
Regression analysis of correlated circular data

Modelli di regressione per dati circolari correlati

Francesco Lagona

Abstract A regression model for correlated circular data is proposed by assuming

that samples of angular measurements are drawn from a multivariate von Mises dis-

tribution with mean and concentration parameters that depend on covariates through

suitable link functions. The model accommodates for heteroscedasticity, unstruc-

tured correlation, and specific autoregressive correlation structures. Inference is

based on a Monte Carlo approximation of the log-likelihood, due to the intractability

of the normalizing constant. The model is illustrated on two case studies: a longitu-

dinal study of animal orientation and a study on the spatial distribution of sea current

directions.

Riassunto Si propone un modello di regressione per dati circolari correlati e

generati da una distribuzione di von Mises multivariata con medie e concen-

trazioni che dipendono da covariate. Specifiche forme di eteroschedasticità e cor-

relazione strutturata e non strutturata possono essere facilmente incluse nella

specificazione del modello. A causa della intrattabilità della costante di normaliz-

zazione della distribuzione von Mises multivariata, la stima dei parametri si basa su

un’approssimazione Monte Carlo della verosimiglianza. Le potenzialità del modello

vengono illustrate usando un esempio di dati circolari longitudinali ed un esempio

di dati spaziali circolari.
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1 Introduction

Correlated circular data arise when multiple angular measurements are taken on

the same sample unit and are encountered across several research areas, including

bioinformatical studies of the dihedral angles that summarizes the structure of a

protein [7] and environmental studies of wind and wave directions [5]. Regression

models for correlated circular data are needed when the interest is on estimating

the influence of covariates on circular responses, simultaneously accounting for the

data correlation structure. The specification of a regression model in this context is

however challenging because most of the circular distribution theory has been so

far restricted to one-dimensional densities on the circle and two-dimensional den-

sities on the torus. Noticeable exceptions include the multivariate wrapped normal

distribution [2] and the multivariate von Mises (MVM) distribution [7].

This paper introduces a multivariate circular regression model by assuming that

vectors of multiple angular measurements are samples drawn from a MVM dis-

tribution. The MVM distribution is fully specified by a vector of mean direction

parameters, a vector of concentration parameters and a symmetric matrix of con-

ditional dependence parameters that capture the direct link between two variables

when the other variables are conditioned on. The proposed MVM regression model

is specified by assuming that both the mean directions and the concentrations de-

pend on covariates through suitable link functions and allowing the matrix of the

conditional dependence parameters to be fully unstructured, therefore extending the

generalized linear model developed by [3] for independent angular measurements.

Maximum likelihood estimation (MLE) of the MVM regression model is com-

plicated by the intractability of the normalizing constant of the MVM density. In

the bivariate case, the normalizing constant of this density can be numerically ap-

proximated by a sum of Bessel functions. When the dimension is larger than two,

however, the analytical form of the normalizing constant is not known and numerical

integration is not feasible. In this case, pseudo-likelihood or composite-likelihood

methods have been suggested [7]. These procedures avoid the computation of in-

tractable normalizing constants at the price of estimates that are in general less effi-

cient than the maximum likelihood estimates [4].

An alternative estimation strategy relies on a Monte Carlo (MC) approximation

of the log-likelihood. MC maximum likelihood estimation [4] is based on the max-

imization of a stochastic approximation of the log-likelihood, obtained by draw-

ing samples from the model of interest, evaluated at a pseudo-likelihood estimate.

It is an attractive estimation method when the following conditions are fulfilled:

a computationally efficient procedure is available to obtain pseudo-likelihood es-

timates (MPLEs); samples from the assumed model can be easily drawn without

knowledge of the normalizing constant; and, the stochastic approximation of the

log-likelihood takes a simple form that makes maximization straightforward. The

MVM density fulfills these three requirements. Under a MVM, the univariate con-

ditional distribution of each component given the others is VM. As a result, first,

finding MPLEs reduces essentially to a VM regression problem and requires a tiny

computational effort, even in the presence of covariates that modulate directional
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means and concentrations. Second, a simple Gibbs sampling scheme can be imple-

mented to obtain samples from the MVM, relying on the efficient algorithms that

are available for sampling from the univariate VM distribution. Third, the centered

MVM is a canonical exponential family distribution and, as a result, conventional

Newton-type procedures can be exploited to maximize the Monte Carlo approxima-

tion of the log-likelihood.

2 A multivariate von Mises regression model

A generalized linear model (GLM) for independent angular responses can be spec-

ified by assuming that a vector of angles yyy = (y1, . . . ,yJ),y j ∈ [−π ,π), is drawn

from J independent VM distributions with means µ1, . . . ,µJ and concentrations

κ1, . . . ,κJ . The influence of the available covariates on these parameters can be con-

veniently studied by specifying suitable link functions that map linear predictors

to the appropriate parameter space. Following [3], the means can be for example

modeled as

µ j(βββ ) = β0 + g(xxxTj βββ), (1)

where β0 ∈ [−π ,π) is an offset parameter, xxxTj is a row-vector of K covariates, as-

sociated with observation y j, βββ = (β1, . . . ,βK) is a vector of regression coefficients

and, finally, g is a known monotone function that maps the real line to the circle

[−π ,π). If the link function g is such that g(0) = 0, then the offset β 0 can be con-

veniently interpreted as an origin. A popular choice is given by g(x) = 2tan−1(x).
Similarly, the concentration parameters can be modeled as follows

κ j(γγγ) = h(wwwT
j γγγ), (2)

where wwwT
j is a row-vector of H covariates, not necessarly equal to xxxTj , γγγ = (γ1 . . .γH)

is a vector of parameters and h is a known link function that maps the real line to

(0,+∞). A convenient choice is h(x) = exp(x).
Under this setting, the data joint distribution is given by the product of J VM

densities, i.e.,

f (yyy;βββ ,γγγ) =
J

∏
j=1

fvm(y j; µ j(βββ),κ j(γγγ)), (3)

where

fvm(y; µ ,κ) =
exp(κ cos(y− µ))

2πI0(κ)

is the VM density of mean µ and concentration κ , and

Im(κ) =
1

π

∫ π

0
eκ cost cos(mt)dt

is the modified Bessel function of order m.
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The independence assumption can be relaxed by assuming that the response vec-

tor yyy is a sample drawn from a MVM distribution, known up to the parameters βββ and

γγγ and a J × J symmetric association matrix Λ with zero diagonal entries ( λ j j = 0,

λ jh = λh j, j,h = 1 . . .J), namely

fMVM(yyy;βββ ,γγγ,Λ) =
exp
(

κκκ(γγγ)Tccc(yyy− µµµ(βββ ))+ 1
2
sss(yyy− µµµ(βββ))TΛsss(yyy− µµµ(βββ))

)

C(γγγ,Λ)
(4)

where C(γγγ,Λ) is the normalizing constant, and

µµµ(βββ ) =(µ1(βββ ), . . .µJ(βββ ))

κκκ(γγγ) =(κ1(γγγ), . . .κJ(γγγ))

ccc(yyy− µµµ(βββ )) =(cos(y1 − µ1(βββ )), . . .cos(yJ − µJ(βββ )))

sss(yyy− µµµ(βββ )) =(sin(y1 − µ1(βββ )), . . . sin(yJ − µJ(βββ ))).

Density (4) extends the MVM distribution proposed by [7] to the GLM setting,

by assuming that both the means and the concentration parameters depend on co-

variates.

Most of the MVM properties have been discussed recently [7, 6]. Among these

properties, of interest in this paper is the convenient VM form taken by the univariate

conditional distributions. Formally, under (4), the conditional distribution of each

angle y j given the rest of the sample yyy( j) = (y1, . . . ,y j−1,y j+1, . . . ,yJ) is a univariate

VM density

f (y j |yyy
( j);βββ ,γγγ,Λ) = fVM

(

y j;ν j(yyy
( j);βββ ,γγγ,Λ),

1

σ2
j (yyy

( j);βββ ,γγγ,Λ)

)

where

ν j(yyy
( j);βββ ,γγγ,Λ) = µ j(βββ )+ tan−1 ∑h 6= j λ jh sin(yh − µh(βββ ))

κ j(γγγ)

is the conditional mean parameter and, finally,

1

σ2
j (yyy

( j));βββ ,γγγ,Λ)
=

√

√

√

√κ2
j (γγγ)+

(

∑
h 6= j

λ jh sin(yh − µh(βββ ))

)2

is the conditional concentration parameter. If all the entries of Λ are equal to zero,

the density (4) reduces to the product (3) of J univariate VM densities and the pro-

posed model reduces to the Fisher-Lee regression model. Otherwise, the univariate

marginal distributions are in general not VM with a normalizing constant that can

be accurately approximated only when J = 2.

The distribution (4) reflects a fully saturated model with covariate-specific means

and concentrations, and an unstructured association matrix Λ . A saturated model

can be of interest for exploratory purposes, when little is a priori known on the

association structure of the responses. Other cases may suggest a specific structure
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of matrix Λ . Under (4), the conditional distribution of each angular measurement y j

given the rest of the sample depends on the observations only through the entries of

the jth row of Λ . In other words, λ jk = 0 implies that the responses y j and yk are

conditionally independent given the rest of the sample. A variety of auto-regressive

structures can be therefore specified by suitably modeling the entries of Λ . When

yyy = (y1 . . .yT ) is a time series of angular measurements, for example, a temporal

first-order auto-regressive structure can be specified by setting

λ jk =

{

λ if | j− k |= 1

0 otherwise
. (5)

When yyy = (y j . . .yJ) is a spatial series, a first-order spatial auto-regressive structure

can be specified by associating each site j with a neighborhood N( j)⊂ {1 . . .J} and

setting

λ jk =

{

λ if k ∈ N( j)

0 otherwise
. (6)

3 Markov Chain Monte Carlo maximum likelihood

Let yyy1, . . . ,yyyn be a sample of n vectors yyyi = (yi1, . . . ,yiJ), independently drawn from

the MVM distribution (4). The MLEs of the parameters θθθ = (βββ ,γγγ,Λ), can in prin-

ciple be obtained by maximizing the log-likelihood function

l(θθθ ) =
n

∑
i=1

log fMVM(yyyi;θθθ ). (7)

Because the normalizing constant C is unavailable in closed form, direct maximiza-

tion of the log-likelihood is unfeasible. MLEs can be alternatively found by max-

imizing a stochastic approximation of the log-likelihood, obtained by drawing M

samples yyy1, . . . ,yyyM from the model under scrutiny, evaluated at a preliminary esti-

mate θ̃θθ [4].

Exploiting the matrix operator vech(·) that arranges the J(J−1)/2 supradiagonal

entries of a J× J symmetric matrix into a column vector, the centered MVM can be

conveniently expressed as

fMV M(yyy;γγγ,Λ) =
exp
(

ttt1(yyy)
Tκκκ(γγγ)+ ttt2(yyy)

Tvech(Λ)
)

C(γγγ,ΛΛΛ)

=
ϕ(yyy;γγγ,Λ)

C(γγγ,Λ)
, (8)

where
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ttt1(yyy) =ccc(yyy)

ttt2(yyy) =vech
(

sss(yyy)sss(yyy)T
)

are two sufficient statistics, respectively associated with the parameters κκκ(γγγ) and

vech(Λ) = (λ12,λ13, . . . ,λ1J,λ23,λ24, . . . ,λ2J, . . . ,λJ−1,J).
Let yyym,m = 1 . . .M be M samples, drawn from the centered MVM distribution

(8), evaluated at the preliminary estimates (e.g., the MPLE) γ̃γγ and Λ̃ . On the basis

of these samples, the ratio C(κκκ ,Λ)/C(κ̃κκ,Λ̃ ) can be approximated by a Monte Carlo

mean, as follows

C(κκκ,Λ)

C(κ̃κκ,Λ̃ )
=

∫

(−π ,π)J

ϕ(yyy;κκκ ,Λ)

ϕ(yyy; κ̃κκ ,Λ̃)
fMV M(yyy; κ̃κκ , λ̃ )dyyy = E

(

ϕ(yyy;κκκ ,Λ)

ϕ(yyy; κ̃κκ ,Λ̃)

)

≈
1

M

M

∑
m=1

exp
(

tttT1 (yyym)(κκκ(γγγ)−κκκ(γ̃))+ tttT2 (yyym)(vech(Λ)− vech(Λ̃ ))
)

,

(9)

where the expected value above is with respect to the centered distribution (8)

and the approximation holds due the MC-likelihood approximation theory [4]. The

stochastic approximation above allows approximating the log-likelihood function

by the Monte Carlo log-likelihood

lMC(βββ ,γγγ,Λ) =
n

∑
i=1

ttt1(yyyi − µµµ(βββ ))Tκκκ(γγγ)+ ttt2(yyyi − µµµ(βββ ))Tvech(Λ)

−n log
1

M

M

∑
m=1

exp
(

tttT1 (yyym)(κκκ(γγγ)−κκκ(γ̃))+ tttT2 (yyym)(vech(Λ)− vech(Λ̃ ))
)

,

(10)

and obtaining the MC-MLEs as the maximum point of lMC. In obtaining the MLEs

in the two examples below, the algorithm was implemented as follows. The Gibbs

sampler was started taking the observed data as the starting state. A sample size M =
2000 was used, discarding the first 100 samples (burning period). The final estimate

was obtained by a process of successive modification beginning with the MPLE,

that is, a sequence of Monte Carlo samples was generated and each sample was

exploited to suggest a new estimate to be used for the next sample. This process was

iterated up to convergence, i.e. when the increase of two successive log-likelihoods

fell below 104%.

4 Illustrative examples

The first example concerns a longitudinal study of escape directions of 65 sand-

hoppers which were released sequentially on five occasions [8] . The study include
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wind direction, azimuth direction for the sun (Sun), and a eye asymmetry index

(Eye). Wind directions are split into four categories: wind from land, wind from

sea, wind from longshore-west and wind from longshore-east, with wind from the

land taken as the reference category. Figure 1 displays the 65 short time series of the

observed escape directions. The interest in this study is in estimating the influence

of the covariates on the response (escape direction), simultaneously accounting for

the dependence between observations taken on the same sandhopper.
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Fig. 1 Left: escape directions for sandhoppers over five consecutive releases. Right: Sea current

directions in the Northen Adriatic sea on May 4th, 11 am, measured across a grid of 245 point.

Using the MVM distribution, these data can be easily explored without assuming

a specific dependence structure on the data. The first two columns of Table 1 display

the estimates and the standard errors obtained by a saturated model where 5 time-

specific concentrations κt , t = 1, . . . ,5 and 10 conditional dependence parameters

λtτ (t = 1, . . . ,5, τ > t) are separately estimated along with the fixed effects βββ of the

available covariates. Under this model, sun azimuth, wind direction and eye symme-

try appear to influence significantly a sandhopper’s orientation. Only the difference

between the effect of wind blowing from land and wind blowing from longshore-

East seems not significant, at a 95% confidence level. In addition, the increasing

concentration parameters seem indicating that the data are slightly heteroscedastic,

a feature that was not considered in the previous analyses [8]. More interestingly,

the estimated conditional dependence parameters reveal a specific first-order au-

toregressive structure of the outcomes: only the parameters λi j with | i− j |= 1 are

significant, while the remaining parameters are not significant at the 95% level.

These results suggest a more parsimonious model with (1) concentrations that

follow a parametric function of time of release, say κt = exp(γ0 + γ1t), where

t = 1, . . . ,5 is time of release, and (2) dependence parameters that follow the first-

order auto-regressive structure (5). Columns 3 and 4 of Table 1 display the estimates

and the standard errors obtained under these restrictions on the saturated model. Es-
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Table 1 Estimates of three models for longitudinal circular data

saturated heteroscedastic homoscedastic

model AR(1) model AR(1) model

estimate s.e. estimate s.e. estimate s.e.

Sun 0.003 0.001 0.003 0.001 0.003 0.001

Eye symmetry -1.647 0.223 -1.676 0.307 -1.553 0.320

Longshore-East -0.058 0.112 -0.098 0.123 -0.114 0.128

Sea -0.553 0.081 -0.539 0.100 -0.617 0.108

Longshore-West -0.592 0.128 -0.612 0.130 -0.690 0.135

κ1 1.819 0.309 γ0 0.719 0.146 κ 2.811 0.219

κ2 2.763 0.457

κ3 3.329 0.537 γ1 0.113 0.040

κ4 4.967 0.833

κ5 4.097 0.677

λ12 1.825 0.513 λ 2.465 0.213 λ 2.392 0.216

λ13 0.425 0.581

λ14 1.236 0.706

λ15 -0.873 0.645

λ23 2.267 0.640

λ24 0.156 0.838

λ25 0.113 0.765

λ34 1.811 0.860

λ35 0.444 0.789

λ45 4.709 0.923

AIC 401.661 156.543 174.870

timates and standard errors of the fixed effects are similar to those estimated under

a saturated model. The significant slope γ1 indicates that escape directions tend to

be more and more concentrated, perhaps reflecting a learning effect. Finally, the

significant estimate of λ summarizes the positive association between subsequent

releases. By comparing the AIC values of the saturated model and this model, the

latter seems a better compromise between parsimony and goodness of fit. The last

columns of Table 1 indicate the results obtained by assuming equal concentrations,

κt = κ along with a first-order auto-regressive structure. This further constrain in-

creases the AIC, favoring a model that allows for heteroscedasticity.

The second example is a case study of spatial angular measurements. Figure 1

displays the direction of surface currents obtained by high-frequency (HF) radars

installed in the eastern part of the northern Adriatic. These data are part of the

NASCUM (North Adriatic Surface Current Mapping) project [1]. The figure in-

cludes the observations taken on May 4th at 11 am, across a grid of 245 points

having a horizontal resolution of 2 km × 2 km. These data are normally used to

estimate spatial gradients that summarize the large-scale variation of the data, along

with sources of small-scale variation due to residual spatial auto-correlation. A sta-

tistical approach to estimate variation at multiple spatial scale plays a crucial role in

studies that involve semi-enclosed basins, such as the Adriatic Sea, where currents
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Table 2 Estimates of three models for spatial circular data

heteroscedastic heteroscedastic homoscedastic

circular AR(2) circular AR(1) circular AR(1)

estimate s.e. estimate s.e. estimate s.e.

Longitude -1.435 0.238 -1.429 0.237 -1.681 0.246

Latitude -3.630 0.278 -3.610 0.274 -3.881 0.310

γ0 1.659 0.142 γ0 1.635 0.141 γ0 2.013 0.090

γ1 2.545 0.506 γ1 2.572 0.495

λ1 6.726 0.820 λ 6.504 0.612 λ 5.830 0.529

λ2 -0.007 0.634

AIC 259.210 251.341 269.015

are influenced by the local orographic conditions and numerical models, well suited

for oceans, may provide inaccurate results. Orography effects clearly appear in Fig-

ure 1, where the outcome variability seems increasing as the grid points approach

the coast.

Table 2 displays the results obtained by assuming that the data are a sample drawn

from a MVM distribution with means

µ j(β1,β2) = β0 + 2tan−1
(

(x1 j − x̄1)β1 +(x2 j − x̄2)β2

)

,

where x1 j and x2 j are respectively the longitude and the latitude of the jth observa-

tion point. This spatial gradient component was estimated along with three different

dependence structures. Because the analysis is based on a single spatial series, the

estimation of a saturated model is not possible and specific assumptions on the data

dependence structure are unavoidable. The first model accounts for heteroscedas-

ticity by assuming that the concentration at the j observation site is a parametric

function of the minimum distance d j from the coast, say

κ j(γ1,γ2) = exp(γ0 + γ1d j).

It additionally assumes a second-order spatial auto-regressive structure, by associ-

ating two auto-correlation parameters, λ1 and λ2, with two disjoint neighborhood

structures, N1 and N2. For each site j, N1( j) include all the grid points k such that

the distance between k and j is less or equal to 2 km. N2( j) includes instead all the

points at a distance between 2 km and 4 km. Matrix Λ is accordingly structured as

follows:

Λ = λ1C1 +λ2C2,

where C1 is a 245× 245 connectivity matrix whose generic element c
(1)
jk is equal to

1 if j ∈ N1( j) and 0 otherwise. Analogously, the generic element of C2, say c
(2)
jk , is

equal to 1 if j ∈ N2( j) and 0 otherwise. The first two columns of Table 2 display the
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estimates under this model. The negative fixed effects reflect the clockwise rotation

of currents as longitude and latitude increase. More interestingly, the slope γ1 is

significant at a 95% confidence level, indicating that the concentration of current

directions around the spatial gradient increases with the distance from the coast.

Finally, the first-order auto-correlation parameter λ1 is significant at a 95% level,

while the second-order parameter λ2 is not. The residual of each outcome from

the spatial gradient seems therefore conditionally independent on the second-order

neighborhood, given the nearest neighbors.

These findings suggest that ignoring a second-order neighborhood structure

should lead to a better compromise between model parsimony and goodness of fit.

Columns 3 and 4 of Table 2 display the estimates and the standard errors obtained

by estimating fixed effects and spatial concentration parameters along with the first-

order matrix Λ = λC1. The resulting estimates are similar to those obtained under

the previous model, with smaller standard errors. As expected, the AIC suggests that

the more parsimonious first-order auto-regressive model is better than a model that

assumes two spatial neighborhood structures.

The last estimated model (columns 5 and 6 of Table 2) is obtained by assuming

equal concentrations, κ j = κ and a first-order auto-regressive structure, Λ = λC1.

The AIC value ranks this model as the worst one, favoring the models that accounts

for spatial heteroscedasticity.
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