Log-mean linear regression models for assessing
the effect of HIV-infection on multimorbidity in
a case-control study

Modelli di regressione log-mean linear per valutare
Deffetto del virus HIV sulla multimorbidita in uno studio
caso-controllo

Monia Lupparelli and Alberto Roverato

Abstract We propose a multivariate regression approach for binary variables based
on the log-mean linear link function for the response variables. This approach has
shown to provide useful insights for assessing the effect of HIV-infection on mul-
timorbidity, defined as the occurrence of co-existing noninfectious diseases for a
sample of patients deriving from a case-control study. The coefficients of these re-
gression models are log-linear combinations of relative risks and we show that sub-
models identified by zero regression coefficients encode relevant hypotheses for the
considered application.

Abstract Proponiamo un metodo di regressione multivariata per variabili binarie
basato sulla funzione link log-mean linear per le variabili risposta. Questo approc-
cio & molto utile per valutare 1’effetto del virus HIV sulla multimorbidita, intesa
come il verificarsi congiunto di pill patologie non infettive in un campione di in-
dividui derivanti da uno studio caso-controllo. I coefficienti di regressione sono
combinazioni log-lineari di rischi relativi e sottomodelli definiti da zero parametri
definiscono ipotesi di interesse in questa applicazione.
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1 Introduction

The co-occurrence of two or more chronic medical conditions in one person is gen-
erally defined as multimorbidity. It is well-known that multimorbidity correlates
with age and, furthermore, that patients affected by HIV show an increased preva-
lence of noninfectious comorbidities, compared with the general population. The
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effect of HIV-infection on noninfectious diseases was studied by [3] in a cross-
sectional retrospective case-control study with 25% of cases and 75% of controls.
Patients affected by HIV and older than 18 were consecutively enrolled at the
Metabolic Clinic of Modena University (IT) from 2002 to 2009. The study was
conducted including control subjects matched according to some criteria (e.g. age
and gender) and selected from the CINECA ARNO Observational Database. Let ¥,
(Bone Fracture), Y; (Diabete Mellitus), Y. (Cardiovascular Disease) and Y, (Renal
Disease) be four binary random variables representing noninfectious diseases taking
value 1 for the occurrence of each disease and 0 otherwise. [3] analyzed the effect of
HIV-infection by means of logistic regressions on univariate responses representing
single diseases. Nevertheless, multimorbidity is characterized by the complex inter-
action of co-existing diseases, then the role of HIV can be better explored through
a multivariate regression approach rather than univariate ones. Our intent is investi-
gating the effect of HIV on disease patterns represented by means of interactions of
responses. Therefore, we are mainly interested in a multivariate regression approach
for modelling the joint dependence of response variables on a set of covariates.

The statistical properties of a broad family of linear predictor models for mul-
tivariate categorical responses were investigated by [4] who also implemented an
algorithm for maximum likelihood estimation. This family of models has sys-
tematic components: a link function of the observed cell counts deriving from
a Multinomial-Poisson sampling scheme, a regression design generally defined
through a design matrix and a set of regression coefficients. From the model in-
terpretability perspective, the choice of a suitable link function is a crucial aspect
because it defines (i) the response interaction and, therefore, (ii) the regression co-
efficient interpretation. In particular, we discuss and illustrate the main features of
two regression approaches based on two distinct link functions which both belong
to the class of models defined in [4].

For our analysis, we preliminary consider the class of regression models defined
by the log-mean (LM) link function also used by [1] to define chain graph models.
In LM regressions (i) the response interactions are the log-probability of the occur-
rence of disease patterns and (ii) the regression coefficients are the log-relative risk
of these occurrences given the exposure to the HIV risk factor. This approach, even
if appealing for the parameter interpretability, might be limited for model selection
because testing zero regression coefficients does not correspond to hypotheses of in-
terest in this context. Then, we propose a regression approach based on the log-mean
linear (LML) link function inspired by the parameterization recently developed by
[6]. Setting the regression coefficients to zero in LML regressions defines models of
interest which have a natural interpretation in terms of additive log-relative risks.

2 The LM regression model

Let Yy = (Y,),ev be a binary random vector of response variables taking values
yv € Sy, with Fy = {0, I}W| and let H be a binary covariate taking values h € .,
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with .# = {0, 1}. Let Zy denote a square matrix of size 2IVI with entries indexed by
the subsets of V x V such that Zp r = 1(D C F); its inverse My = Z;, !'is called the
Mobius matrix, see [6] for technical details. For |V| = 1, we adopt the short notation
Z and M without the subscript for the corresponding (2 x 2) square matrices.

Each random variable Yy |[{H = h} follows a multivariate Bernoulli distribution
and let © = {7mp(h)}pcy ne.» be the matrix where each column vector 7(h) of size
2IV!is the strictly positive probability parameter of ¥y |{H = h} with generic element
np(h) = P(Yp = 1p,Y5 = 0p|H = h). The mean parameter of the same distribution
is given by the column vector p(h) of the matrix g = Zy 7 with generic element
pp(h) = P(Yp = 1p|H = h).

The saturated LM regression model for the conditional distribution of Yy |H is
characterized by the expansion

logup(h))= Y, BY(H), hes, (1)

Wed:hW<h

for every D C V. Let B*) = log(1)M be the matrix of regression coefficients where,
for each subset D of V, the generic elements are [31()“ >(0) =logP(Yp = 1p|H =0)
and ﬁgl ) (1) which is the log-relative risk

P(Yp=1p/H=1)
P(YD = 1D|H:O)'

This model is based on a regression design also used by [2] to define multivariate
logistic regression models which still belong to the regression family of [4]; see [5]
for an application to regression chain graphs.

For the multimorbidity analysis which involves four diseases Yy = {Y;,,Yy,Y., Y, }
as response variables and the covariate H (taking value 1 when the HIV-infection
is present and O otherwise), the LM regression approach is appealing because the
model parameters represent measures of interest: (i) the response interactions are the
log-probabilities of multimorbidity events, i.e. the occurrence of different disease
patterns, and (ii) the coefficients B*) measure the effect of HIV on each pattern in
terms of log-relative risk.

Nevertheless, this approach might be limited for model selection because, for
any disease pattern Yp with D C V, testing both the null model by means of
ﬁg” (0)= ﬁgm (1) = 0 and the fixed effect model by means of ﬁlgm (1) =0is not of
interest in this contest. The former would imply a zero value for the log-mean prob-
ability log(up(h)) for any i € .# and, therefore, a not strictly positive probability
parameter 7(h) which is not feasible for the distribution of Yy |{H = h}. The latter
would imply the HIV-infection has no effect on the occurrence of disease patterns, a
hypothesis which is extremely rare because we a priori know the HIV has a role on
these multimorbidity events and our main interest is in assessing this effect. Hence,
we propose a LML link function for our regression modelling based on the param-
eterization developed by [6]. In LML regressions both the null and the fixed effect
models define hypotheses of interest which are useful for model selection.

logRRp(H) = log

@)
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3 LML regression models for multimorbidity analysis

The saturated LML regression model for the conditional distribution of Yy |H is
characterized by the expansion

wh) = Y BJWH), hers, 3)
Wed:nW<h

for every D C V. The link function is yp(h) = Yy p(—1)P\?og (i (k) and
ﬁ<7> = YM is the matrix of regression coefficients. Exploiting the linear mapping
between the LML and the LM parameterization, it can be easily verified that there
is also a linear mapping between the coefficients of the LML and the LM regression;
see [6] for technical details about the LML parameterization and the mapping with
the LM one. Then,

B =z, B, 4)

such that, forevery DCV and h € .7,

Bl =Y By, By =Y (~1)P\PIg ). )

D'CD D'CD

We remark that the linear mapping between these regression coefficients is an im-
portant and a peculiar feature of the LML regression approach which derives from
the fact that the inverse mapping between the LML parameterization and the prob-
ability parameter can be explicitly written in analytic form; see [6]. This property is
not so common in parameterizations for categorical variables, with the exception of
some relevant cases as the well-known log-linear parameterization.

The interpretation of the LML regression model is less intuitive than the LM one
because (i) the response interactions are log-linear combinations of mean probabili-
ties and (ii) the regression coefficients are log-linear combinations of relative risks.
Nevertheless, model selection within the LML approach can be easily implemented
testing for each Yp|H, with D C V, both the null and the fixed effect model which
have a straightforward and useful interpretation in the multimorbidity analysis.

A null LML regression model, defined by ﬁlgw (0) = ﬁlgw(l) =0 for any D C
V, implies yp(0) = yp(1) = 0, and, in the special case of |D| = 2, a conditional
independence model. For instance, let D = {b,d}, the null model implies ¥}, L1 Y;|H;
see [6] for a proof.

A fixed effect LML regression model, defined by ﬁlgw (1) =0 for any D C V,
implies an additive log-relative risk for the outcome Yp because, from (5) follows
that ﬁém(l) =Ypcp ﬁgﬁ(l). For instance, let D = {b,d}, the fixed effect model
implies

logRRy;, 4y (H) = logRR,(H) +10gRR(H). (6)
Assumption in (6) is weaker than conditional independence, because Y}, and Y; are

not independent either in cases or in controls, however, the interaction between Y,
and Y; is the same both in cases and in controls.
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Table 1 The fitted LML regression model, 75122 =3.448 (0.991). Let - denotes the zero coefficients.

313”(0) s.e p-value ﬁ[(,w(l) s.e p-value ﬁg”>(0) s.e [ié,”)(l) s.e

Model wp
Y,~H -4.534 0.088 0.000 2.579 0.100 0.000{ -4.534 0.088 2.579 0.100{0.3228
Y,~H -3.253 0.053 0.000 1.058 0.075 0.000{ -3.253 0.053 1.058 0.075(0.4223
Y.~H -4.474 0.093 0.000 1.056 0.138 0.000| -4.474 0.093 1.056 0.138(0.1241
Y,~H -6.131 0.089 0.000 3.383 0.114 0.000{ -6.131 0.089 3.383 0.114(0.1308
Ypa ~H - . . . . -7.787 0.101  3.637 0.122(0.2536
Ype ~H 0.443 0.181 0.014 -8.565 0.227 3.635 0.178(0.1153
Y, ~H - . . . . -[-10.665 0.011  5.962 0.086(0.1353
Yye ~H 1.777 0.124  0.000 -1.232 0.235 0.000| -5.950 0.182 0.882 0.291]0.2102
Yy ~H 0.840 0.102 0.000 . . -8.544 0.155 4.440 0.142(0.2550
Y., ~H . . . -1-10.605 0.118  4.439 0.172|0.0306
Ypie ~ H - . . . . -[-10.041 0.261 3.461 0.299(0.2229
Ypar ~H | 1.720 0.112 0.000 -1.382 0.238 0.011{-11.358 0.011 5.638 0.251|0.4991
Yper ~H | 3.337 0.202 0.000 -2.631 0.431 0.000|-11.358 0.006 4.387 0.439|0.1391
Yyer ~H . . . . . -[-11.241 0.222 4.264 0.323|0.1389
Ypaer ~ H| -1.777 0.124  0.000 1.284 0.530 0.015|-12.051 0.006 4.115 0.729(1.0000
H -1.387 0.016  0.000 -1.387 0.016

We fitted the data using a LML regression approach and maximum likelihood
estimations have been derived by means of the mph package implemented in R
by J. Lang and available on his web-site upon request. We selected a model with a
deviance xfm = 3.448 whose nonzero f3 {7 coefficients are collected in the left side
block of Table 1. The model has been selected using a backward stepwise procedure
which, starting from the saturated model, selects sub-models with good fitting (p-
value > 0.05 of the deviance) setting zero non-significant coefficients until all the
remaining ones are significant (p-value < 0.05).

The selected model implies additive log-relative risks for the disease patterns
{Yb,Yd}, {Yb,Yr}, {Yc,Yr}, {Yb,Yc}, {Yd,Yr}, {Yb,Yd7YC} and {Yd,Yc,Yr}, and the
pairwise conditional independence for the first three patterns. The middle side block
of Table 1 includes the corresponding log-relative risks [3<”> (LM regression coeffi-
cients) for the fitted model computed on the basis of (4). All of them are nonzero and
the log-relative risks are positive, as expected. The lower relative risk is for the pat-
tern {Yy,Y. }, whereas the highest ones are for the patterns {Y},Y,} and {Y;,Y;,Y,}.

In order to better assess the role of HIV-infection on multimorbidity, we derive
a set of indexes pg, with k = 1,...,4 representing the disease pattern size, which
measure the HIV effect for the co-occurrence in patients of one, two, three or four
diseases, respectively. Every p; is the average log-relative risk computed among
disease patterns of size k weighted with the probability of the occurrence of each
pattern. These weights, denoted by wp, with D C V, are the estimated probabilities
of the occurrence of each disease pattern normalized within the group of patterns of
the same size. They are shown in the right side block of Table 1 and, in details, for
every pattern D C V, wp is the estimate of P(¥Yp = 1p) normalized with respect to
the sum of all estimated P(Yp = 1), for each D’ C V such that |[D'| = |D|. Then,
forevery D CV, Y prey.pr|=ipwpr = 1.
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Average HIV-effect on disease patterns of different size
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Fig. 1 Confidence intervals for the indexes py, withk =1,...,4.

The value of these indexes with their standard errors included in brackets are
p1 = 1.853(0.046), p» = 3.602(0.100), p3 = 4.788(0.192) and ps = 4.115(0.729).
Confidence intervals for these indexes are displayed in Figure 1. The plot shows the
confidence intervals for k = 1,2 are more accurate than for k = 3 and, in particular,
for k = 4, because in the observed sample the number of patients affected by one
or two diseases is larger than the number of patients affected by three or four dis-
eases. However, we can conclude the average HIV-effect on multimorbidity events
of different size k is never close to zero and the risk of the occurrence of co-existing
diseases for patients affected by HIV-infection in average increases with the disease
pattern size.
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