a 0.1050 0.2700 0.6250 0.0000 0.0000 0.0000 0.0000
CC test b 0.8950 0.9550 0.8950 0.6050 0.8600 0.6550 0.2750
AMM

c 0.3883 0.4567 0.5767 0.3667 0.3900 0.3800 0.3400
AMA 0.3917 0.4533 0.5833 0.3700 0.3867 0.3800 0.3367

a The first row shows the frequency at which the MSE is the smallest for each model. b The second
row shows the frequency at which the Conditional Coverage test is not rejected. c The third and
fourth rows show the global accuracy measures for the Magnitude and Asymmetric loss functions,
respectively.

The first row shows the statistical approach. For the model i, the MSE is equal to
E[h2

t − ĥ2
t,i]

2, where h2
t comes from (2) and ĥ2

t,i from the formulation of the condi-
tional variance as expressed by the model i. In the table it is clear that the statistical
approach does not prefer any GJR models. Instead, it awards about 63% of times
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the model 3. The CC test does not bring any advantage to the analysis, given that
four models are awarded: the models 1-3 and the model 5 reach the highest per-
centages of not rejections of the Conditional Coverage test. Interestingly, the loss
function approach in a VaR framework awards model 3. This means that M3 has
a same behaviour compared to that of the process that uses V̂aRt , its numerical
scores are below the thresholds and the smallest among all the models. Moreover,
the global accuracy measure when the asymmetric loss function is used reaches a
slightly greater value than that of Magnitude loss function (0.5833 against 0.5767).
In situations where more than one model have the same performance, this could be
an advantage.

To conclude, we argue that the using of loss function in a VaR framework helps
the research of the best model, when the economic approach does not lead to a
clear decision. The results of this approach are consistent with those obtained from
a robust statistical loss function.

5 Conclusions

The evaluation of volatility forecasts by means of statistical or economic approaches
may lead to ambiguous conclusions. We aimed to investigate the opportunity to
use the loss function in a VaR framework. To do this, a consistent estimate of the
VaR measures has been provided by using the stationary bootstrap. Then these VaR
measures have been used to find the threshold discriminating low from high loss
function values. The analysis has been conducted with two loss functions, of which
one is new. It has emerged that this method helps the model selection in situations
in which the traditional approaches do not clearly determine the best model.
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