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Abstract We describe a wavelet-based Bayesian nonparametric regression model
for the analysis of functional magnetic resonance imaging (fMRI) data. Our frame-
work detects regions of the brain exhibiting neuronal activity in response to a stim-
ulus and, simultaneously, infers the association, or clustering, of spatially remote
voxels exhibiting similar temporal characteristics. We use spike and slab, Markov
Random Field and Dirichlet Process priors to detect brain activations, account for
the complex spatial correlation structure of the brain as well as cluster correlated
time courses. The model performance is illustrated on a set of fMRI synthetic data.
Abstract Si presenta un modello di regressione Bayesiano basato su trasformazioni
wavelet per l’analisi di immagini di risonanza magnetica funzionale (fMRI). Il mod-
ello identifica regioni del cervello che esibiscono attività neuronale in risposta ad
uno stimolo e, allo stesso tempo, inferisce l’associazione, o clustering, di voxel
spazialmente lontani che presentano simili caratteristiche temporali. Si impiegano
priors di tipo spike e slab, Markov Random Field e processi di Dirichlet per identifi-
care l’attività cerebrale, modellare la complessa correlazione spaziale del cervello
e clusterizzare serie temporali correlate. Il comportamento del modello proposto
viene valutato su simulazioni di dati fMRI.
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1 Introduction

The complex temporal and spatial dynamics captured by fMRI experiments demand
the use of advanced statistical methods. We provide a joint analytical framework that
allows us to detect regions of the brain exhibiting neuronal activity in response to a
stimulus and, simultaneously, infer the association, or clustering, of spatially remote
voxels that exhibit fMRI time series with similar characteristics.

In fMRI experiments, the blood oxygenation level dependent (BOLD) signal con-
trast is used to measure neuronal activation in response to an input stimulus. In the
formulation we adopt, the stimulus pattern is convolved with a Poisson hemody-
namic response function (HRF), with a voxel-dependent shape parameter, that char-
acterizes the delay between the onset of the stimulus and the arrival of blood to the
activated brain regions. In addition, we assume a long memory process to model the
correlated errors and take into account the time course structure of voxel responses,
and then exploit the whitening properties of discrete wavelet transforms.

Our model allows us to cluster the time course responses of distant brain regions
via a Dirichlet process (DP) prior. The induced spatio-temporal clustering can be
viewed as an aspect of “functional” connectivity, as it naturally captures statistical
dependencies among remote neurophysiological events (Friston, 2011). In addition,
we detect activation in response to a stimulus by using mixture priors with a spike
at zero on the coefficients of the regression model characterizing the association be-
tween response and stimulus. The selection of activated voxels takes into account the
complex spatial correlation structure of the brain through a Markov Random Field
(MRF) prior. For inference, we use Markov Chain Monte Carlo (MCMC) sampling
techniques that combine Metropolis-Hastings schemes employed in Bayesian vari-
able selection with sampling algorithms for nonparametric DP models.

Our inferential strategy results in the detection of activated regions of the brain
and clustering of similar time courses. We illustrate the performances of our model
on a simulated study, designed on the basis of a real fMRI experiment.

The rest of the paper is organized as follows. Our Hierarchical Bayes statistical
framework is presented in Section 2. In section 3 we present the simulation study
and discuss the results.

2 A Wavelet-based Bayesian Hierarchical Model

In an fMRI experiment, a subject’s brain is scanned at multiple time points while the
subject performs a set of tasks. Thus, a time series of BOLD response is acquired
for each voxel of the brain. Let Yν = (Yν1, . . . ,YνT )

T be the T × 1 vector of the
response data, with Yν i the BOLD image intensity at time i = 1, . . . ,T , for voxel ν ,
with ν = 1, . . . ,V . The BOLD response for a single subject is often modeled with a
linear regression model of the type

Yν = Xν βν + εν , εν ∼ NT (0,Σν), (1)
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where Xν is a known T × p covariate matrix and βν = (βν1, . . . ,βν p)
T a p×1 vector

of regression coefficients. Without loss of generality, we can assume that the data
are centered and no intercept is needed in the model. Furthermore, we assume p= 1.

The covariate Xν is modeled as the convolution of the outside stimulus with a
function h(·), that represents the delay of the BOLD response with respect to the
stimulus onset, as

Xν =
∫ t

0
x(s)hλν

(t− s)ds, (2)

where x(s) represents the time dependent stimulus and hλν
(t) = exp(−λν)λ

t
ν/t!

(Friston et al., 1994). We assume λν to be voxel-dependent.
In order to take into consideration the temporal dependence of the patterns ob-

served across the fMRI scans, we assume Σν is a matrix with elements Σν(i, j) =
[γ(|i− j|)] for some auto-covariance function γ(h). More specifically, we assume a
long-memory process, i.e.

γ(h)∼Ch−α , (3)

for some C > 0, 0 < α < 1 and h large.
We employ a discrete wavelet transform (DWT) to decorrelate the data and thus

simplify the cross-covariance structure induced by the long memory process. Thus,
we can rewrite (1) in the wavelet domain as

Y ∗ν = X∗ν βν + ε
∗
ν , ε

∗
ν ∼ NT (0,Σ ∗ν ), (4)

where Y ∗ν = WYν , X∗ν = WXν , and ε∗ν = Wεν . Because of the wavelet transforma-
tion, we can assume that the (T ×T ) covariance matrix Σ ∗ν is diagonal and write its
diagonal elements as ψν σ2

mn, indicating the variance of the nth wavelet coefficient
at the mth scale. More specifically, we assume the variance progression formula for
the covariance structure of the wavelet coefficients as

ψν σ
2
mn = ψν(2αν )−m, (5)

with ψν the innovation variance and αν ∈ (0,1) the long memory parameter (Jeong
et al., 2013).

The two parameters (ψν ,αν) characterize the behavior of the fMRI time series at
each voxel. In particular, for any set of voxels, similar values indicate close neural
activity dynamics. Hence, it is reasonable to investigate the temporal association of
the brain voxels by clustering the voxel-dependent vectors of long memory param-
eters. We assume a Dirichlet Process (DP) prior on the pairs (ψν ,αν). The DP is
commonly used in many applications of Bayesian nonparametric methods to pro-
vide an unsupervised method of clustering. Let G indicate a realization of the DP
prior. The DP can be characterized by specifying two parameters, the base measure
G0 and the total mass parameter η . Typically, G0 is a parametric model assumed
as reference, since E(G) = G0. The total mass parameter characterizes prior uncer-
tainty. Any realization G of the DP defines a discrete probability distribution almost
surely. Thus, any sample from G has a positive probability of ties, inducing clus-
tering among the sampled values. In our model, the prior specification for (ψν ,αν)
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can be summarized as

(ψν ,αν)|G ∼ G

G|η ,G0 ∼ DP(η ,G0) (6)
G0 = IG(a0,b0)×Beta(a1,b1)

where the base measure G0 is specified as the product of inverse gamma (IG) and
beta distributions. Since V is large, we fix η so to favor a parsimonious representa-
tion of the data, without substantially impacting the inference conclusions. See also
Zhang et al. (2014).

In addition to clustering voxels characterized by similar temporal dynamics, we
are interested in detecting regions of the brain that show activation in response to a
given stimulus. We cast such problem as a problem of variable selection, to identify
the nonzero βν ’s in model (4). We use mixture priors with a spike at zero on the
regression coefficients (George and McCulloch, 1993; Sha et al., 2004). Let γν be
a binary random variable such that γν = 0 if βν = 0 and γν = 1 otherwise, then we
assume

βν ∼ γν N(0,τ)+(1− γν)δ0, ν = 1, . . . ,V, (7)

with δ0 a point mass at zero and τ a relatively large variance term for the non-null
component. In order to account for spatial correlation in the selection procedure,
we further place a Markov Random Field (MRF) prior on the selection parameter
γν . We follow Li and Zhang (2010) and Stingo et al. (2011) and parameterize the
conditional probability of γν as

P(γν |d,e,γk,k ∈ Nν) ∝ exp(γν(d + e ∑
k∈Nν

γν)) (8)

with Nν the set of neighboring voxels of voxel ν . According to the prior (8), a voxel
has a greater probability of being activated if more of the neighboring voxels are
activated. The parameter d ∈ (−∞,∞) represents the expected prior number of acti-
vated voxels and controls the sparsity of the model, whereas e > 0 affects the prob-
ability of identifying a voxel as active according to the activation of its neighbors
and therefore acts as a smoothing parameter.

Finally, we complete our prior model by considering a uniform distribution on
the interval (u1,u2) as a prior distribution for the delay parameter λν in the hemo-
dynamic function, as suggested by Quirós et al. (2010),

λν ∼ U(u1,u2), ν = 1, . . . ,V. (9)

Posterior inference is obtained by resorting to Markov Chain Monte Carlo
(MCMC) sampling algorithms.
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3 Illustrative Data Analysis

In this section we simulate a synthetic fMRI data set based on a real experiment,
which was originally described by Büchel and Friston (1997). The experiment was
performed on a single subject, under 4 different tasks (“Fixation”, “Attention”, “No
Attention”, and “Stationary”). Here, we focused on a slice captured under the “no
attention” condition and then generated synthetic data as Ysyn = Y +w, where Y
denotes the component simulated from our model as described below and w is the
selected slice from the real fMRI study (slice 27). In order to simulate Y , we first
obtained the design matrix X for a block design. Then, we convolved X with a
Poisson hemodynamic function and applied the wavelet transform. The true acti-
vation map defines three rectangular active regions (i.e., γν = 1 in each region), as
shown in Figure 1(a). The true values of the β ’s in these regions were sampled from
a Uniform(−80,80). We set the values of (ψν ,αν) at (10,0.8),(5,0.5),(1,0.2),
leading to three different clusters of voxels. Finally, we obtained Y as Y = W TY ∗.
Our final synthetic dataset comprised time series data for 256 scans of 64×64 vox-
els, mirroring a real block-design fMRI study. Figure 1(b) shows the first scan.
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Fig. 1 Synthetic data: (a) True map of γ; (b) First scan of our synthetic data. (c) Overlay on slice
27 of the posterior activation map obtained by assigning value 1 to those voxels with p(γν = 1|y)>
0.8 and value 0 otherwise

For model fitting, we ran a MCMC algorithm, with 20,000 iterations, discard-
ing the first 10,000 iterations as burn-in. We assessed convergence by the Raftery-
Lewis diagnostic test implemented in the R package “coda”. We assigned the non-
informative priors to all the parameters of the model and applied, at each iteration,
discrete wavelet transforms using Daubechies minimum phase wavelets with 4 van-
ishing moments. Figure 1(c) shows the posterior activation map, obtained by as-
signing value 1 to those voxels with p(γν = 1|y) > 0.8 and value 0 otherwise. The
accuracy of our detection is 99.86%. Figure 2 shows the posterior clustering map of
the voxels and the posterior mean maps of the estimates of the parameters ψ and α .
We are able to recover the true clustering of the voxels, with all maps showing three
large clusters and a few misclassified voxels, and to well estimate the true values of
the parameters.
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Fig. 2 Synthetic data: (a) Posterior clustering map - different colors correspond to different clus-
ters; (b) posterior mean map of ψ; (c) posterior mean map of α .
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