The use of geographic information under the
area-level approach to small area estimation

L’utilizzo dell’informazione spaziale nei modelli a livello
di area nella stima per piccole aree
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Abstract The Fay & Herriot (1979) area-level model, widely used in statistics to
obtain reliable small area estimates, assumes that the area-level direct estimates are
spatially uncorrelated, an hypothesis that can be unrealistic with agricultural, envi-
ronmental, economic and epidemiological data. The aim of this paper is to compare,
using some simulation studies, the classical Fay-Herriot model with three different
extensions of it, that are able to take into account the spatial proximity effects be-
tween the small areas: the Semiparametric Fay-Herriot model proposed by Giusti et
al. (2012), the Spatial Fay-Herriot model proposed by Salvati (2004), Singh et al.
(2005) and Petrucci & Salvati (2006), and, finally, the Spatial Nonstationary Fay-
Herriot model recently proposed by Chandra et al. (2014).

Abstract 1l modello proposto da Fay e Herriot (1979) é comunemente utilizzato
per ottenere stime per domini non previsti quando i dati sono disponibili a livello
di area. Tale modello ipotizza che gli effetti di area siano incorrelati, ipotesi che
pudo essere irrealistica nel caso di dati agricoli, ambientali, economici e epidemio-
logici. In questo lavoro proponiamo un confronto, attraverso opportuni studi di sim-
ulazione, tra il modello Fay-Herriot e tre sue estensioni che consentono di tenere in
considerazione gli effetti di prossimitd tra le aree: il modello Semiparametric Fay-
Herriot proposto da Giusti et al. (2012, il modello Spatial Fay-Herriot proposto da
Salvati (2004), Singh et al. (2005) e Petrucci e Salvati (2006), e, infine, il modello
Spatial Nonstationary Fay-Herriot recentemente proposto da Chandra et al. (2014).
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1 Introduction

Often, sample surveys provide a cost-effective way to obtain direct estimates for
population parameters of interest for planned domains or areas. However, on many
occasions the interest is in estimating these parameters for unplanned domains/areas
where the sample size can be small, resulting in unreliable direct estimates. These
areas/domains are known in the literature as small areas (Rao, 2003). Model-based
small area estimation techniques are commonly used to produce reliable estimates
for these areas. Small area estimation methods can be based on unit-level or area-
level models. Unit-level models are defined for individual survey data and includes
small area effects. Area-level models allow to smooth out the variability for unre-
liable area-level direct estimates and they can be used when auxiliary variables are
only available in aggregate form.

The Fay & Herriot (1979) model produces reliable small area estimates by com-
bining small areas direct survey estimates with area-level auxiliary variables. The
underlying assumption is that the direct survey estimators are linear function of the
covariates. Let ¥; be the unobserved population parameter of interest for area i, with
i=1,...,m (for example the population mean of the variable Y), and y; its unbiased
survey direct estimator. Let x; be a vector of known auxiliary variables for area i
(usually coming from administrative and census records). The Fay-Herriot model
can be expressed as:

yi=xX B+ui+e (D

where [ is the p- 1 vector of unknown parameters, u; are independent and identi-
cally distributed regression errors, usually assumed to be normally distributed with
E(u;) = 0, var(u;) = 62, and e; represent the sampling errors, again usually as-
sumed to be independent and identically normally distributed with E(e;|¥;) = O,
var(e;|Y;) = o2. Defining by y the m - 1 vector of the direct estimates y; and by
X = (x1,...,X4) the corresponding m x p matrix of the area level auxiliary vari-
ables, the Fay-Herriot model can also be expressed by

y=XpB+Du+e. 2)

Here u is m x 1 vector of independent and identically distributed normal random
variables with mean 0 and m x m variance matrix ¥, = GL%Im, D is m X m matrix of
known positive constants, e is the m x 1 vector of normal independent sampling er-
rors with mean 0 and known diagonal variance matrix £, = diag(62,065%,...,02,),
and fB is the p x 1 vector of regression parameters. Thus, the Fay-Herriot model
is a general linear mixed model with diagonal covariance structure var(y) =V =
DX, D’ +X,. Estimating ¥, by ML or REML and deriving the corresponding plug-

in estimator V = DquT + X, leads, under model (2), to the EBLUE (empirical
best linear unbiased estimator) f = (X”V_'X)~'V 'y and to the EBLUP (em-

pirical best linear unbiased predictor) & = quTV_l (y— XB) The corresponding
EBLUP estimate of ¥; under model (1) is
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PEBLUP — X[Tﬁ + diTiMDT\AFI

(y - XB )? (3)
where dl-T denotes the i row of the D matrix.

The Fay-Herriot model assumes that the direct survey estimators are linear func-
tion of the covariates. When this assumption fails down, the Fay-Herriot model can
lead to biased estimators of the small area parameters. A semiparametric specifica-
tion of the Fay-Herriot model, which allows non linearities in the relationship be-
tween Y; and the auxiliary variables x;, can be obtained by penalized-splines (Giusti
et al., 2012). Bivariate smoothing under this approach can also be used when geo-
graphically referenced responses play a central role in the analysis and need to be
converted to maps. The estimator proposed by Giusti et al. (2012) is

y=XB+Zy+Du+e, %)

where X is a matrix obtained stacking two matrixes X, and X, and 8 = [, n7]. Here,
X, is the matrix of the auxiliary variables and « is the vector of the fixed effects, X},
is the matrix of the coordinates of the centroid of area i and 1 is the vector of the
coefficients used in the polynomial part of a p-spline model of the type m(xp;1n,7) =
No+Mix)+...+1pX, + Yo | %e(xp — k)" The Y| %(xp — k)" is expressed in
(4) as Zy, where Z is a 2 x K matrix of (x; — k)" terms (j=1,2and k=1,...,K)
- with some technicalities explained in Giusti et al. (2012) - and 7 is the coefficients
vector for this part of the p-spline model which allows for handling departures from
the p-polynomial in the structure of the relationship. The y component can be treated
as a vector of independent and identically distributed random variables with mean
0 and variance matrix Xy = G%Im. Moreover, Du and e have the same meaning
and variance structure as in model (2). So, now V = ZX,Z" + DX,D” + £,. The
unknown variance parameters X, X, and X, can be estimated by REML or ML,
obtaining V = Z£,Z” + DL, D’ + £,

Model-based estimation of the small area parameters can be obtained by using
the empirical best linear unbiased prediction (Henderson, 1975):

FYPEREUP = x[ B+ (2] £,27 +d] £,D)VH (Y - XP), )

where f = (XTV~1X)"'X"V~!¥, and d” and 27 denote the i row of the D and Z
matrixes.

An alternative approach to incorporating spatial information in small area esti-
mation is by assuming that the effects of neighboring area in the Fay-Herriot model
are correlated. The Fay-Herriot model (1) assumes that the area effects are uncor-
related. However, it is often the case, especially with agricultural, environmental,
economic and epidemiological data, that the effects of neighboring area are corre-
lated, even if geographic covariates are included in the model. For these situations,
Salvati (2004), Singh et al. (2005), Petrucci & Salvati (2006) proposed the introduc-
tion of spatial autocorrelation in small area estimation under the Fay-Herriot model.
The specification of this model is of the form
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— _ -1
y=XB+Du+e, D=(I—pW) . (6)

where X and f8 are the same as in (2) and D represents the coefficients of random
effects u that incorporate the spatial structure. Here, W is a known spatial weight
matrix which shows the amount of interaction between any pair of small areas. The
elements of W may depend on the distance between the centers of small areas or
on the length of common boundary between them. The simplest form of W is a
symmetric matrix with a diagonal of zeroes and with element w;; = 1 if area i and
J are adjacent and w;; = 0 otherwise. The constant p is a measure of the overall
level of spatial autocorrelation and its magnitude reflects the suitability of W for
given y and X. Further, Du and e have the same meaning and variance structure
as in model (2). By ML or REML it is possible to estimate the variance matrix,
obtaining V = D£,D7 + £, where £, = 62[(L, — PW)7 (I, — PW)]~!. Estimates
for small area target can be obtained by the empirical best linear unbiased prediction
(Henderson, 1975)

ySEBLUP _ XzTB —d’8, DTV (Y - X[?)7 ™

where the terms of the equation are the same as in (2) with the exception of .
Recently, Chandra et al. (2014) proposed a spatially nonstationary Fay-Herriot
model defined as

y() =XB(1) +Du+e =X +Zy(l) +Du+e, 3)

where X, 3, D, u and e have the same meaning as before, Z = {diag(x),...,diag(x,)}
is a m x pm matrix (here p is the number of auxiliary variables), ¥(1) is a vector of
random effects that characterizes the spatial nonstationarity in the data and 1 is the
coordinates matrix of the centroids of the areas. The variance structure of the model
is V=25,Z" +DX,D’ +%,, where £, and £, are the same as in the Fay-Herriot
model. Here, £y = (ec’) ® Q with Q = [d(1;,]1;)] the matrix of the distances be-
tween areas and ¢ a vector of positive unknown constants such that (c¢?) © Q is a
variance-covariance matrix (® denotes the element-wise multiplication). Estimating
the variance component X, and ¥y, Chandra et al. (2014) obtained the best empirical
unbiased predictor of Y, that is

PNSEBLUP _ TR 4 (47$,27V "' + a7 5, DTV 1) (Y —XB). ©

Here, V = Z£,2"7 + D, D7 4+ 5, and § = (XTV1X)"'XTV-1Y.

An analytic mean squared error estimator has been proposed for all the four pre-
sented small area estimators (EBLUP, NPEBLUP, SEBLUP, NSEBLUP), but is not
discussed in this work.
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2 Simulation experiment

In this section we propose a model-based Monte-Carlo simulations to empirically
evaluate the performance of the EBLUP, NPEBLUP, SEBLUP and NSEBLUP.

The experiment setting is inspired by the work of Crainiceanu et al. (2005), Mar-
ley & Wand (2010) and Bocci & Rocco (2014). The populations will be generated
using the following model:

Y=o+ P+ (1) +ui
yi=Yi+e

Here Y; is the mean of the target variable in small area i, while y; is its direct es-
timate. The parameters « and 3 are set to 10 and 0.4, x; ~ Bin(m,0.5), f(1;) is
the density function of a mixture of three bivariate normal variables with 1; the
vector of latitude and longitude of the centroid of area i. As concerns the errors,
u; ~N(0,02 =0.025) and ¢; ~ N(0, 6> = 0.04). The bivariate normal mixture den-
sity is obtained as weighted mean of the following bivariate normal density

10257 [0.0225 0.1050]
Wa=N ( 0.5 | 7] 0.1050 0.0306 | )

(0757 [00225 0 ]
Wb_N(_o.s_’_ 0 0.0306_)

(0757 [00225 0 ]
W"N(_o.z_’_ 0 0.0306_)’

with weights 3/7 for W, and Wj, and 1/7 for W,.

We consider a squared region divided into m = 100 equal squared areas. Fig. 1
represents the bivariate mixture density function f(1;), held constant for each Monte-
Carlo run. The population is generated so that f(l;) leads the magnitude of the ¥;
values. The aim is to compare the performance of the estimators computing the
relative bias (RB) and the relative root mean squared error (RRMSE):

H T (T — Yin)?

_ H 'Y (Vi —Yi)
H_l Zthl Yih

H_lzgzl Yih

RB; x 100, RRMSE; = x 100,

Y;, and ¥y, being the true and estimated values of the area i mean at simulation .

Results of the simulation experiment are shown in table 1. The results seem indi-
cating that all the estimators are unbiased, while in terms of variability the EBLUP
is the worst, as expected given that it does not take into account the spatial informa-
tion. Among the other estimators the NPEBLUP shows the best performance both
in terms of relative bias and relative root mean squared error.

Further studies will be focused on comparing the performance of these estimators
under different simulation scenarios.
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Table 1 Mean and median over areas of the Relative Bias (RB) and Relative Root Mean Squared
Error (RRMSE) of the target estimators (EBLUP, SEBLUP, NSEBLUP, NPEBLUP).

EBLUP SEBLUP NSEBLUP NPEBLUP
Mean 0.032 0.030 0.023 0.015

RB % Median 0.133 0.159 0.177 -0.022
Mean 1.734 1.671 1.457 1.188
RRMSE % Median 1.714 1.666 1.433 1.137

Fig. 1 Graphical representa-
tion of the f(1;) values, where
1; is the vector of latitude and
longitude of the centroid of

area i.
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