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Abstract Nowadays sensors are deployed everywhere in order to support real-time
data applications. They periodically gather information along a number of attribute
dimensions (e.g., temperature and humidity). Applications typically require mon-
itoring these data, fast computing aggregates, predicting unknown data, or issuing
alarms. To this aim, this paper introduces a recently defined spatio-temporal pattern,
called trend cluster, and its multiple applications to summarize, interpolate and de-
tect outliers in sensor network data. As an example, we illustrate the application of
trend cluster discovery to air climate data monitoring.
Abstract I sensori sono oggigiorno installati ovunque, al fine di supportare appli-
cazioni in tempo-reale. Essi collezionano periodicamente dati per un certo numero
di attributi (per es., temperatura e umidità). Le applicazioni tipicamente richiedono
il monitoraggio di questi dati, la computazione veloce di loro aggregati, la predi-
zione di valori mancanti o la generazione di allarmi. A tal fine, questo articolo in-
troduce un nuovo pattern di dati spazio-temporale, chiamato trend cluster (raggrup-
pamento di tendenza), e le sue molteplici applicazioni nel creare sommari, calcolare
interpolazioni e scoprire anomalie in dati provenienti da una rete di sensori. Come
esempio, si illustra una applicazione della scoperta di trend cluster al monitoraggio
di dati climatici.
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1 Introduction

Nowadays, the pervasive geosensor networks which measure several physical vari-
ables (e.g., atmospheric temperature, pressure, humidity or energy production) en-
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able us to monitor and study dynamic physical phenomena at granularity details
that were impossible before. A major challenge posed by a geosensor network is
to combine the sensor nodes in computational infrastructures, which are able to
produce globally meaningful information from data obtained by individual sensor
nodes. These infrastructures should use appropriate primitives to account for both
the spatial dimension of data, which determines the ground location of a sensor, and
the temporal dimension of data, which determines the ground time of a reading.

A recently investigated primitive is the trend cluster. It models a cluster of neigh-
bour sensors, which measure data whose temporal variation is similar over a time
window. A trend cluster is a local pattern which accounts for the spatial autocorre-
lation of a geophysical variable for a given time window. Spatially related sensors
are expected to measure similar values along time. When this happens, information
generated by sensors can be efficiently summarized by a set of trend clusters. The
computational efficiency of the summarization can be improved by an incremental
strategy which continuously maintain the current set of trend clusters as the time
window slides. Trend clusters can also be used for spatio-temporal interpolation,
that is, to estimate unknown data in a specific geographical location at a specific
time point. Finally, their analysis is also useful to detect possible changes in the
underlying data distribution as well as anomalies.

In this work, we report recent studies [1, 2, 3, 4] on the discovery of trend clus-
ters in data generated by sensor networks, and we describe their use in algorithms
developed for summarization, interpolation and anomaly detection. We also discuss
an application to monitoring air climate data.

2 Basics

Let us consider a numeric geophysical field Z, periodically sampled at the discrete
time points of a time line T , from the fixed-to ground sensors of a network K. A
data snapshot 〈K(t),zK(t)〉 is the set of observations sampled for Z from the set of
sensors K(t)⊆ K, which are active at the time point t ∈ T . zK(t) is the field function
zK(t) : Kt 7→ Z that assigns the sensor location (x,y)∈Kt to the value here observed
for Z at t. A sensor data stream z(T,K) is a stream of data snapshots, which arrive
at the consecutive time points of T , that is,

〈K(t1),zK(t1)〉,〈K(t2),zK(t2)〉, . . ..

A trend cluster is a spatio-temporal pattern T , initially defined in [2], for the
summarization of a sensor data stream. It is a triple (H,C ,Z ), where: (1) H is a
time interval [tstart , tend ] such that tstart , tend ∈ T and tstart < tend ; (2) C ⊆K is a set of
“spatially close” sensors that sample data of Z such that they show “similar trend”
along the time horizon H; (3) Z is the time series of the trend data sampled from
sensors of C along H. Each point in the time series is a set of aggregating statistics
(e.g. mean, minimum, maximum) of data measured by the sensors in C .
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Fig. 1 SUMATRA framework.

In [2, 3], we present an algorithm to discover the trend cluster model of a sen-
sor data stream by resorting to the count based model. This model decomposes a
stream into consecutive (non-overlapping) windows of fixed length. Trend clusters,
discovered with the count-based model, are used for both the summarization [2]and
the interpolation [3] of the stream. In [4], we describe an incremental learning strat-
egy to discover the trend cluster model of a sensor data stream by resorting to the
sliding window model. This is a first-in, first-out data structure, so that when a snap-
shot is acquired and inserted in the window, the oldest snapshot is discarded. Trend
clusters, discovered with the sliding-window model, are used for the detection and
classification of outliers in the stream [2].

3 Summarization

SUMATRA [1, 2] is a summarization algorithm that allows us to process a sensor
data stream by computing trend clusters along the horizon time of a count-based
window (see Figure 1). The summarization process is three-stepped: (1) the snap-
shots of a window are collected; (2) the trend clusters are computed; (3) the window
is discarded, while trend clusters are stored in the database. Input parameters of
trend cluster discovery are the window length w, the threshold on spatial closeness
d and the similarity threshold for the trend δ .

The discovery process is triggered each time a new data window is acquired from
the stream. An unclustered sensor u is randomly chosen as the seed of a new empty
cluster C . Then u is added to C and the trend polyline prototype Z (i.e. the time
series measured by u over the window time horizon) is initialized. Both C and Z
are expanded by using u as the seed of the expansion process. The expanded trend
cluster is added to the pattern set, while the clustering process is iteratively repeated
until all sensors are assigned to a cluster. The expansion process of [C ,Z ] is driven
by a seed sensor u and it is recursively defined. First, the neighborhood η(u) is
constructed by considering the unclustered sensors that are distant less than d from
the seed. Then, the candidate cluster tempC = C ∪η(u) and the associated trend
polyline prototype tempZ (i.e. time series of the cluster aggregates over window
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time horizon) are computed. The trend purity of [tempC , tempZ ] is computed. If
the trend purity property is satisfied, then sensors of η(u) are clustered into C and
the last computed tempZ is assigned to Z . Otherwise, the addition of each sensor
of η(u) to C is evaluated node-by-node. In both cases, sensors newly clustered in
C are iteratively chosen as seeds to continue the expansion process. The expansion
process stops if no new sensor is added to the cluster. In this process, the trend purity
of a trend cluster [C ,Z ] is computed as follows:

purity([C ,Z ]) =

true iff 1
|C | ∑

u∈C
sim(u,Z ) = 1

f alse otherwise
, (1)

where |C | denotes the cardinality of C and sim(u,Z ) = 1 if ∀t = 1, . . . ,w : |u[t]−
z[t]| ≤ δ , 0 otherwise.

4 Interpolation

The interpolation algorithm TRECI [1, 3] uses trend clusters to estimate unknown
measures of the sensor data stream in a location or time point of interest. It oper-
ates in two phases. The on-line phase (see Figure 2(a)) consumes data snapshots
and calls SUMATRA for the trend cluster discovery. For each trend cluster, a shape-
dependent sample of clustered sensors is extracted. The sampling algorithm is de-
signed to keep only the information which is useful to sketch the real spatial extent
of the clustered region. At the same time, a (polynomial) regression model of the
time law underlying the trend time series is determined by resorting to a forward
selection-based computation, and only regression coefficients are used as a model
of the trend. The off-line phase (see Figure 2(b)), which is repeatable, retrieves the
spatio-temporal knowledge surrounding the space-time point to be interpolated from
the database. This knowledge is used to determine an Inverse Distance Weighting
(IDW) based estimate of the field.

5 Outlier detection and classification

SWOD [4] is a semi-supervised algorithm to detect and classify outliers in a sensor
data stream. The entire process, illustrated in Figure 3, is iterated when a data snap-
shot is acquired from the stream. The trend cluster model is incrementally built with
the sliding window model and a forecasting model is computed from trend-clusters.
Then, for each sensor the observed value is compared to its forecast, in order to iden-
tify the outliers. Since we use three exponential smoothing models (Brown, Holt and
Winters), we select the one that minimizes the mean square of residuals maintained
for the trend time. The outliers are classified as changes and anomalies. Each de-
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(a) TRECI ONLINE

(b) TRECI OFFLINE

Fig. 2 TRECI: on-line summarization step and off-line interpolation step.

Fig. 3 SWOD: outlier detection and classification.

tected outlier is classified according to a specific interpretation of an anomaly and
a data change. Anomalies are isolated abnormal event. Even when they come in
groups or prolonged chunks, we cannot expect any specific spatial correlation be-
tween them. Changes are pervasive modifications of the statistical properties of the
data. The classification process is three-phased.

In the first phase, we look for border outliers, which are inliers with the forecast-
ing model of a neighbor sensor (Figures 4(a)-4(b). They are migrant sensors, so they
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(a) predictions (b) migrants (c) trend changes (d) anomalies

Fig. 4 Outlier classification.

are simply assigned to the model of the migration area. In the second phase, we look
for changing sensors in the set of spatially correlated outliers, i.e. outliers that can
be grouped in spatial clusters (Figure 4(c)). Outliers grouped in a dense cluster are
classified as changes and removed from the bundle of outliers. Since the forecasting
model of these sensors is no longer accurate, they are put in a quarantine period until
a window of snapshots is collected and coefficients of a new model are estimated.
Finally, in the third phase, we classify left-over outliers as anomalies (Figure 4(d)
and correct them in the snapshot by using the value predicted by the forecasting
model that is used in the outlier detection phase. Once outliers are classified, the
trend cluster model is updated according to an incremental learning strategy that
slides the trend cluster model and updates it to fit the snapshot processed in the last
round. This strategy performs a merge-and-split procedure that operates with each
anomaly corrected in the snapshot as well as each migrant sensor re-assigned to the
destination trend cluster.

6 The application

We illustrate an application of the trend cluster discovery to monitor air climate
data measured across South America. We consider monthly-mean temperature (in
◦C) recorded between 1960 and 1990 over a 0.5 degree by 0.5 degree of lati-
tude/longitude grid of South America1. The sensors are centered on 0.25 degrees
for a total of 6477 sensors. The temperature ranges in [−7.6÷32.9]◦C. We discover
trend clusters with d = 0.5o and use them for summarization, interpolation, outlier
detection and classification.

First, we analyze the accuracy, efficiency and summarization degree of the trend
cluster model, which is discovered by varying the window length between 1, 6, 12
and 24, as well as the similarity threshold δ between 2oC, 4oC and 8oC. The accu-
racy is measured by the root mean square error (see Figure 5(a)), while the efficiency
is measured by both the time (in millisecs) spent summarizing a window (see Figure
5(b)) and the computation time (in millisecs) spent summarizing the entire stream

1 http://climate.geog.udel.edu/∼climate/html pages/archive.html
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(a) rmse (b) window time (c) stream time (d) summary degree

Fig. 5 South American Airclimate: summarization results.

Table 1 South American Airclimate: interpolation error (rmse) computed on the whole stream.

Baseline 50%Sensors switching-off 50% Time points jumping-on 50% Sensors switching-off
and 50% time points jumping-on

1.97 2.48 2.72 2.90

(see Figure 5(c)). The summarizing degree is the ratio of the size of the trend cluster
summary to the size of the original stream (see Figure 5(d)). Results on accuracy
reveal that the root mean square error (rmse) is always significantly below δ . The
trend clusters discovered window-by-window (w > 1) summarize a stream better
than spatial clusters, discovered snapshot-by-snapshot (w = 1). By enlarging w the
accuracy of the summary increases. Results on computation times reveal that com-
puting trend clusters in a window is more time-consuming than computing spatial
clusters in a snapshot. On the other hand, the total time spent processing the entire
stream and computing spatial clusters at each snapshot is higher than the time spent
computing trend clusters (independently of the window size). Finally, results on
summarization degree show that by increasing δ , although the accuracy of summa-
rization decreases slightly, the size of the compressed stream is much lower. Further
results are reported in [2].

Second, we analyze the accuracy of the IDW-based interpolation that is yield
with a trend cluster model discovered with w = 12 and δ = 4. Several experimental
settings are considered. First, 50% of the sensors is switched-off in each snapshot
for the trend cluster discovery. Second, 50% of snapshots is jumped in the streaming
line for the trend cluster discovery. Finally, 50% of the sensors is switched-off and
50% of the snapshots is jumped at the same time for the trend cluster discovery. The
error performed in interpolating the stream as a whole is compared to the baseline
case where no sensor is switched-off and no snapshot is jumped. Results, collected
in Table 1, reveal that the interpolation error (rmse) is below δ when both new spatial
and new temporal points are considered in the interpolation phase (i.e. both sensors
are switched-off in the network and snapshots are jumped in the streaming line of
the summarization phase). This result confirms the effectiveness of the interpolation
even when a sparse network is processed. Further results are reported in [2].
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Table 2 South American Airclimate: outlier detection and classification. Average computation
time (in msecs), maximum number of sensors per snapshot, number of anomalies (A), migration
change (M) and spatial pervasive change (C). Averages are computed per snapshot.

SWOD TSA(ES)
time Nr of sensors A M C time A

1329.6 6477 3.873 176.857 19.634 157.9 70.968

Finally, we analyze the trend cluster model discovered with the sliding window
model (window length w = 12 and similarity threshold δ = 4) and we evaluate
the outlier detection and classification based on this model. We compare outliers
detected by using the trend cluster model (SWOD) to the outliers detected the ex-
ponential smoothing model learned sensor by sensor (TSA-ES). Results reported in
Table 2 reveal that the number of outliers classified as anomalies is lower in SWOD,
which detects more data changes. The analysis of the computation times reveals that
the SWOD discovery process of a data snapshot is fast, even when the network con-
sists of thousands of sensors. Further results, reported in [4], investigate the accuracy
of the outlier and change detection in artificial data streams.

7 Conclusion

We have presented a spatio-temporal pattern, called trend cluster, which is local
both in space and time and accounts for both spatial and temporal autocorrelation.
We have shown how this pattern can be efficiently discovered from streaming sen-
sor data by resorting to the count-based stream model, as well as the sliding window
stream model. Interestingly, it is useful for various tasks (summarization, interpola-
tion and outlier detection).
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