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Abstract This contribution studies the calibration approach recently proposed in [2]

for predictive densities. We consider a set of simulated experiments in order to study

the effectiveness of the method.

Abstract Questo contributo studia un approccio alla calibrazione delle densità pre-

visive recentemente proposto in [2]. Viene considerata una serie di esperimenti in

simulazione al fine di verificare l’efficienza del metodo proposto.
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1 Introduction

The use of predictive densities in providing forecast on some economic quantities

of interest received a lot of attention in the recent years. An increasing stream of lit-

erature focused on the optimal combination of predictive densities (e.g., see [9], [6],

[1], and [5]). Another important issue in density forecast relates to the calibration

property of the density (e.g., see [3] and [4]). The properties of the predictive den-

sities and calibration procedures have been recently investigated in [7] and [8]. [2]

extended the beta calibration approach of [8]. They proposed a general calibration

and combination approach that estimates calibration parameters and combination

weights in different and possibly overlapping regions of the support set of the cal-

ibrated predictive density. More specifically they suggested the use of mixtures of
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beta densities to obtain a better calibration of the predictive density; and also showed

that the mixture can be written in terms of continuous composition of local optimal

linear combination schemes, with weights which depend on the variable of interest.

In this contribution we assume a linear combination scheme with equal weights and

focus on the calibration part of the approach proposed in [2]. Section 2 presents the

calibration model and section 3 illustrates the results from the simulation experi-

ments.

2 A calibration model

Let Fjt(yt), j = 1, . . . ,M, be a set of predictive cumulative density functions (cdf)

from different models available at time t −1, for a variable of interest yt , and condi-

tional on the information set, Ft−1, available at time t − 1. We assume the variable

of interest is continuous, and that each predictive distribution admits a probability

density function (pdf) f jt(yt).
Following [7] and [8], a calibrated predictive cdf can be defined by a continuous

transform of the combined density. In this contribution we assume a linear combi-

nation model with equal weights, that is ω j = 1/M for j = 1, . . . ,M. The combined

cdf is

H(yt) =
M

∑
i=1

ωiFit(yt) (1)

with pdf

h(yt) =
M

∑
i=1

ωi fit(yt) (2)

The calibration scheme proposed in [2] is

Ft(yt) = g(H(yt)) , (3)

where g : [0,1] 7→ [0,1] is the following calibration function

ft(yt) =
2

∑
k=1

wk fαk ,βk
(H(yt))h(yt), (4)

where fα ,β (x) the pdf of a beta distribution, Be(α,β ), evaluated at x, w1 and

w2 = 1−w1 are mixture probabilities and (α1,α2) and (β1,β2) are the calibration

parameters.

The likelihood function for this calibration model is

L(Y |θ ) =
T

∏
t=1

(

2

∑
k=1

wk fαk ,βk
(H(yt)h(yt)

)

(5)
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with θ = (w1,w2,α1,α2,β1,β2). In the linear pooling case, the log-score rule asso-

ciated to this likelihood is not a weighted logarithmic scoring rule, which is an im-

proper rule, and is instead a weighted sum of densities. We follow here a Bayesian

approach and apply the estimation algorithm presented in [2].

3 A numerical study

In the simulation study we assume that a combined predictive distribution can be

obtained from the two normal predictive distributions with different location and

scale parameters, N (−1,1) and N (2,2), where N (µ ,σ2) denotes the normal

distribution with location µ and scale σ . Moreover, we assume that the data are

generated by the following mixture of the three normal distributions

yt
i.i.d.
∼

1

6
N (−1,0.4)+

2

6
N (0,0.4)+

3

6
N (2,0.4), t = 1, . . . ,500.

Let us denote with ϕ(x|µ ,σ2) and Φ(x|µ ,σ2) the pdf and cdf respectively of a

N (µ ,σ2). We compare the following alternative models

1. Ideal model (I)

f (y) = p1ϕ(y|− 2,0.4)+ p2ϕ(y|2,0.4)+ p3ϕ(y|2,0.4),

where (p1, p2, p3) are the mixture probabilities used in the data generating pro-

cess.

2. Non-calibrated model (NC)

f (y|θ ) = 0.5ϕ(y|− 1,1)+ 0.5ϕ(y|2,2),

3. Beta calibration model (BC)

f (y|θ ) = fα ,β (H(y))h(y),

where θ = (α,β ), h(y) = 0.5ϕ(y|− 1,1)+ 0.5ϕ(y|2,2) and H(y) = 0.5Φ(y|−
1,1)+ 0.5Φ(y|2,2).

4. Two-component beta mixture calibration model (BMC)

f (y|θ ) =
(

w fα1,β1
(H(y|ω))+ (1−w) fα2,β2

(H(y|ω))
)

h(y|ω),

where θ = (w,α1,α2,β1,β2), and h(y) and H(y) have been defined as in the BC

model.

The top graph of Fig. 1 shows the empirical cdfs of different sequences of prob-

ability integral transforms (PITs)

zt =

∫ yt

−∞
f (y)dy, t = 1, . . . ,500, (6)
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Fig. 1 Cumulative density functions of the PITs (top) for different calibration models and the Beta

calibration functions for the BC and BMC models.

where f (y) is the pdf of one of the models: I, NC, BC, and BMC given above. In

all the experiments, the PITs of the non-calibrated model (red lines) are far from

those of the ideal model (black lines). The BC does not provide well calibrated

densities. The BC cdf (green line) is closer to uniformity than the NC model, but it

has difficulties in calibrating the density in some parts of the support set. The two-

component BMC is providing instead better calibrated PITs, since the are closer to

the one of the ideal model.

The two-component beta calibration achieves a more flexible deformation of the

combination cdf providing a calibrated cdf (magenta line) which is closer to the

uniform cdf. The deformation obtained with the beta density and the beta mixture,

in the different part of the support set are given in the bottom graph of Fig. 1.
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