How to Marry Robustness and Applied Statistics
Come coniugare robustezza e applicazioni statistiche

Andrea Cerioli and Anthony C. Atkinson

Abstract A striking feature of most applied statistical analyse$s tise of meth-
ods that are well known to be sensitive to outliers or to ottegrartures from the
postulated model. Since data contamination is often the mather than the ex-
ception, we investigate the reasons for this contradictang perhaps unintended)
choice. We also provide empirical evidence, in a regresséiting and in a real-
world problem concerning international trade, of the adagas of a new approach
to data analysis based on monitoring. Our approach enhaneespplicability of
robust techniques and the interpretation of their resthitss yielding a positive step
towards a reconciliation between robustness and appkgidtats.

Abstract | metodi statistici robusti trovano a fatica riscontro neknalisi empiriche
di problemi reali. In questo lavoro investighiamo alcungi@ni di tale difficolt e
illustriamo le potenzial di un approccio alternativo all’analisi robusta dei dati
fondato sul monitoraggio.

Key words: Clustering regression, forward search, FSDA, high-breakdestima-
tion, monitoring, outlier detection, random start FS

1 Introduction

An early use of the term robustness is due to Box (1953) indysbéithe effect of

non-normality on tests of equality of variances. He commeénhat means are ro-
bust to departures from normality, but that estimates aéwaes are not. The matter
is clearly important, since data frequently depart fromaksumptions behind the
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models of mathematical statistics used to derive tests #met atatistical proce-
dures. Twenty years after Box, the outlines of the moderorthef robust statistics
were becoming clearly established as the development ekeproes that behaved
well under, usually small, departures, from, usually, n@rassumptions. This is a
much narrower study than that implied by Box. One purposeiopaper is to show
how the range of application of robust methods can be extetiteugh the use
of ‘monitoring’, exemplified in§3, where we study aspects of fitted models under
a series of assumptions about the level of contaminatiohdrdata. An important
byproduct is a simplification of the numerous choices reglin the application of
robust methods. We conclude with a discussion of problemtsitave mostly not
been the subject of robust analysis. One example, treatetlinis the identifica-
tion of data that not only include outliers but in which greswgf observations come
from different models. But we start with a brief history oétdevelopment of robust
methods.

Stigler (2010) gives a short history of robustness. Thdesirbook-length ref-
erence is Andrewst al. (1972) (the Princeton Robustness Study), at which time it
was expected that all statistical analyses would, by defaalrobust. Now, a fur-
ther forty years on, there are at least six books about rabatstics with over 1,000
citations in Google Scholar. At the time of writing, the mbgihly cited is Huber
(1981) (and its second edition Huber and Ronchetti (20@8¢) pthers, in citation
order, are Rousseeuw and Leroy (1987), Harepal.(1986), Hoagliret al. (1983),
Andrewset al.(1972) and Maronnat al. (2006). Unfortunately, this activity seems
largely to be statisticians talking to other statisticians

Although the term “robust” was first popularised by Box, tdea of consider-
ing the distribution of statistics under departures fromassumption of normality
goes back at least to E.S. Pearson’s review (Pearson, 198 second edition of
Fisher'sStatistical Methods for Research Workeas interest that was to stay with
Pearson until the end of his scientific life (Pearson andgeled975). The current
understanding of robust was much more the creation of Tugtegting with Tukey
(1960), and of Huber (1964). Stigler writes:

“... by 1972 a number of the early workers in robust stastixpected that from
the 1970s to 2000 we would see the same development withtrofethods —
extensions to linear models, time series, and multivariazeels, and widespread
adoption to the point where every statistical package wtakd the robust method
as the default.... This was, and | [Stigler] will call it, ag&d Plan. But that plainly
is not what has occurred”.

Stigler then presents a lively and warm discussion of thiy ééstory of robust
statistics. One reason for the lack of opening to the sdientiorld may be that
robust statistics, as often understood and practised gdat® la new mathematical
statistics, more complicated than the old, in which everanmefined solutions are
presented to a few well-defined problems. We describe sortiesé complications
in §2. From the standpoint of a user of statistical methods, ¢iselt of a robust
analysis is to provide an alternative, for example for regi@n, to least squares.
There are therefore two summaries of the data, rather thanTdrat this is not an
especially appealing development is evidenced by theré&adfimajor commercial
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statistical packages to implement robust methods of dailysia except as special
procedures within a well-segregated collection of rowgiide appreciate that there
are several robust libraries available in R, but would attyag again, this package
tends to be statisticians talking to statisticians.

Stigler suggests that the first signs of trouble with the @rafan were already
evidentin 1972 at the time of the publication of the PrincdRmbustness Study. To
quote him again:

“From the full set of 10,465 estimates of a location param#iey had con-
sidered, they reported in detail on the accuracy of 68 egtisntnat had received
extensive study, focusing upon small samples and an inmadntivide selection of
32 distributions, nearly all of which were symmetric scalixtnres of normal dis-
tributions”.

This is far from the Grand Plan and, indeed, none of the aatbbthe conclu-
sions in Chapter 7 of the Study made any grand claims for theik. Unlike the
psalmist, they all display a compulsive refusal to lift theyes to the hills, even for
a moment; no Grand Plan is needed. But the year’s work in &dmdy many intel-
lectually impressive statisticians did not move far in sodmthe typical problems of
data analysis mentioned in our first sentences. Indeed,sgmend author remem-
bers the mounting despair with which a reading party orgahisy David Cox at
Imperial College worked through the Study. We were quickiyeah in the details
of trying to remember what was, for example, an ‘iterativétgkipped trimean’. In
Cox’s recent book on applied statistics (Cox and Donneliy,1) the index contains
just one reference to robustness. The relevant page dgrdistusses the identifi-
cation and treatment of outliers, stressing the compardgiificulty of the identifi-
cation of multiple outliers and the importance of considgiphysical interpretation
for any outliers found; points partially illustrated in thealysis of our example in
§3. Likewise, the main reference to robustness in Huberisneltook on data analy-
sis (Huber, 2011) downplays formal methods of robustnes:s.B, ‘Mathematical
statistics and approximate models’ Huber writes about thekwf Fisher that, after
Fisher “the robustness paradigm — explicitly permittingairdeviations from the
idealized model when optimizing — carried [the argumenty @afew steps further.”
We hope to show that these works underestimate the contnibiat intelligent data
analysis that can be made by proper monitoring of the robeshods developed
over the 50 years since the Study.

The most extreme forms of robustness usually considered arery robust
fit, asymptotically resistant to 50% of aberrant observetjcand maximum like-
lihood, including least squares, which have zero breakdpint. It is common
(Rousseeuw and Leroy, 1987; Rousseeuw and van Zomerer),tb38@gest com-
parison of the residuals or Mahalanobis distances from §itehin the approach
illustrated in§3 we extend this idea, monitoring such quantities as retsdwalis-
tances, parameter estimates, test statistics and othetitipsof interest as the ro-
bustness of the fit decreases. We thus obtain informatiomporitant changes in
conclusions that come from differing assumptions aboutiégree of contamina-
tion in the data.
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One consequence of our monitoring of robust procedurestsiily considering
a variety of procedures for robust fitting, we are able to wheitee which, amongst
the many parameters of the algorithms, are those that areagridistinguishing
them from those that are only of secondary importance. Tla dioal is to provide
insightful data analyses by following well-specified prdaees that can be straight-
forwardly applied by non-specialists in robust statistics

Our paper is structured as follows: §& we discuss the choice of an appropriate
form of robust method, with an emphasis on regression, diffés in numerical pro-
cedures and the interpretation of the results of a robugysisaAn important statis-
tical drawback to downweighting methods, as opposed taniing, is the breaking
of the connection between each observational unit and desrderived from the
analysis, such as parameter estimates.

An example of monitoring is i§3 where we compare two methods of robust
regression. One, S estimation, reveals that robust andatarst fits to the data are
very different; the other method, MM estimation, fails to sly, a finding in line
with the conclusions of Riaret al. (2014a), who use monitoring to compare many
different forms of robust regression.

As the quotation above from Huber (2011) indicates, stahdabust methods
have typically been developed under the assumption tha tisea single model
from which there are small departures, such as a slightlymamal distribution of
errors, perhaps together with gross outliers. This is orglight part of the broad
range of possible departures the data analyst may face.didate many such prob-
lems in§4, the theme of which is “robustness against what"? One itapbform
of departure arises when the data are a mixture of obsengdfiom more than one
model. For multivariate normal populations, this leads tobtems of clustering.
In §4.1 we continue the analysis of the regression data fi8nshowing that they
come from two different regression models. There are alsaraber of outliers.
An important feature of robust clustering is that it is notegsary to cluster all ob-
servations. Our random start method based on the ForwardiSdaes not require
prior specification of the amount of trimming required, attea it shares with the
method of monitoring 0£3. The subsequent section of the paper discusses some
related issues that may contribute to discouraging the fusiaost techniques, such
as the difficulty in obtaining a reliable estimate of the nembf outliers and the
lack of knowledge about the empirical behaviour of the méthwhen the errors
are very non-normal.

2 Which Method and How to Tune It?

A major disincentive to the routine use of standard robughous is the number
of decisions that have to be made before the analysis of ttzebdgyins. We now
describe some of these.

1. The efficient application of robust methods depends opithportion of outliers
expected in the particular set of data being analysed. Tdetsemine the desired
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efficiency or, equivalently, breakdown point. Clearly, ayeobust analysis can
always be used, but this results in an unnecessarily lowiesffiy for data that
are virtually outlier free.

2. The next choice is the nature of robust estimator thatgaired. For regression
Rianiet al. (2014a) identify three classes of estimator:

a. Hard (0,1) trimming such as Least Trimmed Squares - LT&n{(pkl, 1975;
Rousseeuw, 1984) or Least Median of Squares - LMS: (Rougsdi84) in
which the amount of trimming is determined by the choice ef thmming
parameter.

b. Adaptive Hard Trimming. In the Forward Search (FS), theeshations are
again hard trimmed, but the amount of trimming is determibgdhe data,
being found adaptively by the search. See Atkinson and R2000) and
Riani et al. (2014c) for regression and Atkinset al. (2010) for a general
survey of the FS, with discussion.

c. Soft trimming (downweighting). M estimation and deriveéthods. The in-
tention is that observations near the centre of the digtdbuetain their value,
but thep function ensures that increasingly remote observations aaveight
that decreases with distance from the centre.

3. Within the soft trimming family, both thge function and the one or two parame-
ters determining efficiency have to be chosen. Réai. (2014a) use monitoring
to compare three methods: S, MM andor four p functions: Tukey’s bisquare,
optimal, Hyperbolic and Hampel.

The calculations for robust estimation are also much mdfeuli than those of
least squares. The functions to be maximized when usingst@stimators are typi-
cally complicated, with many local maxima. In consequeap@roximate methods
are used. The standard approach uses randomly sampledssobg®bservations
(elemental sets). We now list some of the choices that halse toade to provide a
viable algorithm.

1. The number of subsamples to extract to each of which thehiwfitted exactly.
These fitted values are used to evaluate the function to bemzed

2. The maximum number of refining iterations (concentrasi@ps), if any, within
each subsample.

3. The tolerance for the convergence of the estimajgiofthe refining steps.

4. The number of best subsets resulting from the refiningsstege brought to
convergence.

5. The number of refining iterations for each best subsetgbieiought to conver-
gence.

6. The tolerance for the estimate Bfin the refining steps for each subset being
brought to convergence.

7. The tolerance for the estimate of scale in the best subsets

In calculations for the example §8 we follow the recommendations of the FSDA
toolbox. Hawkins and Olive (2002) show that inappropridieices of some of these
tuning constants may lead to inconsistency of the resuéiggrithms.
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Perhaps even more important than these technical mattethgestatistical prob-
lems related to, in particular, the downweighting of obaépns.

1. Thereis a loss of simplicity in the tests related to patenmestimates. For exam-
ple, (Rianiet al, 2014a§3.2) describe, and later exemplify, two robust variants
of the usual t-test for the standard errors of estimatedessjpn coefficients,
which sometimes differ in the conclusions they lead to. €hiemo guidance as
to which is to be preferred in such circumstances.

2. Through the use of downweighting, the analyst loses tmmection between
each unit and the parameter estimates and other stafigtioglortant quantities.
We note that this connection is maintained in the FS and dthet trimming
methods.

3 An Example of Monitoring

Spearman
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Fig. 1 Vegetable products data. S estimation, optim#élinction. Left-hand panel, plot of scaled
residuals. Right-hand panel, three measures of the comgaof adjacent residuals. The abrupt
switch virtually to LS at 0.20 is evident in both panels

We illustrate the use of monitoring in the context of interoaal trade, which
is an important field of application for the EU economy. Fastamce, Cerioli and
Perrotta (2014) describe the importance of careful skzgisanalysis of international
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trade data and some of the challenges emerging in such aciexefhe dataset
that we consider contains the value and weight ef 1,558 import transactions of
vegetable products, such as oils and seeds, to one specifiddatber State from
a non-EU country. To illustrate the usefulness of monitgiim understanding the
properties of various robust estimators, we compare S andbtivhation. Typically
we require 50 robust regression fits per analysis; a conipotdturden only made
possible by the efficiency of the FSDA robust library (Riaehal., 2012) and by the
recent technical advances of Riatial. (2014Db).

In monitoring S estimators we vary the bdp from 0.5 to 0.01. M estimates
it is more convenient to monitor changes as the efficiencys dgamm 0.5 to 0.99.
In both cases we look at plots of allresiduals as a function of efficiency or bdp.
A useful diagnostic, summarising the plot of residualspiplbt correlation of the
ranks between the residuals at adjacent monitoring vallesonsider three stan-
dard measures of correlation:

1. Spearman. The correlations between the ranks of the tw@Eebservations.
2. Kendall. Concordance of the pairs of ranks.
3. Pearson. Product-moment correlation coefficient.

If there is a clear division of the solutions into a robust fidaa non-robust one,
with a sharp break between them, this is clearly shown by ¢hestation plot. For
more complicated examples the point of transition is notlsarty visible. But the
structure of the residual plot is well summarized by lookigorrelations.

Figure 1 shows the plot of residuals for S estimation. Theeedlear break in the
plot between bdp 0.21 and 0.20, as the robust fit changesticsigaares. For the LS
fit there seems to be an almost symmetrical distribution sititeals, with around
half a dozen large positive outliers. The robust fit, for legkalues of the bdp,
exhibits a highly skewed structure for the residuals. Thastancy of the ranking
of the residuals over the two regimes is clearly shown in idjietthand panel of the
plot; all three correlations are virtually one, except toe break point between the
bdp of 0.21 and 0.20.

This figure is very different from that for MM estimation indtire 2. Here the
pattern of residuals is constant for all efficiencies in #rege studied and similar to
that for the robust part of the S residuals in Figure 1. Theetation plots show no
change in the pattern.

These results show an appreciable difference between @atsth and MM,
which is tuned to have a high efficiency for the parameterbefinear model. We
now explore the parameter estimates of the linear modeltaidrelationship with
the data.

In these data there is a single explanatory variable. Figu@sgows how the esti-
mate of the slope changes with the bdp for S estimation andftiegency for MM
estimation. For S estimation the slope remains virtuallystant, decreasing from
3.42 to 3.32, until, with a bdp of 0.20, it jumps up to 5.95. fdadter it again de-
creases slightly, with a minimum value of 5.18. On the cagtifar MM estimation
the slope decreases slowly from 3.40 to 3.32; the jump inegailsimissing.
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Fig. 2 Vegetable products data. MM estimation, optinpafunction. Left-hand panel, plot of
scaled residuals. Right-hand panel, three measures obthelations of adjacent residuals. The
skewed distribution of residuals remains constant overctresidered range of efficiency. There
is no change in the values of the correlation coefficienthénright-hand panel (note the vertical
scale)

The behaviour of the S slope that is revealed by monitoringtiat might be
expected if there is a main population following a regresdioe and a cluster of
outliers at a position of high leverage. The right-hand pafh&igure 3 shows five
fitted lines for S estimation. Those for high bdp down to 0 @lofv the lower line
of data. The fit calculated with bdp = 0.20 lies close to theaufipe, for which there
are more observations than for the lower one. As the bdpdutdéacreases the lines
move slightly towards lying between the two main lines, geittracted upwards by
the presence of a few large disconnected outliers, someapitheciable leverage.
The plot for MM lies throughout close to the lower line.

The conclusion from this analysis is that monitoring usings8mation alerts us
to the presence of a structure in the data that would not beescttantly revealed
by looking at the output from a single fit. Monitoring MM estition, on the other
hand, does not indicate that there is an important depditome the single model
assumed to hold for the majority of the data. Perusal of Eigumight, on the
contrary, suggest that a transformation of the data is ribedEchieve a symmetrical
error distribution.

The results here from the comparison of S and MM estimatieriratine with
those of the extended study of this kind of monitoring by Retral. (2014a) who
conclude that highly tuned methods like MM amdestimation often reveal less
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Fig. 3 Vegetable products data. Left-hand panels, the estim&ipd parameters for S estimation
(upper panel) and MM estimation (lower panel). Right-haaded, the data and fitted lines using
S estimation with five different values of bdp

about the structure of the data than does S estimation. Gbthig functions they
compare, they show that Tukey’s bisquare and the closedye@loptimal function
provide the most informative monitoring. The hyperbgi¢unction, for some sets
of data, is subject to numerical problems. Here we have ueedtimal function.

We return to these data in the next section. Before we do sapéeethat it might
be expected that fitted lines for value against weight shgoldhrough zero. We
did repeat our analysis setting the regression intercepéto, but found that the
conclusions were unaffected. Although, in some tradingyitiets, there is a non-
zero intercept, being the cost of setting up an order, su@iffaot is more common
in domestic mail orders than in the kind of data we are anadykere.

4 Robustness Against What?

Standard robust methods were developed for fitting a singléeain In this section

we first describe a robust method for determining whethedtita are a mixture

from more than one model, although there is the restrictian the models are all
of the same class. In the subsequent section we briefly discasnore general, and
far broader, problem of robustness when the class of modetodels, also needs
to be identified.
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4.1 Several Models: Clustering

The analysis of the trade data §3 with monitoring shows that the robust S fit
and least squares differ. However there is no clear indinatif what is causing
the difference. Of course, with a single explanatory vdeah simple scatterplot
indicates the structure. But, in general, there may be abegplanatory variables
or so much data that perusal of individual scatterplots lidypes of transaction is
impossible. We use the FS to provide a robust analysis ofwdata there are several
sources for the data. We need a robust method as we need tbtheaieleterious
effect of the outliers, the presence of which is evident anftgure.

The forward search achieves robustness by fitting the modelldsets of the data
of increasing size, where the subsets are sequentiallgaltosontain observations
as close as possible to the fitted model. The introductionithess into the subset is
diagnostically revealed by plots of residuals againstsusize as well as formally
by statistically tuned tests using the minimum deletioidesl among observations
not in the subset. The method for a single population stests & robustly chosen
subset ofny observations. However, if the data are a mixture of obseEmagener-
ated from more than one model, the robustly chosen initlassts* (mp) may lead
to a search in which observations from several models emesubset haphazardly
in such a way that the various models are not revealed. Sesaficim more than one
starting point are necessary to reveal the more complicdtadture of a mixture.

For finding clusters in multivariate data, Atkinsehal. (2008) suggest running
several hundred searches from randomly chosen initiakssilng. At the beginning
of the search with regression models, a random start predueee very large resid-
uals. But, because the search can drop units from the subsetiicas adding them,
some searches are attracted to specific regression linfse Asarches progress, the
various random start trajectories converge, with subsaisaining the same units.
Once trajectories have converged, they cannot diverge agaiwe see in Figure 4,
which is typical of those for many data structures, the $eacapidly reduced to
relatively few trajectories, some of which show marked edtkis these that pro-
vide information on the number and membership of the claster

The two peaks in Figure 4 indicate the two linear structunes are apparent in
Figure 3. The final peak in the plot results from the outligrsich are also evident
in Figure 3. The next step in the analysis of the data is t@fhugate’ the peaks,
taking many of the units in the subset just before the peakargs initial subsets
for forward searches to confirm cluster membership.

An example, for regression data, is given by Atkinsenal. (2014c), who
describe automatic procedures for deciding cluster meshijer Atkinsonet al.
(2014a) illustrate the utility of the random start FS in ttestering of multivari-
ate normal data. As an example they use the data set pressn@atcia-Escudero
et al.(2011), recovering the three normal clusters of dispat@pas and detecting
outliers. This is an advance over many procedures whichineguor information
on the number of clusters and on the proportion of the data twilmmed, and so
suffer from one of the main disadvantages of robust methstsilin§2. A tutorial
example of clustering multivariate data, also in the presef outliers, is given by
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Fig. 4 Vegetable products data: forward plots of minimum deletiesiduals from 200 random
starts with pointwise 1% and 99% limits. There appear to lwedistinct groups (regression lines)

Atkinsonet al. (2014b) using the six-dimensional Swiss banknote datadiited
by Flury and Riedwyl (1988).

A final word is in order about the interpretation of the fordignot of deletion
residuals in Figure 4. In all there are 1,558 observatiommsvéver, the two peaks
come atm= 1,174 and 1,310, which total much more than all the observation
There are, however, an appreciable number of observattdow aalues ofx; due
to variability in the data, these could belong to either.li@&aightforward clustering
would be unable to decide to which line such observationslshue allocated.

4.2 Which Model for the ‘Good’ Data and How Many Outliers?

The development of high-breakdown techniques, like S and &#timation, has
been the mainstream of theoretical work on robust statigtic at least 25 years.
These methods are expected to work well in a contaminatandwork where the
data generating distribution, s&(y), is such that

G(y) = (1-y)Go(y) + yGu(y). (1)
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In model (1),Go(y) andGs (y) denote the distribution functions of the ‘good’ and of
the contaminated part of the data, respectively,jard).5 is the unknown contam-
ination rate.

We speculate that another reason for the limited appeal mfstomethods in
practical applications is the need to specy(y). Furthermore, very little is known
about both the theoretical and empirical behaviour of thrigues wheiGy(y) is
not normal. To motivate our claim, we observe that all higakdown estimators
require computation of a normalizing constant which ensaomsistency whep=
0. In the case of hard trimming, this constant is a scalintpfdor the estimate of
dispersion and, in the case of soft trimming, a threshold/alyehich observations
are given zero weight. As far as we know, explicit and comipletédormulae for
the normalizing constant exist only@q(y) is the normal distribution and, indeed,
relevant real-world applications have been confined tortiugel.

Cerioli et al. (2013a) propose a method for testing the hypothesis@b@t) in
(1) is normal. The good power properties of their test seesaggest that the empir-
ical behaviour of high-breakdown techniques may be conafile different under
non-normal models, especially wh&j(y) is skewed. Furthermore, they show the
potentially deleterious consequences of a naive appraadbtstness which is of-
ten implemented in practice, when standard methods arédplthe observations
that remain after outlier removal.

Even whenGy(y) is the normal distribution, many high-breakdown procedure
show poor finite sample properties for estimation of the aomnation rate/. The
tendency to produce a plethora of spurious outliers has &le@mn in many studies,
including Cerioliet al.(2009) and Ceriolét al. (2013b). We argue that this tendency
has also been a serious constraint on the disseminatiorbostranethods among
practitioners. As a consequence, we strongly advocatesth@furobust techniques
that are able to provide effective control on the number tsfefaliscoveries, while
keeping good detection properties. Cerioli (2010) anddliexnd Farcomeni (2011)
propose modified high-breakdown procedures that can aetiies/goal, while Riani
et al.(2009), Rianiet al. (2014a) and this paper point towards a flexible monitoring
approach.

5 Conclusion

We argue that there is compelling need for a reconciliatemveen robustness and
applied statistics. In this paper we have investigated sufitfee reasons that we see
as major disincentives to the routine use of standard robe#tods. We have also
provided empirical evidence, in a regression setting and ieal-world problem
concerning international trade, of the advantages of a pgroach to data analysis
based on monitoring.

We conclude by noting that our monitoring approach desduréser theoretical
investigation. A pioneering contribution in this direaticalthough in a somewhat
simplified setting, is the study of the asymptotic propartéthe radius process of
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Garcia-Escudero and Gordaliza (2005). Results for thedt search are provided
by Johansen and Nielsen (2013) and by Ceeblal. (2014), while the properties
of the trajectories of the residuals computed from otheh{igeakdown estimators,
like those given in Figures 1— 2, are still unexplored. Néweless, we trust that our
work will provide a positive contribution towards the deslireconciliation.
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