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Abstract Model selection can be defined as the task of estimating the performance
of different models in order to choose the (approximate) best one. The purpose of
this article is to introduce an extension of the graphical representation of deviance
proposed in the framework of classical and generalized linear models to the wider
class of mixed models. The proposed plot is useful in determining which are the
important explanatory variables conditioning on the random effects part. The ap-
plicability and the easy interpretation of the graph are illustrated with a real data
examples.
Abstract Scopo di questo articolo e’ quello di introdurre un’estensione alla rap-
presentazione grafica della devianza proposta nell’ambito dei modelli lineari alla
classe dei modelli lineari misti. La rappresentazione grafica proposta e’ particolar-
mente utile per la determinazione delle variabili esplicative da inserire nel pred-
ittore lineare della componente fissa di un modello misto condizionatamente alla
parte casuale. Il semplice impiego e la facile interpretazione del grafico sono illus-
trati con uno esempio su dati reali.
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1 Introduction

Mixed models (linear and generalized linear) have rapidly become a widely used
tool for modelling clustered and longitudinal data. The application of mixed models
is vast and expanding so fast as to preclude any attempt at exhaustive coverage. The
areas of application include biological and medical research, animal and human ge-
netics, and small area estimation. Although a large amount of work has been done in
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the literature on likelihood-based inference for mixed models, model selection for
mixed models continues to be a complex and interesting area of research (Edwards
et al., 2008). For the most part, it is assumed that the basic assumptions about the
model, for example, those about the presence of the random effects and their distri-
butions, are correct. However, sometimes it is not clear which is the best model to
use when there are a number of potential, or candidate, models. Here being best is in
the sense that the model is not only correct but also most economical, meaning that it
is simplest among all correct models. In the following the problem of mixed model
selection will be considered by a graphical point of view assuming that random ef-
fect factors are not subject to selection. In particular, the graph proposed by Brown
(1992) in the context of classical linear modelling is generalized to its application
for mixed models. The article is organized as follows. The model selection problem
in mixed models will be discuss in section 2. The proposed graphical generalization
and the real data examples will be illustrated in Section 3.

2 Mixed models selection

The notion of decrease in residual variation due to the use of a regression model
actually incorporates two concepts: (1) the global capability of the model to repro-
duce the data generating process and (2) the specific contribution of the covariates
to the explanation of the phenomenon. The first concept is generally referred as
“goodness of fit” and the second concept as “explained variation”. For the linear re-
gression model the usual coefficient of determination R2 incorporates both concepts
and represents the widest used measure of model selection. In the linear model R2

corresponds to compare two models: a “full” model that consists of p−1 indepen-
dent predictors in addition to an intercept and a “null” model containing only the
intercept. This is no longer true in mixed models where we could be interested in R2

as a general measure of goodness-of-fit of the model to the data rather than a mea-
sure of explained variation. This difference from the linear regression case is made
worse if we consider that while in fixed-effects models the concept of explained
variation refers necessarily to the reduction in variation due to the fixed covariates,
in mixed models we have to distinguish between variation explained by the fixed
part, variation explained by the random effects and variation explained through a
properly assumed correlation structure. So, in order to evaluate the proportion of
explained variation a primary step has to define which model has to be meant as
“null” model. According to the different situations we can consider as “null” model
the model with both fixed and random intercepts or, in cases in which the clustering
variable is itself of interest, the “null” model could no longer include the random
intercept. Aim of this paper is to focus on a graphical comparison of several mixed
models that only differ for the fixed part. So in building the plot it is necessary to use
a measure that allows to express quantitatively the gain in the proportion of residual
variability explained by the inclusion of an extra fixed component into the fixed part
of the model conditioning to the same random part and covariance structure. In the
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following subsection a brief recall to Linear Mixed Model (LMM) and Generalized
Linear Mixed Models (GLMM) definitions will be given and the model selection
measures properly derived.

2.1 Measures of model selection in LMM and GLMM

According to Laird and Ware (1982), the general Linear Mixed Model can be sum-
marized as follows: 

YYY i = XXX iβββ +ZZZibbbi + εεε i
bbbi ∼N (000,DDD),
εεε i ∼N (000,ΣΣΣ i),
bbb1, . . . ,bbbm,εεε1, . . . ,εεεm independent,

(1)

where YYY i is the ni-dimensional response vector for subject i, 1 ≤ i ≤ m, m is the
number of subjects, XXX i and ZZZi are (ni× p) and (ni× q) dimensional matrices of
known covariates, βββ is a p-dimensional vector containing the fixed effects, bbbi is the
q-dimensional vector containing the random effects and εεε i is a ni-dimensional vector
of residual components. Finally, DDD is a general (q×q) covariance matrix and ΣΣΣ i is
a (ni×ni) covariance matrix which depends on i only through its dimension ni, i.e.
the set of unknown parameters in ΣΣΣ i does not depend upon i. The marginal density
function of YYY i is then an ni dimensional Normal distribution with mean vector XXX iβββ

and covariance matrix VVV i = ZZZiDDDZZZT
i + ΣΣΣ i. The VVV i structure is assumed to be the

same for all subjects, but we continue to use the subscript i to emphasize that we
are referring to the covariance matrix for a single subject. Observations on different
subjects are assumed to be independent. Several measures of explained variation for
the gaussian linear mixed model case have been proposed in literature (Xu,2003,
Edwards et al.,2008, Hossjer, 2008). In this work the model selection problem will
consist into selecting the fixed covariates from a set of candidate predictors when the
random effects part of the model (i.e. ZZZibbbi) is not subject to selection. According to
Fitzmaurice, Laird, and Ware (2007), twice the difference between the maximized
log-likelihoods of two nested models, G2 = 2(l̂full− l̂reduced), represents the
degree to which the reduced model is inadequate. As the aim of this work is to
compare mean models with the same covariance structure it is possible to define:

1. Model of interest (“full”): YYY i = FFF iβββ +ZZZibbbi + εεε i
2. Reduced Model (“null”): YYY i = RRRiβββ +ZZZibbbi + εεε i

where FFF i is a ni× p matrix of known fixed covariates and RRRi is an its submatrix with
the same number of rows but with a reduced number of columns. When the sample
size is large, G2 ∼ χ2 with degrees of freedom equal to the difference in parameters
between the “full” and reduced models. The use of such a test is a quite general
principle for statistical testing. The deviance can be regarded as a measure of lack
of fit between model and data. In general, the larger is the deviance, the poorer is
the fit to the data. In a GLMM context it is assumed that, conditionally on the q-
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dimensional random effects bi, the elements Yi j of Yi are independent and follow a
distribution in the exponential family:

f{Yi j|bbbi,β ,φ}= exp{φ−1[yi jϑi j−ψ(ϑi j)]+ c(yi j,φ)} j = 1, . . . ,ni (2)

with µi j =E(Yi j|bbbi)=ψ ′(ϑi j) and Var(Yi j|bbbi)=ψ ′′(ϑi j)φ , Var(Yi j|bbbi)=ψ ′′(ϑi j)φ ,
where ϑi j is the canonical parameter; finally, a known link function g(·) relates the
linear predictor to the transformed mean response as

g(µi j) = g[E(Yi j|bbbi)] = xxxT
i jβ + zzzT

i jbbbi (3)

with xxxi j and zzzi j the corresponding (p×1) and (q×1) vectors of covariates associ-
ated with the fixed effects and random effects, respectively, and φ a dispersion pa-
rameter. Finally, in addition to the distributional assumption (2), the random effects
are assumed to be drawn independently from N (0,D(τ)). The presence of random
parameters prevents the use of a standard likelihood function and hence a remark-
able amount of work in the literature on likelihood-based inference for GLMMs has
been devoted to the search of extended versions of the likelihood function and of the
deviance measures of discrepancy commonly used in standard GLMs (for a review,
see Molenberghs and Verbeke, 2005). In order to generalize the deviance plot to the
GLMM cases, a measure of discrepancy between models that depends on both the
fixed parameters β ,τ and on the random parameters bi, i = 1, . . . ,m and having the
property of being monotonic over the lattice indexing all possible models has to be
defined. In this work the Penalized Weighted Residual Sum of Squares (PWRSS)
introduced by Bates(2013) will be used. It is defined as:

PWRSS = [y−g1(ZΛ(τ)u+Xβ )]T W[y−g1(ZΛ(τ)u+Xβ )]+ ‖ u ‖ (4)

where: y = [yT
1 , . . . ,y

T
m]

T , X = [XT
1 , . . . ,X

T
m]

T , Z =
⊕m

i=1 Zi, W =
⊕m

i=1 Wi, with Wi
the usual weight matrix of the conditional GLM in the i-th cluster, bi = Λ(τ)ui, i =
1, . . . ,m, and u = [uT

1 , . . . ,u
T
m]

T , with Λ(τ) a transformation matrix such that u ∼
N (0,In).

3 Graphical selection tool

In standard linear regression it is a common practice to select a subset of variables
from a complex model by using a stepwise regression procedure in which the im-
pact of each variable to the model fitting is evaluated step by step. There are several
versions of stepwise regression such as forward selection, backward elimination,
and stepwise. Many researchers employed these techniques to determine the order
of predictors by its magnitude of influence on the outcome variable. However, the
above interpretation is valid if and only if all predictors are independent. When
regressors will show some degree of correlation such procedures would return in-
accurate results. In such situations, between several non-orthogonal regressors, the
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one entering the model first will seem to contribute the largest amount of explained
variance. The remaining predictors will seem to be less influential because their
contribution to the explained variance will be overlapped by the variable enter-
ing the model first. Indeed, the more correlated the regressors are, the more their
ranked “importance” will depend on the selection order. A valid alternative consists
in evaluating all the possible 2p submodels and summarizing in a table the changes
observed in some measures of goodness of fit occurring when terms are added or
dropped out of the model. Brown (1992) in his paper suggested a graphical rep-
resentation useful for the assessment of results and the comparison of all possible
linear and generalized linear models that is possible to fit with p regressors. In this
paper such graphical representation is generalized to the class of mixed models in
order to select fixed regressors conditioning on the same random part and covariance
structure. In order to present the method we will make use of a simple example. Let
us consider toy data where the outcome variable Extraversion (Extra) is predicted
by fixed effects for the interval scaled predictor Openness to new experiences (A),
the interval scaled predictor Agreeableness (B), the interval scaled predictor Social
engagement (C); as well as the random (nested) effect of the nominal scaled pre-
dictor Class within the nominal scaled predictor School. The data contains 1200
cases evenly distributed among 24 nested groups (4 classes within 6 schools). The
selection of the variable entering the fixed linear predictor is carried out graphically
using the plot in Fig 1.
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Fig. 1 Graphical analysis of PWRR for the Extraversion data.

The graph is constituted by two frames. The lowest frame on the x-axis reports
the number of model comparisons (2p) that can be done using p regressors; on the
vertical axis the marginal deviances associated to each models are reported where
each model is represented by a horizontal line in the left-hand side of the graph.
The lower right-hand side of the graph contains a numbers of columns equal to
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the number of possible predictors. The presence of a specific regressor in the lin-
ear predictor of the fixed par of the fixed model is indicated by a plus sign in the
appropriate column. When the column is empty this means that the term is not in-
cluded in that specific model. So, the “null” model, the one including only the fixed
intercept will have all blank columns and will be the one with the highest residual
deviance associated. In the example of Extraversion we fitted several linear mixed
effect models with several fixed component specification, and a random nested ef-
fect of class within school. Looking each box separately it is possible to derive the
reduction in PWRSS observed when the variable indexing the box is added. So, in
the first box for example, the vertical lines give the reduction in PWRSS observed
when the predictor A is added to different models; the second box includes com-
parison between models in which the predictor B is added and so on. We can plot a
number of boxes equal to the number of fixed predictors (p). In the example above,
then, the variable C is the less important because to its introduction are associated
the smallest reductions in PWRSS. The greatest reduction is the one occurred when
the predictor B is added to the model containing A. So, there are in all 2p horizontal
lines representing the fitted models and each of them is connected with all possible
more parsimonious nested models by vertical lines. The lengths of this vertical lines
represent the reduction in PWRSS associated to the addition of a term in the fixed
linear predictor. A critical analysis of the plot allows to select the best fixed effect
part specification keeping in mind that all the compared models are equal defined
in their random effects parts. In order to have a complete overview of the models
that we are comparing, in the highest frame of the plot the values of the residual
variances of the random effect part associated with the different fixed part specified
models are reported. So, for example, in the example about Extraversion we can
conclude that, when the fixed component includes additively both regressors A and
B, the residual variance is subject to an important reduction if compared with all the
models containing a single fixed component.
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