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Abstract Dynamic models for realized covariance matrices are proposed, which
include a secular component that captures the changing levels of realized variances
and correlations. They generalize the realized DCC models of Bauwens et al. (2012),
where the long term level is assumed to be constant. The long term component is
specified either as a nonparametric function or as a MIDAS term. Estimation can be
done in steps for large dimensional matrices.
Abstract Vengono proposti dei modelli dinamici per matrici di covarianza real-
izzate, che includono una componente capace di catturare i movimenti di lungo
periodo delle varianze e correlazioni realizzate. Tali modelli generalizzano i mod-
elli DCC realizzati di Bauwens et al. (2012), dove il livello di lungo periodo di tali
variabili si assume essere costante. La componente di lungo periodo può essere
specificata in maniera non parametrica o usando una struttura MIDAS. La stima
può essere fatta in più passi per matrici di dimensione elevata.
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Université Catholique de Louvain, Center for Operations Research and Economet-
rics (CORE), 34, Voie du Roman Pays B-1348 Louvain-la-Neuve (Belgium), e-mail:
manuela.braione@uclouvain.be

Giuseppe Storti
Università di Salerno, Dipartimento di Scienze Economiche e Statistiche, Via Giovanni Paolo II,
132, 84084 Fisciano (Italy), e-mail: storti@unisa.it

1



2 Luc Bauwens, Manuela Braione and Giuseppe Storti

1 Introduction

In recent years financial econometrics literature has been paying growing attention
to the modelling of time series of realized covariance matrices. A review of these
contributions can be found in Bauwens et al. (2012). Standard financial applications
require the prediction of vast-dimensional covariance matrices leading to the rise of
two relevant problems related to the number of parameters to be estimated and to
the positive definiteness of the estimated conditional covariance matrices. First, at
the model building stage, to limit the inflation of the number of estimated parame-
ters, severe restrictions on the model dynamics must be imposed. Also, in order to
further limit the number of parameters to be estimated, targeting procedures should
be applied. In addition the chosen parameterization must guarantee the positive def-
initeness of the estimated covariance matrices.
The models that have been so far proposed imply that realized covariances are re-
verting to a constant long run level which is, in many settings, a questionable as-
sumption. Under this respect, several papers provide empirical evidence in this di-
rection proposing structural models that decompose volatility in two components
related to long and short run movements. In the classical time series literature
on GARCH models, examples of such models for univariate volatilities include
the Spline-GARCH model by Engle and Rangel (2008) and, more recently, the
GARCH-MIDAS model by Engle et al. (2013). Both these models identify a long
term volatility component separated from a short term one and, in both cases, the
two components are combined according to a multiplicative scheme. The main dif-
ference between these two approaches lies in the way the long term component
is specified. In the first case it is modelled as a spline while in the latter model a
MIDAS (see e.g. Engle et al., 2013) structure is assumed. In the multivariate frame-
work, component volatility models have been proposed by Hafner and Linton (2010)
and Colacito et al. (2011). The first model assumes a multiplicative structure, sim-
ilar to that mentioned for the univariate case, where the long term component is
estimated by a matrix-variate kernel smoother. Differently, the Component DCC
model by Colacito et al. (2011) assumes a GARCH-MIDAS structure for the uni-
variate volatilities while, for conditional correlations, the long term component is
introduced as a time varying intercept, following a MIDAS model, in the dynamic
updating equation for the rescaled conditional correlation.
In this paper our contribution is to propose some novel model specifications that
allow to decompose the dynamics of realized covariance matrices into different
components corresponding to different time frequencies. Section 2 illustrates the
proposed models and the associated inference procedures while Section 3 reports
the results of an application to a simulated dataset. Section 4 concludes.
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2 Dynamic component models for realized covariance matrices

2.1 The general framework

Let Ct be a sequence of a positive definite and symmetric (PDS) realized covariance
matrices of order n, for t = 1, . . . ,T . We assume that conditional on past information
It−1 consisting of Cτ for τ ≤ t−1, and for all t, Ct follows a n-dimensional central
Wishart distribution and denote this assumption by

Ct |It−1 ∼Wn(ν ,St/ν), (1)

where ν (> n− 1) is the degrees of freedom parameter and St/ν is the PDS scale
matrix of order n. Equation (1) defines a generic conditional autoregressive Wishart
(CAW) model, as proposed by Golosnoy et al. (2012). From the properties of the
Wishart distribution it follows that

E(Ct |It−1) := Et−1(Ct) = St , (2)

so that the i, j-th element of St is defined as the conditional covariance between
returns on assets i and j, cov(ri,t ,r j,t |It−1), for i, j = 1, . . . ,n, ri,t denoting the loga-
rithmic return on asset i between the ends of periods t−1 and t.
We can incorporate a long term component in the specification of the expected real-
ized covariance matrix by further decomposing St as follows:

St = LtS∗t L
′
t (3)

S∗t = D∗t R∗t D∗t , (4)

where D∗t = {diag(S∗t )}1/2. The matrix S∗t is the short term component of the condi-
tional covariance matrix, and R∗t is the corresponding short term correlation matrix,
whereas Lt is a matrix square root of the long term component of the covariance
matrix that will be denoted by Mt .

2.2 A multiplicative model with a nonparametric long term
component

The long run component Mt can be specified in two different ways. First, inspired
by the component approach introduced in multivariate GARCH models by Hafner
and Linton (2010) for conditional covariances and by Bauwens et al. (2013) for
conditional correlations, the long run component matrix is assumed to be a function
of the rescaled time index:

Mt = LtL
′
t = M(t/T ). (5)
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One can also assume that the matrix Mt is a function of an observable variable
instead of rescaled time. Such a variable should be included in the information set
It−1 and be lagged, so that we should write then Mt = Mt(xt−1). A market volatility
index (such as the VIX) could be considered as a relevant variable for xt .

For identification, we assume that E(S∗t )= In. In order to introduce this constraint
into the model, we need to enforce firstly that the dynamic equations for the diagonal
elements of S∗ii,t (the short term conditional variances) are specified in such a way
that these conditional variances are reverting to a unit value. For example, such an
equation, is

S∗ii,t = (1− γi−δi)+ γiC∗ii,t−1 +δiS∗ii,t−1, (6)

where C∗ii,t−1 is the i-th diagonal element of C∗t , defined in (9). Secondly, we must
impose that the dynamic equation for R∗t is specified in such a way that R∗t is revert-
ing to an identity matrix In

R∗t = (1−α−β )+αP∗t−1 +βR∗t−1, (7)

where
P∗t = {diag(C∗t )}−1/2C∗t {diag(C∗t )}−1/2 (8)

and
C∗t = L−1

t Ct(L−1
t )

′
. (9)

The matrix C∗t is the realized covariance matrix purged of its long term component,
and the matrix P∗t is the corresponding correlation matrix.

For large dimensions, the estimation can be performed more easily in three steps.
In the first step, due to the nonparametric specification of Mt , this set of matrices can
be consistently estimated following the approach described in Hafner and Linton
(2010) and Bauwens et al. (2013). Let M̂t denote such a consistent estimator of Mt ,
and L̂t such that L̂t L̂′t = M̂t . An example is the Nadaraya-Watson estimator of Mt
given by

M̂t(τ) =
∑

T
t=1 Kh(

t
T − τ)Ct

∑
T
t=1 Kh(

t
T − τ)

, (10)

where τ ∈ [0,1], Kh(.)=K(./h)/h, K(.) being a kernel function and h the bandwidth
parameter. This estimator uses the same bandwidth for all elements of the covariance
matrix. Conditional variance and correlation parameters are then estimated in the
second and third step, respectively, by Quasi Maximum Likelihood.

2.3 A multiplicative model with a MIDAS long term component

An alternative way of modelling the long run component of the conditional vari-
ances and covariances or correlations is via the mixed data sampling (MIDAS) ap-
proach. In particular, the long run time varying level matrix Mt = LtL′t of (3) is
assumed to have the following MIDAS parameterization proposed by Golosnoy et
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al. (2012):

Mt = Λ +θ

L

∑
l=1

φl(ω)C̄(m)
t,l , (11)

where C̄(m)
t,l = ∑

t−m(l−1)−1
τ=t−ml Cτ

1. The latter matrix can also be replaced by Ct−l (using
a larger value of the lag order L). In (11) θ is a positive scalar parameter and φl(ω)
is an a priori specified weight function (e.g. a beta function), with weights adding
up to one and depending on the parameter vector ω = (ω1 ω2) for beta weights
2. Λ is a symmetric and positive-definite matrix of constant parameters that must
be estimated jointly with θ and ω . The model for R∗t and the short run conditional
variances can be specified in several ways, for example like in (6) and (7). The
model’s parameters can be estimated by maximizing a likelihood function based on
the Wishart assumption. Indeed it can be shown that if the conditional expectation
of Ct is correctly specified, at the true value of the parameters the score of the log-
likelihood function is a martingale difference sequence (MDS), so that this function
has a quasi-likelihood interpretation and the estimator is consistent independently
from the Wishart assumption (assuming the usual other conditions).
One difficulty of the specification of Mt in (11) is the proliferation of parameters in
large dimensions, due to the matrix Λ . To overcome this problem a targeting pro-
cedure could be applied. If θ is equal to zero, the long term component is constant.
In this case targeting can be performed by an approach similar to that pursued by
Bauwens at al. (2012). Differently, when θ 6= 0, an iterative procedure is required.
If consistent estimators θ̂ , ω̂ , and M̂t were available, then

Λ̂ = T−1
T

∑
t=1

(
M̂t − θ̂

L

∑
l=1

φl(ω̂)C̄(m)
t,l

)
(12)

could be used as a targeting estimator of Λ . This issue is currently left for future
research.

3 Empirical results

In this section, in order to assess the effectiveness of the proposed approach for
capturing slowly varying long-run volatility components, we present the results of a
simulation exercise. In particular we simulate a single series of T = 5000 observa-
tion from a bivariate multiplicative component model where the long run component
is given by a deterministic function specified, following Engle (2002), as a constant,

1 See equation (28) in Golosnoy et al. (2012). For example, C̄(22)
t,1 is the realized covariance matrix

computed over m days from day t−22 to day t−1, C̄(22)
t,2 from day t−44 to t−23, etc.

2 The beta weight function, normalized so that the sum of the weights is equal to one, is equal
to φl(ω) = [(l/L)ω1−1(1− l/L)ω2−1]/[∑L

j=1( j/L)ω1−1(1− j/L)ω2−1], where ω1 and ω2 are both
positive parameters and determine the shape of the weight function.
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a step, a sine and a fast sine function. We have then fitted both the non-parametric
and the MIDAS component models to the simulated data. Fig. 1 reports the simu-
lated conditional variance for one of the process components together with the long
run components estimated by the MIDAS and non-parametric approach. The results
show that in both cases the estimated long-run components are able to closely follow
the simulated trend.
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Fig. 1 Simulated and estimated volatilities from a multiplicative model (T=5000, n=2).
K1S=kernel one sided, Kernel=kernel two-sided, C=simulated data, MIDAS=MIDAS estimate,
True=simulated trend.

4 Concluding remarks

In this paper some structural models for realized covariance matrices have been
proposed. The results of an empirical example show that the model are able to sat-
isfactorily reproduce a wide range of long-run behaviours. Our projects for future
research include the derivation of a targeting procedure for the estimation of large
dimensional models. Also an additive component models is currently under study.
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