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Abstract In this paper we investigate nonparametric mixtures of skew-normal ker-
nels under a Bayesian perspective. The choice of this kernel function allows us to
formulate nonparametric location-scale-shape mixture priors with large support and
good mathematical and computational properties. The performance of the method
are tested through simulations and an application to galaxy velocity data.
Abstract In questo articolo si studiano modelli mistura non parametrici con kernel
normali asimmetrici sotto un approccio bayesiano. La scelta di questa funzione di
kernel permette di formulare modelli mistura su posizione, scala e forma. Il modello
proposto ha ampio supporto e ottime proprietà matematiche e computazionali. Le
prestazioni del metodo sono studiate tramite studi di simulazione e un’applicazione
a dati relativi alla velocità delle galassie.
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1 Introduction

Discrete mixture models are one of the most successful approaches for density esti-
mation. A discrete mixture model assumes

f (y) =
k

∑
h=1

πhK(y;θh) (1)
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where y ∈Y ⊂R. The weights of the mixture are such that ∑
k
h=1 πh = 1 and K(·;θ)

represents a kernel function parametrized by θ . Bayesian mixture models generalize
model (1) by

f (y) =
∫

K(y;θ)dP(θ), P∼Π ,

where P is a mixing measure (in equation (1) this measure is discrete), and Π is
a prior over the space of mixing measures. Stick breaking priors (Ishwaran and
James, 2001) are convenient choices for P since a draw from a stick-breaking prior
is a discrete probability measure almost surely. Among them, the most used is the
Dirichlet process (DP) prior (Ferguson, 1973). A Dirichlet process mixture (DPM)
model can be written similarly to (1) marginalizing out P, namely

f (y) =
∞

∑
h=1

πhK(y;θh), θh
iid∼ P0, π = {πh} ∼ Stick(α), (2)

where P0 is a base probability measure and Stick(α) denotes the stick-breaking
process by Sethuraman (1994) with positive scalar parameter α . The choice of a
Gaussian kernel K(·;θ) gives the DPM of Gaussians (Lo, 1984; Escobar and West,
1995) which is computationally convenient and has nice theoretical properties. For
example, it has been proved (Lo, 1984) that it can approximate any continuous den-
sity.

Finite mixture models naturally induce a clustering structure of the observations
(Fraley and Raftery, 2002), so that each component can be seen as a cluster of units
whose results can be eventually lead to some sort of scientific interpretation. How-
ever, a common concern is related to the number of mixture components allowed,
i.e., it may happen that redundant mixture components with similar parameters are
estimated.

Clearly, when the data actually show different sub-populations, the choice of
Gaussian kernel leads to symmetric clusters. However, if these sub-populations are
not symmetric, this procedure can fail to detect the real sub-population structure.
To deal with this issue, we explore the use of the Azzalini (1985) skew-normal
kernel within the nonparametric mixture model framework, which allows the model
to retain both computational tractability and good theoretical properties.

The rest of the paper is organized as follows. Section 2 introduces the model
and the method. Section 3 discusses a simulation study and Section 4 provides an
interesting application to astronomy.

2 Model and method

A random variable X is distributed as a skew-normal (Azzalini, 1985) with location
ξ , scale ω and shape λ , written X ∼ SN(ξ ,ω,λ ), if its density function is
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fSN(x;ξ ,ω,λ ) =
2
ω

φ

(
x−ξ

ω

)
Φ

(
λ

x−ξ

ω

)
, (3)

where φ(x) and Φ(·) are the density function and the distribution function, respec-
tively, of a standard normal, ξ ∈ R, ω ∈ R+ and λ ∈ R. Note that for λ = 0 the
density reduces to the normal N(x;ξ ,ω2).

The skew-normal model has several stochastic representations (see, e.g., Azza-
lini, 2014). Some of them are interesting since they mimic real life phenomena, and
others are convenient because of their nice mathematical construction. An elegant
and useful stochastic representation, for example, is obtained via convolution. If
Z ∼ N(0,1) and V ∼ N(0,1), and δ ∈ (−1,1), then

X = δ |Z|+
√

1−δ 2V (4)

has a skew-normal distribution SN(0,1,δ/
√

1−δ 2).
To introduce our mixture of skew-normal kernels, assume y a continuous random

variable, y ∼ f , with f ∈L , where L is the space of densities with respect to the
Lebesgue measure. A prior on L is a DPM of skew-normal if

f (y) =
∞

∑
h=1

πh fSN(y;ξh,ωh,λh), (5)

with π ∼ Stick(α), and (ξh,ωh,λh)
iid∼ P0. To conclude the prior specification, we

may assign a gamma hyperprior to α as suggested by Escobar and West (1995).
Namely α ∼ Ga(aα ,bα), with aα and bα small in order to have a distribution with
heavy tails and favoring smaller values of α .

An important property that a Bayesian nonparametric procedure should hold is
the consistency in frequentist sense of the final posterior. Namely, if a fixed density
f0 has generated the data, the posterior should concentrates on a small neighborhood
of such f0 as the sample size increases. Under suitable assumptions on the true f0
and the base measure P0, it can be shown that the prior in (5) has large support and
leads to a posterior distribution strongly consistent (Canale and Scarpa, 2013).

A Gibbs sampler for the mixture of skew-normals can be developed generalizing
the slice sampler of Kalli et al. (2011) and exploiting the stochastic representation
(4). The complete Gibbs sampler for model (5) is reported in Algorithm 1 of Canale
and Scarpa (2013) and is omitted here for brevity.

3 Simulation study

A simulation study has been conducted to assess the performance of the proposed
approach. The first simulation case assumed that the data were simulated as a mix-
ture of three Gaussians, 0.35N(−2,1)+0.5N(4,2)+0.15N(5,2.5), the second sce-
nario, as a mixture of two skew-normal, 0.65SN(0,1,5)+0.35SN(4,2,3), the third
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as a mixture of a Gamma and a Gaussian, 0.25Ga(2,1)+0.75N(3,1), while the last
one as a simple exponential distribution with mean parameter 2. For each scenario,
we generated samples of sizes n = 50,100,200 and we fit the two mixture models
to 1,000 replicated data sets. Our method is compared with a classic location-scale
mixture of Gaussians with a Monte Carlo approximation of the mean Kullback-
Leibler divergence and of the L2 distance, reported in Table 1.

Table 1 Kullback-Leibler divergence and L2 distance for the mean posterior densities, posterior
mean number of occupied cluster components and posterior mean of the DP precision parameter

Scenario 1: mix of normals Scenario 2: mix of skew-normals
n Kernel KL L2 E(k|−) E(α|−) KL L2 E(k|−) E(α|−)
50 Gaussian 0.237 0.146 3.940 0.908 0.391 0.280 3.137 0.694

Skew-normal 0.312 0.158 2.800 0.614 0.465 0.286 3.241 0.720
100 Gaussian 0.107 0.099 4.039 0.788 0.261 0.242 3.282 0.622

Skew-normal 0.118 0.103 2.788 0.519 0.260 0.225 3.209 0.606
200 Gaussian 0.051 0.070 3.970 0.671 0.182 0.209 3.703 0.619

Skew-normal 0.051 0.071 2.736 0.445 0.148 0.178 3.369 0.558
Scenario 3: mix gamma+normal Scenario 4: exponential

n Kernel KL L2 E(k|−) E(α|−) KL L2 E(k|−) E(α|−)
50 Gaussian 0.260 0.165 3.482 0.789 1.237 0.497 3.884 0.884

Skew-normal 0.308 0.163 3.331 0.749 1.284 0.495 4.161 0.955
100 Gaussian 0.140 0.124 3.989 0.775 0.967 0.455 4.617 0.905

Skew-normal 0.159 0.125 3.556 0.681 0.959 0.445 4.664 0.917
200 Gaussian 0.073 0.089 4.405 0.748 0.781 0.414 5.374 0.927

Skew-normal 0.078 0.090 3.791 0.635 0.720 0.392 5.364 0.926

The mixture of Gaussians fit often requires a higher number of occupied clusters.
Our location-scale-shape mixture has generally comparable performances in terms
of KL and L2 distance from the true distribution. However, for small samples (n =
50), our proposal has higher measures of distance if compared with the mixture
of Gaussians. In fact, this is not surprising, since it is well known that often the
inference with the skew-normal model is not particularly efficient for small sample
sizes. As expected, for high n our method is perfectly comparable and sometimes
preferable, to the mixture of Gaussians.

4 Applications to Galaxy data

First we applied our modeling framework to the Galaxy dataset (Roeder, 1990). The
dataset consists on the velocity of 82 galaxies. The histogram of the speeds reveals
that the data are clearly multimodal. This feature supports the Big Bang theory,
as the different modes of density can be though as clusters of galaxies moving at
different speed. The data analysis was already carried out via DP mixture of Gaus-
sians by Escobar and West (1995), and we compare their results with our mixture of
skew-normals.
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Since the scientific interest is galactic clustering, we follow Escobar and West
(1995) in letting the precision DP parameter α ∼ Ga(1/2,50). The posterior mean
predictive density is plotted in Figure 1 along with the empirical histogram and the
estimate obtained via DP mixture of Gaussians. Our fitted density turns out to be
smoother, in particular around the central area of the domain where the DPM of
Gaussians clearly detects two separate modes.

The posterior distribution of the number of occupied clusters in the two models
is reported in Figure 2. It is evident that our approach leads to a generally lower
number of occupied clusters and that the posterior distribution of the number of
clusters is coherent with the number of observed modes of the density. Indeed, if
a galactic cluster is skewed, a single skew-normal component is sufficient, while
two or more mixture components with collapsing modes are needed when using
Gaussian kernels.
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Fig. 1 Posterior estimated densities for the location-scale-shape mixture of skew-normal (contin-
uous line) and of location-scale mixture of Gaussians (dotted line) along with the histogram of the
galaxy data

5 Final remarks

In this paper we have discussed nonparametric location-scale-shape mixture of
skew-normal kernels for density estimation. This class of models has the partic-
ular advantage of determining clusters with different shapes, allowing for several
degrees of positive and negative skewness. This has been shown to be useful in real
applications where the induced clustering may have some specific interpretation.
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Fig. 2 Posterior probability of the average number of occupied clusters in the location-scale-shape
mixture of skew-normal (left) and of location-scale mixture of Gaussians (right) for the galaxy
dataset
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