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Abstract A striking feature of most applied statistical analyses is the use of meth-
ods that are well known to be sensitive to outliers or to otherdepartures from the
postulated model. Since data contamination is often the rule, rather than the ex-
ception, we investigate the reasons for this contradictory(and perhaps unintended)
choice. We also provide empirical evidence, in a regressionsetting and in a real-
world problem concerning international trade, of the advantages of a new approach
to data analysis based on monitoring. Our approach enhancesthe applicability of
robust techniques and the interpretation of their results,thus yielding a positive step
towards a reconciliation between robustness and applied statistics.
Abstract I metodi statistici robusti trovano a fatica riscontro nelle analisi empiriche
di problemi reali. In questo lavoro investighiamo alcune ragioni di tale difficolt̀a e
illustriamo le potenzialit̀a di un approccio alternativo all’analisi robusta dei dati
fondato sul monitoraggio.

Key words: Clustering regression, forward search, FSDA, high-breakdown estima-
tion, monitoring, outlier detection, random start FS

1 Introduction

An early use of the term robustness is due to Box (1953) in a study of the effect of
non-normality on tests of equality of variances. He commented that means are ro-
bust to departures from normality, but that estimates of variances are not. The matter
is clearly important, since data frequently depart from theassumptions behind the
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models of mathematical statistics used to derive tests and other statistical proce-
dures. Twenty years after Box, the outlines of the modern theory of robust statistics
were becoming clearly established as the development of procedures that behaved
well under, usually small, departures, from, usually, normal assumptions. This is a
much narrower study than that implied by Box. One purpose of our paper is to show
how the range of application of robust methods can be extended through the use
of ‘monitoring’, exemplified in§3, where we study aspects of fitted models under
a series of assumptions about the level of contamination in the data. An important
byproduct is a simplification of the numerous choices required in the application of
robust methods. We conclude with a discussion of problems that have mostly not
been the subject of robust analysis. One example, treated in§4.1, is the identifica-
tion of data that not only include outliers but in which groups of observations come
from different models. But we start with a brief history of the development of robust
methods.

Stigler (2010) gives a short history of robustness. The earliest book-length ref-
erence is Andrewset al. (1972) (the Princeton Robustness Study), at which time it
was expected that all statistical analyses would, by default, be robust. Now, a fur-
ther forty years on, there are at least six books about robuststatistics with over 1,000
citations in Google Scholar. At the time of writing, the mosthighly cited is Huber
(1981) (and its second edition Huber and Ronchetti (2009)),the others, in citation
order, are Rousseeuw and Leroy (1987), Hampelet al.(1986), Hoaglinet al.(1983),
Andrewset al.(1972) and Maronnaet al.(2006). Unfortunately, this activity seems
largely to be statisticians talking to other statisticians.

Although the term “robust” was first popularised by Box, the idea of consider-
ing the distribution of statistics under departures from the assumption of normality
goes back at least to E.S. Pearson’s review (Pearson, 1929) of the second edition of
Fisher’sStatistical Methods for Research Workers, an interest that was to stay with
Pearson until the end of his scientific life (Pearson and Please, 1975). The current
understanding of robust was much more the creation of Tukey,starting with Tukey
(1960), and of Huber (1964). Stigler writes:

“... by 1972 a number of the early workers in robust statistics expected that from
the 1970s to 2000 we would see the same development with robust methods —
extensions to linear models, time series, and multivariatemodels, and widespread
adoption to the point where every statistical package wouldtake the robust method
as the default.... This was, and I [Stigler] will call it, a Grand Plan. But that plainly
is not what has occurred”.

Stigler then presents a lively and warm discussion of the early history of robust
statistics. One reason for the lack of opening to the scientific world may be that
robust statistics, as often understood and practised, has led to a new mathematical
statistics, more complicated than the old, in which ever more refined solutions are
presented to a few well-defined problems. We describe some ofthese complications
in §2. From the standpoint of a user of statistical methods, the result of a robust
analysis is to provide an alternative, for example for regression, to least squares.
There are therefore two summaries of the data, rather than one. That this is not an
especially appealing development is evidenced by the failure of major commercial
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statistical packages to implement robust methods of data analysis except as special
procedures within a well-segregated collection of routines. We appreciate that there
are several robust libraries available in R, but would arguethat, again, this package
tends to be statisticians talking to statisticians.

Stigler suggests that the first signs of trouble with the Grand Plan were already
evident in 1972 at the time of the publication of the Princeton Robustness Study. To
quote him again:

“From the full set of 10,465 estimates of a location parameter they had con-
sidered, they reported in detail on the accuracy of 68 estimates that had received
extensive study, focusing upon small samples and an inventively wide selection of
32 distributions, nearly all of which were symmetric scale mixtures of normal dis-
tributions”.

This is far from the Grand Plan and, indeed, none of the authors of the conclu-
sions in Chapter 7 of the Study made any grand claims for theirwork. Unlike the
psalmist, they all display a compulsive refusal to lift their eyes to the hills, even for
a moment; no Grand Plan is needed. But the year’s work in Princeton by many intel-
lectually impressive statisticians did not move far in solving the typical problems of
data analysis mentioned in our first sentences. Indeed, yoursecond author remem-
bers the mounting despair with which a reading party organised by David Cox at
Imperial College worked through the Study. We were quickly mired in the details
of trying to remember what was, for example, an ‘iterativelyC-skipped trimean’. In
Cox’s recent book on applied statistics (Cox and Donnelly, 2011) the index contains
just one reference to robustness. The relevant page carefully discusses the identifi-
cation and treatment of outliers, stressing the comparative difficulty of the identifi-
cation of multiple outliers and the importance of considering physical interpretation
for any outliers found; points partially illustrated in theanalysis of our example in
§3. Likewise, the main reference to robustness in Huber’s recent book on data analy-
sis (Huber, 2011) downplays formal methods of robustness. In §5.3, ‘Mathematical
statistics and approximate models’ Huber writes about the work of Fisher that, after
Fisher “the robustness paradigm – explicitly permitting small deviations from the
idealized model when optimizing – carried [the argument] only a few steps further.”
We hope to show that these works underestimate the contribution to intelligent data
analysis that can be made by proper monitoring of the robust methods developed
over the 50 years since the Study.

The most extreme forms of robustness usually considered area very robust
fit, asymptotically resistant to 50% of aberrant observations, and maximum like-
lihood, including least squares, which have zero breakdownpoint. It is common
(Rousseeuw and Leroy, 1987; Rousseeuw and van Zomeren, 1990) to suggest com-
parison of the residuals or Mahalanobis distances from suchfits. In the approach
illustrated in§3 we extend this idea, monitoring such quantities as residuals or dis-
tances, parameter estimates, test statistics and other quantities of interest as the ro-
bustness of the fit decreases. We thus obtain information on important changes in
conclusions that come from differing assumptions about thedegree of contamina-
tion in the data.
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One consequence of our monitoring of robust procedures is that, by considering
a variety of procedures for robust fitting, we are able to determine which, amongst
the many parameters of the algorithms, are those that are critical, distinguishing
them from those that are only of secondary importance. The final goal is to provide
insightful data analyses by following well-specified procedures that can be straight-
forwardly applied by non-specialists in robust statistics.

Our paper is structured as follows: in§2 we discuss the choice of an appropriate
form of robust method, with an emphasis on regression, difficulties in numerical pro-
cedures and the interpretation of the results of a robust analysis. An important statis-
tical drawback to downweighting methods, as opposed to trimming, is the breaking
of the connection between each observational unit and quantities derived from the
analysis, such as parameter estimates.

An example of monitoring is in§3 where we compare two methods of robust
regression. One, S estimation, reveals that robust and non-robust fits to the data are
very different; the other method, MM estimation, fails to doso, a finding in line
with the conclusions of Rianiet al. (2014a), who use monitoring to compare many
different forms of robust regression.

As the quotation above from Huber (2011) indicates, standard robust methods
have typically been developed under the assumption that there is a single model
from which there are small departures, such as a slightly non-normal distribution of
errors, perhaps together with gross outliers. This is only aslight part of the broad
range of possible departures the data analyst may face. We indicate many such prob-
lems in§4, the theme of which is “robustness against what”? One important form
of departure arises when the data are a mixture of observations from more than one
model. For multivariate normal populations, this leads to problems of clustering.
In §4.1 we continue the analysis of the regression data from§3, showing that they
come from two different regression models. There are also a number of outliers.
An important feature of robust clustering is that it is not necessary to cluster all ob-
servations. Our random start method based on the Forward Search does not require
prior specification of the amount of trimming required, a feature it shares with the
method of monitoring of§3. The subsequent section of the paper discusses some
related issues that may contribute to discouraging the use of robust techniques, such
as the difficulty in obtaining a reliable estimate of the number of outliers and the
lack of knowledge about the empirical behaviour of the methods when the errors
are very non-normal.

2 Which Method and How to Tune It?

A major disincentive to the routine use of standard robust methods is the number
of decisions that have to be made before the analysis of the data begins. We now
describe some of these.

1. The efficient application of robust methods depends on theproportion of outliers
expected in the particular set of data being analysed. Thesedetermine the desired
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efficiency or, equivalently, breakdown point. Clearly, a very robust analysis can
always be used, but this results in an unnecessarily low efficiency for data that
are virtually outlier free.

2. The next choice is the nature of robust estimator that is required. For regression
Rianiet al. (2014a) identify three classes of estimator:

a. Hard (0,1) trimming such as Least Trimmed Squares - LTS: (Hampel, 1975;
Rousseeuw, 1984) or Least Median of Squares - LMS: (Rousseeuw, 1984) in
which the amount of trimming is determined by the choice of the trimming
parameter.

b. Adaptive Hard Trimming. In the Forward Search (FS), the observations are
again hard trimmed, but the amount of trimming is determinedby the data,
being found adaptively by the search. See Atkinson and Riani(2000) and
Riani et al. (2014c) for regression and Atkinsonet al. (2010) for a general
survey of the FS, with discussion.

c. Soft trimming (downweighting). M estimation and derivedmethods. The in-
tention is that observations near the centre of the distribution retain their value,
but theρ function ensures that increasingly remote observations have a weight
that decreases with distance from the centre.

3. Within the soft trimming family, both theρ function and the one or two parame-
ters determining efficiency have to be chosen. Rianiet al.(2014a) use monitoring
to compare three methods: S, MM andτ for four ρ functions: Tukey’s bisquare,
optimal, Hyperbolic and Hampel.

The calculations for robust estimation are also much more difficult than those of
least squares. The functions to be maximized when using robust estimators are typi-
cally complicated, with many local maxima. In consequence,approximate methods
are used. The standard approach uses randomly sampled subsets of p observations
(elemental sets). We now list some of the choices that have tobe made to provide a
viable algorithm.

1. The number of subsamples to extract to each of which the model is fitted exactly.
These fitted values are used to evaluate the function to be maximized

2. The maximum number of refining iterations (concentrationsteps), if any, within
each subsample.

3. The tolerance for the convergence of the estimate ofβ in the refining steps.
4. The number of best subsets resulting from the refining steps to be brought to

convergence.
5. The number of refining iterations for each best subset being brought to conver-

gence.
6. The tolerance for the estimate ofβ in the refining steps for each subset being

brought to convergence.
7. The tolerance for the estimate of scale in the best subsets.

In calculations for the example in§3 we follow the recommendations of the FSDA
toolbox. Hawkins and Olive (2002) show that inappropriate choices of some of these
tuning constants may lead to inconsistency of the resultingalgorithms.
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Perhaps even more important than these technical matters, are the statistical prob-
lems related to, in particular, the downweighting of observations.

1. There is a loss of simplicity in the tests related to parameter estimates. For exam-
ple, (Rianiet al., 2014a,§3.2) describe, and later exemplify, two robust variants
of the usual t-test for the standard errors of estimated regression coefficients,
which sometimes differ in the conclusions they lead to. There is no guidance as
to which is to be preferred in such circumstances.

2. Through the use of downweighting, the analyst loses the connection between
each unit and the parameter estimates and other statistically important quantities.
We note that this connection is maintained in the FS and otherhard trimming
methods.

3 An Example of Monitoring
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Fig. 1 Vegetable products data. S estimation, optimalρ function. Left-hand panel, plot of scaled
residuals. Right-hand panel, three measures of the correlations of adjacent residuals. The abrupt
switch virtually to LS at 0.20 is evident in both panels

We illustrate the use of monitoring in the context of international trade, which
is an important field of application for the EU economy. For instance, Cerioli and
Perrotta (2014) describe the importance of careful statistical analysis of international
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trade data and some of the challenges emerging in such an exercise. The dataset
that we consider contains the value and weight ofn = 1,558 import transactions of
vegetable products, such as oils and seeds, to one specific EUMember State from
a non-EU country. To illustrate the usefulness of monitoring in understanding the
properties of various robust estimators, we compare S and MMestimation. Typically
we require 50 robust regression fits per analysis; a computational burden only made
possible by the efficiency of the FSDA robust library (Rianiet al., 2012) and by the
recent technical advances of Rianiet al. (2014b).

In monitoring S estimators we vary the bdp from 0.5 to 0.01. For MM estimates
it is more convenient to monitor changes as the efficiency goes from 0.5 to 0.99.
In both cases we look at plots of alln residuals as a function of efficiency or bdp.
A useful diagnostic, summarising the plot of residuals, is to plot correlation of the
ranks between the residuals at adjacent monitoring values.We consider three stan-
dard measures of correlation:

1. Spearman. The correlations between the ranks of the two sets of observations.
2. Kendall. Concordance of the pairs of ranks.
3. Pearson. Product-moment correlation coefficient.

If there is a clear division of the solutions into a robust fit and a non-robust one,
with a sharp break between them, this is clearly shown by the correlation plot. For
more complicated examples the point of transition is not so clearly visible. But the
structure of the residual plot is well summarized by lookingat correlations.

Figure 1 shows the plot of residuals for S estimation. There is a clear break in the
plot between bdp 0.21 and 0.20, as the robust fit changes to least squares. For the LS
fit there seems to be an almost symmetrical distribution of residuals, with around
half a dozen large positive outliers. The robust fit, for higher values of the bdp,
exhibits a highly skewed structure for the residuals. The constancy of the ranking
of the residuals over the two regimes is clearly shown in the right-hand panel of the
plot; all three correlations are virtually one, except for the break point between the
bdp of 0.21 and 0.20.

This figure is very different from that for MM estimation in Figure 2. Here the
pattern of residuals is constant for all efficiencies in the range studied and similar to
that for the robust part of the S residuals in Figure 1. The correlation plots show no
change in the pattern.

These results show an appreciable difference between S estimation and MM,
which is tuned to have a high efficiency for the parameters of the linear model. We
now explore the parameter estimates of the linear model and their relationship with
the data.

In these data there is a single explanatory variable. Figure3 shows how the esti-
mate of the slope changes with the bdp for S estimation and theefficiency for MM
estimation. For S estimation the slope remains virtually constant, decreasing from
3.42 to 3.32, until, with a bdp of 0.20, it jumps up to 5.95. Thereafter it again de-
creases slightly, with a minimum value of 5.18. On the contrary, for MM estimation
the slope decreases slowly from 3.40 to 3.32; the jump in values is missing.
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Fig. 2 Vegetable products data. MM estimation, optimalρ function. Left-hand panel, plot of
scaled residuals. Right-hand panel, three measures of the correlations of adjacent residuals. The
skewed distribution of residuals remains constant over theconsidered range of efficiency. There
is no change in the values of the correlation coefficients in the right-hand panel (note the vertical
scale)

The behaviour of the S slope that is revealed by monitoring iswhat might be
expected if there is a main population following a regression line and a cluster of
outliers at a position of high leverage. The right-hand panel of Figure 3 shows five
fitted lines for S estimation. Those for high bdp down to 0.21 follow the lower line
of data. The fit calculated with bdp = 0.20 lies close to the upper line, for which there
are more observations than for the lower one. As the bdp further decreases the lines
move slightly towards lying between the two main lines, being attracted upwards by
the presence of a few large disconnected outliers, some withappreciable leverage.
The plot for MM lies throughout close to the lower line.

The conclusion from this analysis is that monitoring using Sestimation alerts us
to the presence of a structure in the data that would not be so trenchantly revealed
by looking at the output from a single fit. Monitoring MM estimation, on the other
hand, does not indicate that there is an important departurefrom the single model
assumed to hold for the majority of the data. Perusal of Figure 2 might, on the
contrary, suggest that a transformation of the data is needed to achieve a symmetrical
error distribution.

The results here from the comparison of S and MM estimation are in line with
those of the extended study of this kind of monitoring by Riani et al. (2014a) who
conclude that highly tuned methods like MM andτ estimation often reveal less
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Fig. 3 Vegetable products data. Left-hand panels, the estimated slope parameters for S estimation
(upper panel) and MM estimation (lower panel). Right-hand panel, the data and fitted lines using
S estimation with five different values of bdp

about the structure of the data than does S estimation. Of thefour ρ functions they
compare, they show that Tukey’s bisquare and the closely related optimal function
provide the most informative monitoring. The hyperbolicρ function, for some sets
of data, is subject to numerical problems. Here we have used the optimal function.

We return to these data in the next section. Before we do so, wenote that it might
be expected that fitted lines for value against weight shouldgo through zero. We
did repeat our analysis setting the regression intercept tozero, but found that the
conclusions were unaffected. Although, in some trading activities, there is a non-
zero intercept, being the cost of setting up an order, such aneffect is more common
in domestic mail orders than in the kind of data we are analysing here.

4 Robustness Against What?

Standard robust methods were developed for fitting a single model. In this section
we first describe a robust method for determining whether thedata are a mixture
from more than one model, although there is the restriction that the models are all
of the same class. In the subsequent section we briefly discuss the more general, and
far broader, problem of robustness when the class of model, or models, also needs
to be identified.
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4.1 Several Models: Clustering

The analysis of the trade data in§3 with monitoring shows that the robust S fit
and least squares differ. However there is no clear indication of what is causing
the difference. Of course, with a single explanatory variable, a simple scatterplot
indicates the structure. But, in general, there may be several explanatory variables
or so much data that perusal of individual scatterplots for all types of transaction is
impossible. We use the FS to provide a robust analysis of datawhen there are several
sources for the data. We need a robust method as we need to avoid the deleterious
effect of the outliers, the presence of which is evident in the figure.

The forward search achieves robustness by fitting the model to subsets of the data
of increasing size, where the subsets are sequentially chosen to contain observations
as close as possible to the fitted model. The introduction of outliers into the subset is
diagnostically revealed by plots of residuals against subset size as well as formally
by statistically tuned tests using the minimum deletion residual among observations
not in the subset. The method for a single population starts from a robustly chosen
subset ofm0 observations. However, if the data are a mixture of observations gener-
ated from more than one model, the robustly chosen initial subsetS∗(m0) may lead
to a search in which observations from several models enter the subset haphazardly
in such a way that the various models are not revealed. Searches from more than one
starting point are necessary to reveal the more complicatedstructure of a mixture.

For finding clusters in multivariate data, Atkinsonet al. (2008) suggest running
several hundred searches from randomly chosen initial subsetsm0. At the beginning
of the search with regression models, a random start produces some very large resid-
uals. But, because the search can drop units from the subset as well as adding them,
some searches are attracted to specific regression lines. Asthe searches progress, the
various random start trajectories converge, with subsets containing the same units.
Once trajectories have converged, they cannot diverge again. As we see in Figure 4,
which is typical of those for many data structures, the search is rapidly reduced to
relatively few trajectories, some of which show marked peaks. It is these that pro-
vide information on the number and membership of the clusters.

The two peaks in Figure 4 indicate the two linear structures that are apparent in
Figure 3. The final peak in the plot results from the outliers,which are also evident
in Figure 3. The next step in the analysis of the data is to ‘interrogate’ the peaks,
taking many of the units in the subset just before the peaks aslarge initial subsets
for forward searches to confirm cluster membership.

An example, for regression data, is given by Atkinsonet al. (2014c), who
describe automatic procedures for deciding cluster membership. Atkinsonet al.
(2014a) illustrate the utility of the random start FS in the clustering of multivari-
ate normal data. As an example they use the data set presentedby Garcı́a-Escudero
et al. (2011), recovering the three normal clusters of disparate shapes and detecting
outliers. This is an advance over many procedures which require prior information
on the number of clusters and on the proportion of the data to be trimmed, and so
suffer from one of the main disadvantages of robust methods listed in§2. A tutorial
example of clustering multivariate data, also in the presence of outliers, is given by
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Fig. 4 Vegetable products data: forward plots of minimum deletionresiduals from 200 random
starts with pointwise 1% and 99% limits. There appear to be two distinct groups (regression lines)

Atkinsonet al. (2014b) using the six-dimensional Swiss banknote data introduced
by Flury and Riedwyl (1988).

A final word is in order about the interpretation of the forward plot of deletion
residuals in Figure 4. In all there are 1,558 observations. However, the two peaks
come atm = 1,174 and 1,310, which total much more than all the observations.
There are, however, an appreciable number of observations at low values ofx; due
to variability in the data, these could belong to either line. Straightforward clustering
would be unable to decide to which line such observations should be allocated.

4.2 Which Model for the ‘Good’ Data and How Many Outliers?

The development of high-breakdown techniques, like S and MMestimation, has
been the mainstream of theoretical work on robust statistics for at least 25 years.
These methods are expected to work well in a contamination framework where the
data generating distribution, sayG(y), is such that

G(y) = (1− γ)G0(y)+ γG1(y). (1)
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In model (1),G0(y) andG1(y) denote the distribution functions of the ‘good’ and of
the contaminated part of the data, respectively, andγ < 0.5 is the unknown contam-
ination rate.

We speculate that another reason for the limited appeal of robust methods in
practical applications is the need to specifyG0(y). Furthermore, very little is known
about both the theoretical and empirical behaviour of the techniques whenG0(y) is
not normal. To motivate our claim, we observe that all high-breakdown estimators
require computation of a normalizing constant which ensures consistency whenγ =
0. In the case of hard trimming, this constant is a scaling factor for the estimate of
dispersion and, in the case of soft trimming, a threshold above which observations
are given zero weight. As far as we know, explicit and computable formulae for
the normalizing constant exist only ifG0(y) is the normal distribution and, indeed,
relevant real-world applications have been confined to thismodel.

Cerioli et al. (2013a) propose a method for testing the hypothesis thatG0(y) in
(1) is normal. The good power properties of their test seem tosuggest that the empir-
ical behaviour of high-breakdown techniques may be considerably different under
non-normal models, especially whenG0(y) is skewed. Furthermore, they show the
potentially deleterious consequences of a naive approach to robustness which is of-
ten implemented in practice, when standard methods are applied to the observations
that remain after outlier removal.

Even whenG0(y) is the normal distribution, many high-breakdown procedures
show poor finite sample properties for estimation of the contamination rateγ. The
tendency to produce a plethora of spurious outliers has beenshown in many studies,
including Cerioliet al.(2009) and Cerioliet al.(2013b). We argue that this tendency
has also been a serious constraint on the dissemination of robust methods among
practitioners. As a consequence, we strongly advocate the use of robust techniques
that are able to provide effective control on the number of false discoveries, while
keeping good detection properties. Cerioli (2010) and Cerioli and Farcomeni (2011)
propose modified high-breakdown procedures that can achieve this goal, while Riani
et al. (2009), Rianiet al. (2014a) and this paper point towards a flexible monitoring
approach.

5 Conclusion

We argue that there is compelling need for a reconciliation between robustness and
applied statistics. In this paper we have investigated someof the reasons that we see
as major disincentives to the routine use of standard robustmethods. We have also
provided empirical evidence, in a regression setting and ina real-world problem
concerning international trade, of the advantages of a new approach to data analysis
based on monitoring.

We conclude by noting that our monitoring approach deservesfurther theoretical
investigation. A pioneering contribution in this direction, although in a somewhat
simplified setting, is the study of the asymptotic properties of the radius process of



How to Marry Robustness and Applied Statistics 13

Garcı́a-Escudero and Gordaliza (2005). Results for the forward search are provided
by Johansen and Nielsen (2013) and by Cerioliet al. (2014), while the properties
of the trajectories of the residuals computed from other high-breakdown estimators,
like those given in Figures 1– 2, are still unexplored. Nevertheless, we trust that our
work will provide a positive contribution towards the desired reconciliation.
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