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Abstract In the present work we review modeling strategies based on wrapped
Gaussian processes defined to model directional spatio-temporal data. We first il-
lustrate the model-based approach to handle spatial periodic data. The wrapped
Gaussian spatial process is here induced by a customary linear Gaussian process.
We formulate the model as a Bayesian hierarchical one and we show that the fit-
ting of the model is possible using standard Markov chain Monte Carlo methods.
Then we move to some spatio-temporal generalizations of the spatial model. In the
spatio-temporal setting we present a simulation study of our proposal aiming at un-
derstanding its computational and statistical properties. We highlight the pros and
cons of this model and the difficulties arising in the implementation of the MCMCs.
Eventually we provide some general advice in the use of spatio-temporal wrapped
Gaussian process and we provide a real data example.
Abstract In questo lavoro si discutono approcci per la modellistica di dati circolari
spazio-temporali basati su processi gaussiani arrotolati. Introduciamo l’approccio
arrotolato nel caso di processi gaussiani spaziali. Il processo gaussiano spaziale ar-
rotolato è indotto da un processo lineare gaussiano, in questo contesto presentiamo
il modello in una formulazione gerarchica bayesiana mostrando come la stima del
modello sia possibile tramite metodi Markov chain Monte Carlo standard. Quindi
procediamo alla generalizzazione spazio-temporale del modello e presentiamo uno
studio su dati simulati con lo scopo di definire vantaggi e svantaggi di questo ap-
proccio. Infine proponiamo un esempio su dati reali
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1 Introduction

Circular data, i.e. observations recorded as direction, arise in many different con-
text, examples of directional data include natural directions, such as wind directions
(meteorology), animal movement directions (biology) and rock fracture orientations
(geology). Another type of directional data arises by wrapping periodic time data
with period L (say, daily or weekly) onto a circle with circumference L and then
rescaling the circumference to 2π , that of a unit circle. As with data on the real line,
directional data can also arise in the space and space-time setting.Analysis of circu-
lar data can be difficult due to the restriction of the domain on the circle. With such
data, well know statistical indexes can loose their meaning and should be replaced
with their circular counterpart, for example the mean is replaced by the circular
mean [14]. Most of the general inferential tools have been adapted to work with
circular variables, see for example the books by [20], [7], [14] or the paper by [19].
There is a growing number of papers on the modeling of directional data since the
1990’s, examples include linear models [11, 7, 17], linear models in a Bayesian
context [10, 5], models for circular time series [2, 4, 20, 21, 13, 8, 12] and hidden
Markov models to address classification issues [18, 3] . In [16] a Markov process
for circular variables is presented, while in [24] the Bayesian analysis of space-time
directional data is developed using projected normal distributions. In this paper we
discuss the modeling of space-time directional data under the wrapped Gaussian
process developed in [15] in a purely spatial setting.

2 Sketching the wrapped modeling approach

To introduce the wrapping approach let us consider simple univariate representa-
tion, then the wrapping approach can be formalized as follows. Let Y be a real
valued random variable on R, henceforth referred to as a linear random variable,
with probability density function g(y) and distribution function G(y). The induced
wrapped variable (X) of period 2π , is given by

X = Y mod 2π. (1)

Evidently, 0 ≤ X < 2π . The associated circular probability density function f (x)
is obtained by wrapping g(y) via the transformation Y =X +2Kπ around a circle of
unit radius. It takes the form of a doubly infinite sum,
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f (x) =
∞

∑
k=−∞

g(x+2kπ), 0≤ x < 2π (2)

From (2), we see that the joint distribution of (X ,K) is g(x+2kπ) with x ∈ [0,2π)
and k ∈ Z≡ {0,±1,±2, ...}. Then, marginalization over k produces (2). Expressed
differently, g(·) is the distribution of Y = X +2Kπ , Y determines X and K through
(1), and X is a wrapped version of Y . From this joint distribution the marginal dis-
tribution of K is P(K = k) =

∫ 2π

0 g(x+ 2kπ)dx. Additionally, K|X = x is such that
P(K = k|X = x) = g(x+2kπ)/∑

∞
j=−∞ g(x+ j2π) while the conditional distribution

of X |K = k is g(x+ 2kπ)/
∫ 2π

0 g(x+ 2kπ)dx. Hence, the wrapped distributions are
easy to work with, treating K as a latent variable.
Moving to the multivariate setting, as a general definition, it is perhaps easiest
to obtain a multivariate wrapped distribution for say X = (X1,X2, ...,Xp) starting
with a multivariate linear distribution for Y = (Y1,Y2, ...,Yp). In particular, suppose
Y ∼ g(·) where g(·) is a p−variate distribution on Rp. Usually, g is a family of
distributions indexed by say, θ ; a convenient choice for g(·) is a p−variate nor-
mal distribution. Let K = (K1,K2, ...,Kp) be such that Y = X+ 2πK, analogous
to the univariate case developed above. Then, the joint distribution of X and K is
g(x+ 2πk) for 0 ≤ x j < 2π, j = 1,2, ..., p and k j ∈ Z, j = 1,2, ..., p. The marginal
distribution of X is, directly

+∞

∑
k1=−∞

+∞

∑
k2=−∞

...
+∞

∑
kp=−∞

g(x+2πk) (3)

Again we introduce latent K j’s to facilitate the model fitting. We say that X has a
p-variate wrapped normal distribution (WN) when g(·;θ) is a multivariate normal
where θ = (µ,Σ), with µ a p×1 vector of mean directions and Σ is a positive defi-
nite matrix. Using standard results, the conditional distribution of Yj given {Yl , l 6= j}
and θ is immediate, hence, as well, the distribution of X j,K j given {Xl ,Kl , l 6= j}
and θ . The only serious issue that appears is that the forms in (2) and (3) are in-
tractable to work with as they are. In [15] it is shown how to truncate the series
when g(·) is Gaussian based on distribution variability.
It is now clear that in the wrapped approach introducing dependence structures
among variables is straight forward starting from the linear variable definition. In-
deed a Gaussian process on R2 induces a wrapped Gaussian process on R2. In par-
ticular, the Gaussian process (GP) is specified through its finite dimensional distri-
butions which in turn induce the finite dimensional distributions for the wrapped
process. Hence, we are returned to the multivariate wrapped distributional mod-
els. In particular, if Y (s) is a GP with mean µ(s) and covariance function, say
σ2ρ(s− s′;ψ) where ψ is a decay parameter, then, for locations s1,s2, ...,sn,
X = (X(s1),X(s2), ...,X(sn)) ∼WN(µ,σ2R(ψ)) where µ = (µ(s1), ...,µ(sn)) and
R(ψ)i j = ρ(si− s j;ψ) [15]). In this framework if now we assume that X(s, t) ≡
{xt(s) ∈ [0,2π) : s = (s1,s2) ∈S ⊆ R2, t ∈ T } is a spatio-temporal process of an-
gular measures (in radiant) evolving in space and time. We can model X(s, t) as a
spatio-temporal Wrapped Gaussian process trough the relation between X and its
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linear counterpart Y (s, t) extending the above approach to the spatio-temporal set-
ting. In general we can say that given a linear spatio-temporal Gaussian process
with mean µY and covariance ΣY = σ2R, with R(φ) a given space-time correlation
function parametrized by φ , it induces a Wrapped spatio-temporal Gaussian process
X = {X(s, t), t ∈T ,s ∈S } ∼WN(µX ,σ

2R(φ)), where µX = `(µY ) with ` an ap-
propriate link function such as the modulus or arctan∗1 [8] and the induced covari-
ance structure is obtained using one of the many proposal that can be found in the

literature, for example the sinhΣ
i j
Y

sinh(
√

Σ ii
Y

√
Σ

j j
Y )

function (see [15] and references therein)

that allows us to obtain a valid covariance function. Once prior distributions are
chosen, estimation in the Bayesian setting, can be carried out using standard McMC
tools. To perform prediction with a space-time wrapped GP we have the same diffi-
culty highlighted in the purely spatial context: to compute the predictive distribution
we have to sum over the set of winding numbers K and this is unfeasible even with
a problem of small dimensions. However if (s0, t0) is a new point in Rd×R and we
want to asses information on X(s0, t0) within the Bayesian modeling framework, we
seek the average of the conditional distribution of X(s0, t0) given the observed val-
ues. Fitting the space-time wrapped Gaussian process will yield posterior samples
of parameters of the model θ , say (θ ∗b,K∗b),b = 1,2, . . . ,B. Then as in the spatial
setting we can compute Monte Carlo approximations of the desired mean.

3 Model details and model fitting

We aim at getting some insight on the behaviour of space-time wrapped models and
on the McMC implementation necessary to obtain parameters posterior estimates.
To illustrate these developments we use a relatively simple model, we assume that
the linear variable is a spatio-temporal Gaussian process (GP) with constant mean
and non-separable covariance structure, in particular we adopt the following covari-
ance function (see equation (14) in [9]):

Cov(h,u) =
σ2

(a|u|2α +1)τ
exp
(
− c‖h‖2γ

(a|u|2α +1)βγ

)
, (h;u) ∈ Rd×R (4)

where ‖h‖ is the distance between two locations in space, |u| is the time lag, here
d = 2, a and c are non negative scaling parameters of time and space, respectively
and the smoothness parameters α and γ take values in (0,1] and the space-time
interaction parameter β in [0,1], while τ ≥ d/2 is here fixed to 1 following [9]. We
then write the linear GP Y (s, t) = X(s, t)+K(s, t) as:

Y (s, t) = µY +w(s, t)+ ε(s, t) (5)

1 We use the arctan definition of [?, ]page 13]Jammalamadaka2001
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where µY is a constant mean, w(s, t) is a space-time GP with zero mean and co-
variance function (4) and ε(s, t)∼ N(0,σ2

ε ) is an independent random error (nugget
effect or measurement error). We justify our choice as it is a “reasonable” compro-
mise between a realistic model (non-separable covariance structure) and complexity.
In fact in several applications it is reasonable to assume a constant mean direction
and a complex variability structure, for example in modeling wave directions or
wind directions when a storm is moving across a large region, the mean direction is
constant in subregions. To complete the model specification we need to choose a set
of prior distributions. We suggest the following choices:

a ∼ Gamma(aa,ba); c∼ Gamma(ac,bc)

α ∼ Beta(ν1,α ,ν2,α); β ∼ Beta(ν1β ,ν2,β ); γ ∼ Beta(ν1γ ,ν2,γ);

σ
2 ∼ InGamma(aσ ,bσ ); σ

2
ε ∼ InGamma(aε ,bε)

µY ∼ N(η ,τ2)I(0,2π)

hyper parameters are chosen to ensure weakly informative distributions,
Let φ = (a,c,α,β ,γ) be the correlation function parameters vector and θ =

(µY ,φ ,σ
2
ε ,σ

2) the vector of all model parameters. To perform prediction we need
the conditional distribution of new points given the observed once. For the linear
process this is a standard task as given a new point (s0, t0) ∈ Rd×R(

Y
Y (s0, t0)

)
= N

((
µ

µ(s0, t0)

)
,σ2

(
RY(φ) ρ0,Y(φ)

ρT
0,Y(φ) 1

)
+σ

2
ε I
)
. (6)

and then Y (s0, t0)|Y ∼ N(µ0(Y,θ),σ2
0 (θ)) where µ0(Y,θ) and σ2

0 (θ) are the
conditional mean (E(Y (s0, t0)|Y) and variance (Var(Y (s0, t0)|Y). The induced cir-
cular variable is such that X(s0, t0)|X,K,θ is wrapped normal. To compute the above
mentioned Monte Carlo approximation of the conditional circular mean we can
adopt the same approach as in [15] using the complex representation of the circular
variable [?, see]]Jammalamadaka2001), E(eiX(s0,t0)|X)=EK,θ |XE(eiX(s0,t0)|X,K,θ)

and so a Monte Carlo integration yields

E(eiX(s0,t0)|X)≈ 1
B ∑

b
exp(−σ

2
0 (θ

∗
b)/2+ iµ̃0(X+2πK∗b;θ

∗
b)) (7)

where µ̃0(Y;θ)= µ0(Y,θ)mod2π . Then if g0,c(X)= 1
B ∑b∗ exp(−σ2

0 (θ
∗
b)/2)cos(µ̃0(X+

2πK∗b;θ
∗
b)) and g0,s(X)= 1

B ∑b∗ exp(−σ2
0 (θ

∗
b)/2)sin(µ̃0(X+2πK∗b;θ

∗
b)), the poste-

rior kriged mean direction and concentration are µ(s0, t0,X)= arctan∗ (g0,s(X),g0,c(X))

and c(s0, t0,X) =
√

(g0,c(X))2 +(g0,s(X))2.
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3.1 Implementation and computational issues

To obtain posterior samples of the model parameters, we use a Metropolis within
Gibbs [22] McMC algorithm. In the Gibbs step the mean level µY , the random effect
w(s, t) and the variance of the nugget, σ2

ε are sampled from their full conditional
distributions. All the parameters of the correlation function, together with σ2, are
simulated in block in a Metropolis step with a Multivariate Normal proposal. The
covariance matrix of the proposal is tuned using the past samples of the chains,
as proposed by [1] (algorithm 4). Note that the full conditional of σ2 is Inverse
Gamma and then this parameter could be updated with a Gibbs sampler step, but
it is well known, see for example [25], that there are identifiability issues involving
both the correlation parameters and the variance σ2 for Gaussian process. A possible
solution is to block-sample the set of parameters in a Metropolis step [6]). The full
conditional of the vector of winding numbers has independent components and each
component are simulated using the adaptive truncation strategy as proposed by [15].
The computational time is dominated by the inversion of matrices, the covariance
matrix of w’s full conditional, that requires O(n3) operations, where n is the total
number of observations, and the evaluation and inversion of the covariance matrix
in (4) again of complexity O(n3) giving an overall complexity of O(2n3). Note
that we could marginalize over w = {w(s, t)} saving O(n3) operations, but then
the full conditional of k’s would have dependent components and its simulation,
following [15], would require n inversions of (n−1)×(n−1) covariance matrices (
O(n(n−1)3)). As an alternative to the adaptive truncation we could sample a vector
of dependent real valued random variables z associated with the winding numbers
via the transformation k = bz+0.5c2 in a Metropolis step with an adaptive proposal,
as for the correlation parameters, that requires the inversion of the covariance matrix
of the proposal (O(n3)); in that case the computational complexity is again O(2n3).
Then given the same condition in terms of computational complexity, we prefer to
sample w with a Gibbs sampler without marginalizing it.

3.2 Simulations

To asses model behaviour we generate N = 600 (50 locations and 12 time points)
data from the linear model in (5) with mean µY = π and all combinations of (a,c) =
{(0.2,1),(1,0.2)}, α = {0.5,0.8}, β = {0,0.5,0.9}, γ = {0.5,0.8} and (σ2,σ2

ε ) =
{(0.1,0.01),(0.5,0.1)} for the covariance parameters, given a total of 48 different
datasets. We obtain the circular values as in (1), spatial coordinates are uniformly
sampled from [0,10]. We use 425 points between the 1st and 10th time for estimation
and the remaining 225 points for validation purposes. Following [15], to asses model
performance we compute an average prediction error (APE), defined as the average

2 b·c is the floor operation rounding a real number to the smallest closest integer
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circular distance3 between observed and estimated values, over the validation set of
observed values. The rational behind these examples is as follows: we distinguish
between “small variance” and “medium variance”, i.e. a signal to noise ratio of
0.1 and 0.2 respectively. Then we consider separable (β = 0) and non separable
(β = 0.5,0.9) datasets and several levels of smoothness of the covariance function
(α,γ). Eventually we consider weak and strong dependence in time and/or space
ruled by parameters a and c.

3.3 Real Data

As an example we use data outputs from a deterministic model implemented by
ISPRA4. The model starts from a wind forecast model predicting the surface wind
over the entire Mediterranean. The hourly evolution of sea wave spectra is obtained
solving energy transport equations using as input the wind forecast. Wave spectra
are locally modified using a source function describing the wind energy, the en-
ergy redistribution due to nonlinear wave interactions, and energy dissipation due to
wave fracture. The model output is affected by considerable uncertainty that is not
directly accounted for. Further more we are interested in changes in the spatial and
temporal scale of these data, i.e. we want to estimate values on unobserved points
in space and/or time. Among all the observations available, we choose to restrict
our attention on the north-west area of the Adriatic sea, we use the wave direction
expressed in radiant on 50 locations, Figure 1, from the 00.00 of the 1st to the 18:00
of the 3rd of April 2010, getting values every 6 hours. 425 observations between
April 1, 00:00 and April 3, 06:00 are used for model estimation, the remaining, 175
points, are used for model validation. On this same dataset we estimate a model
based on the projected normal distribution (PN) [23] as the natural competitor of
our proposal that is expected to perform better or equivalently to the WN model.
Without going into details, our implementation of the projected is similar to the one
proposed by [23] with some modifications: Wang uses a separable covariance struc-
ture while here we adopt a correlation structure derived from (4) (divided by σ2).
The parameters priors are set so that their modes are: π for µY , 0.5 for a and c, 0.4
for α and γ , 0.5 for β , 0.5 for σ2 and 0.1 for σ2

ε . The latter choices anticipate the
presence of a strong spatio-temporal correlation structure, with correlation in space
always greater than 0.2 and in time becoming less then 0.05 after about 8 time lags.
In the projected normal model the priors structure is the same as in the WN setting
for covariance parameters, while the two means of the PN are Gaussian with zero
mean and large variance. The correlation between the PN components is Uniform
in (−1,1) and the variance of one component 5 is inverse gamma with parameters
(2,2).

3 We adopt as circular distance, d(α,β ) = 1− cos(α −β ) as suggested in Jammalamadaka and
SenGupta (2001, p.16).
4 Istituto Superiore per la Protezione e la Ricerca Ambientale
5 the other is fixed equal to one to ensure identifiability
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Fig. 1: (a) Simulated examples: Averaged Prediction error (APE), (b) Wave direc-
tions in the north east Adriatic sea - The direction of the arrows represent the mean
direction and the length the circular variance of the observed direction in the time
window under study.
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4 Results and Conclusions

The simulated examples show that with non separable or separable data and small
variance (see Figure 1 darker bars) prediction is very accurate with APE ≤ 0.05 in
all considered situations. When the total variance increases (σ2 +σ2

ε , red bars in
Figure 1) the accuracy of predictions decreases, with a worst case leading to a max-
imum value of the APE equal to 0.22. Posterior parameters estimates are always
correct including the “true” value in the 95% posterior credibility interval.
Prediction of the real data example is very accurate under the WN model lead-
ing to an overall APE of 2.3× 10−3. The left hand side of the credibility interval
of β̂ = 0.70 (CI= (0.25,0.93)) is far away from zero suggesting a non separable
spatio-temporal covariance structure. The PN model performs in a similar way with
an overall APE equal to 1.6−3 and a β̂ = 0.65 (CI= (0.15,0.95)) estimate confirm-
ing the non separable covariance choice.
As a concluding remark we can say that the PN model is slower than the WN one in
reaching convergence while the predictive capability of the two models is equivalent
when the data are unimodal. While when data shows multimodal distributions, the
PN is expected to perform way better than the WN (examples are now running).
Immediate future developments of the WN model will include a more complex mod-
eling of the process mean. It is reasonable to imagine a mean evolving in time,
possibly following the evolution of other variables. For example considering wave
directions and waves significant height we can model the mean direction as a re-
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gression with significant wave heights or use an analysis of variance approach. In
fact according to meteorologists, the three sea status: calm, transition between calm
and storm and storm, roughly correspond to levels of wave heights less than 1 meter,
between 1 and 2 meters, greater than 2 meters respectively, and it is well known that
in each sea state a different level of waves direction is observed.
Further investigations will involve the development of non Gaussian wrapped pro-
cesses.
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