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Abstract Bayesian networks are multivariate statistical models satisfying sets of
conditional independence statements. The association structure can be learnt from
data by a sequence of independence and conditional independence tests using the
PC algorithm. The learning process is based on assumption of independent and iden-
tically distributed observations. This assumption is almost never valid for sample
surveys data since most of the commonly used survey designs employ stratification
and/or cluster sampling and/or unequal selection probabilities. Here, a PC algorithm
correction is proposed for taking into account the sampling design complexity.
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1 Introduction

In this paper we deal with the problem of learning a Bayesian network (BN) struc-
ture when the sample is not drawn according to simple random sampling (s.r.s.)
but to a complex sampling design. BNs are multivariate statistical models satisfying
sets of conditional independence statements contained in a directed acyclic graph
(DAG) [3]. A DAG is a pair G = (V,E) where V is the set of nodes (associated with
random variables) and E is the set of arrows joining two nodes. Directed cycles are
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forbidden, i.e. it is not possible starting from a node to end up in it following arrow
directions. Each node is associated with the conditional probability distribution of
the corresponding variable given its parents. The joint probability distribution can
be factorised according to the DAG structure.

BNs are a very flexible tool successfully applied in several fields thanks to: their
easy readability; the inferential engine enabling to perform what-if analysis in a
mouse-click time; the modularity property allowing to model increasingly complex
problems. Recently BNs have been also applied to official statistics problems, such
as missing data imputation [4, 5], and measurement error correction [7]. In all offi-
cial statistics applications BNs proved to be very promising but, unless the relation
structure (the DAG) among the variables of interest is known in advance, BN based
imputation and editing can be performed for simple random samples only. There-
fore, it is crucial to have structural learning methods available when the sample is
not composed of independent and identically distributed (i.i.d.) observations from a
multivariate random variable. Some initial results developed in a likelihood frame-
work for categorical variables have been proposed in [1]. In this paper we focus on
the PC algorithm which is largely used to learn BNs structure for categorical vari-
ables, and propose a variation to deal with samples from complex sampling designs.
The paper is organized as follows. In Section 2 the PC algorithm for i.i.d observa-
tions is briefly described. In Section 3 the impact of survey design on conditional in-
dependence test for complex survey categorical data and corrections available from
existing literature are reviewed. Finally, in Section 4 a variation of PC algorithm for
complex survey data is proposed.

2 Learning BNs through PC algorithm

When the background knowledge is not strong enough to build a BN by hand, the
association structure (i.e. presence/absence of direct edges in the DAG and condi-
tional probability distributions) must be learnt from data. To this aim there are two
main approaches [9]: constraint based learning, where the structure is inferred by a
sequence of independence and conditional independence tests (for instance the PC
algorithm, [13]); score-plus search algorithms that is an optimization based search
requiring a scoring function (such as for example the penalized likelihood) and a
search strategy [2].

In this paper we focus on the PC algorithm and extend it to deal with data selected
according to complex sampling designs. The PC algorithm is a stepwise backward
algorithm structured in three main steps [13]:

1. test (conditional) independence and find the skeleton of the graph, i.e. the graph
without directions. Given a significance level and an ordering of the variables,
marginal and conditional independencies given a conditioning set of increasing
cardinality, are checked by means of the G2 statistics that can be expressed in
terms of the conditional cross entropy. For example, for three variables X , Y , S
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G2 = 2n∑
s

P(S = s)∑
x,y

P(X = x,Y = y|S = s) ln
P(X = x,Y = y|S = s)

P(X = x|S = s)P(Y = y|S = s)
(1)

2. identify colliders, graphically→ ◦←, i.e. configurations given by two converg-
ing arrows outgoing from two unlinked nodes;

3. orient the remaining links without inducing cycles or colliders.

Following [8] where a variation of the PC algorithm for ordinal variables has been
provided, an extension of the PC algorithm to non i.i.d. samples will be developed
by studying a suitable statistics to recursively test conditional independence between
categorical variables.

3 Conditional independence test for categorical data in complex
sample surveys

Statistical methods for the analysis of categorical data have been extensively devel-
oped under the assumption of multinomial sampling (equivalent to those of i.i.d.
observations and of s.r.s.), utilizing loglinear models.

Let s be a sample of size n drawn according to a complex sample design p(s).
The cells in a multiway contingency table can be numbered lexicographically as
i = 1, . . . , I. Let π and p̂ denote the I-vectors of cell probabilities πi and their esti-
mates p̂i, respectively. Generally, p̂i is a ratio estimator depending on survey design
weights. A loglinear model may be written

lnπ = ũ(θ)1+Xθ (2)

where lnπ is the I-vector of log probabilities lnπi, θ is a r-vector of parameters, X
is a known I×r matrix of full rank r≤ I−1, X

′
1 = 0, 1 is the I-vector of ones and ũ

is the normalizing factor ensuring that ∑πi = 1. If r = I−1 we obtain the saturated
loglinear model. Let θ = (θ1,θ2)

′
and X = (X1,X2) where X1 is I× s and X2 is I×u

and correspondigly θ1 is s× 1 and θ2 is u× 1 and s + u = r. We are interested in
testing the null hypothesis H0 : θ2 = 0.

For multinomial sampling, it is well known that both the standard Pearson chi-
squared test statistic X2 and the likelihood ratio test statistic G2 are asymptotically
distributed as χ2

u under the null hypothesis H0. The same asymptotic result holds
under a product multinomial sampling scheme which arises with stratified simple
random sampling when the strata correspond to levels of one dimension of the con-
tingency table. However, this will not remain true with more complex survey designs
involving clustering or stratification based on variables different from those in the
contingency table.

In real cases, most of the used survey designs involve stratification and clustering;
hence the multinomial assumption is violated and the standard procedure is not even
asymptotically valid. Under nested loglinear models, the impact of survey design on
standard multinomial based methods for a multiway contingency table is studied by
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[10], [11], where the asymptotic null distribution of test statistic X2 and G2, for any
survey design, is obtained as a weighted sum of independent χ2

1 random variables.
Formally, [10] have shown that, under H0 , X2 and G2 are asymptotically distributed
as a weighted sum

δ1W1 + ......+δuWu (3)

of u independent χ2
1 variables Wi with weights δi related to the design effects (deffs).

Formally, δi are the eigenvalues of the deffs matrix ∆ given by

∆ = (X̃
′
2Ω X̃2)−1(X̃

′
2Σ X̃2) (4)

where Ω = n−1[diag(πi)− ππ
′
] is the multinomial covariance matrix under H0,

X̃2 = [I−X1(X
′
1ΩX1)−1X

′
1Ω ]X2 is the projection of X2 on the orthogonal comple-

ment of the space spanned by the columns of X1 and Σ is the covariance matrix
under the actual complex designs. In case of multinomial sampling Σ = Ω then
δi = 1, i = 1, . . . ,u; therefore X2 and G2 are asymptotically distributed as a χ2

u vari-
able. In complex designs the standard test can provide misleading results since the
actual type I error rate will usually differ from the nominal level α , assumed when
referring X2 or G2 to the αth critical point of χ2

u . Hence some adjustments to X2 or
G2 are needed.

The basic idea in the first-order corrections is to note that for X2, the true asymp-
totic null distribution of X2/δ ., δ. = ∑δi/u, has the same first moment of χ2

u , the
limiting distribution of X2 under the multinomial assumption (a similar argument
holds for G2). A first order correction treats

X2(δ̂.) =
X2

δ̂.

, G2(δ̂.) =
G2

δ̂.

(5)

as χ2
u , where δ̂. is a consistent estimator of δ.. Formally

δ̂. =
∑ δ̂i

I− r−1
=

tr(∆̂)
I− r−1

(6)

where δ̂i, i = 1,2, .., I−r−1 are the eigenvalues of the estimated deffs matrix ∆̂ . H0
is rejected if the corrected test statistic falls into the standard critical region. The test
performs well when the coefficient of variation of the δi is small. [11] show that δ.

requires the knowledge of the cell and the marginal deffs only provided the model
admits explicit solution to likelihood equation under multinomial scheme.

The corrections (5) are useful if the researcher must perform secondary analyses
from multiway tables reporting the deffs. In such situations only variance (or equiv-
alently deffs) estimates for individual cell estimates (diagonal element of Σ̂ ) and for
specific marginals (marginal deff estimate) might be reported by which first-order
correction can be computed. If the whole covariance matrix estimate of the cell pro-
portions estimators Σ̂ is available second order corrections, taking into account the
variability of δi, can be implemented, see [10] and [11].
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Furthermore, some adjustments to X2 and G2 when the models do not admitt
direct solutions to multinomial likelihood equations are provided in [12].

4 PC algorithm in complex sample surveys

The standard PC algorithm is based on assumption of independent and identically
distributed observations. As previously stressed, this assumption is almost never
valid for sample surveys data since most of the commonly used survey designs em-
ploy stratification and/or cluster sampling and/or unequal selection probabilities.

If the design variables, which may include label information such as cluster or
stratum indicators variables, quantitative variables such as measures of size, are
known then the sampling design can be ignored and the standard PC algorithm can
be used. That is, if all the design variables representing the relevant features of
the sampling design are incorporated into the learning process then the design is
ignorable. Generally, in secondary analysis the values of the design variables are
not included in the data then the design may be not ignorable and it must be taken
into account in the learning process. Moreover, in most cases, only the deffs of the
cells and of specific marginals are provided. In such situation the first-order Rao
Scott corrections can be computed exclusively for those loglinear models admitting
an explicit solution to the likelihood equations. This means that attention must be
focused on a subset of hierarchical models, the decomposable loglinear models. In
particular, here we exploit G2 test statistics in (1) (and its corrections for survey
design) to test conditional independence assumptions.

Conditional independence relations in log-linear models can be alternatively and
equivalently described by means of undirected graphs where nodes still represent the
variables and undirected edges represent the two-factor terms interactions included
in the model. In particular there is a direct correspondence between decomposable
loglinear graphical models and decomposable loglinear models. In graphical terms,
decomposability can be checked by looking at the graph structure: a graph is de-
composable if it is triangulated, i.e. if it does not contain cycles of four or more
nodes without a chord (an edge between two not consecutive nodes). A decompos-
able graph can be recursively decomposed in cliques, i.e. maximal complete subsets
of nodes, and the set of cliques constitutes, in turn, the generating class of the hier-
archical loglinear model.

As illustrated in Section 2, the PC algorithm first builds the undirected graph and
then assigns suitable directions to the existing edges. By the definition of decom-
posable graphs as triangulated ones, it follows that when an undirected decompos-
able graph is given, collider configurations cannot occur in the direction assignment
phase.

Threfore, by all the considerations above, the PC algorithm correction is still a
stepwise backward algorithm but it is now structured in two steps only as follows.

1. Test (conditional) independence by comparing the loglinear model representing
such an independence statement with the saturated model in a recursive way until
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the skeleton of the graph is found. At each step the candidate link to be removed
is selected in way that the resulting graph is still decomposable, i.e. the candidate
link belongs to one clique only [6]. Notice that, due to tested model decompos-
ability, local computations can be performed, i.e. it is possible to work on one
single clique at a time (specifically, on the clique containing the edge proposed
for the deletion). Consequently, there is a gain in terms of computational effi-
ciency.

2. Orient the remaining links without inducing cycles and in the respect of direc-
tional constraints, eventually fixed by the user.

The goodness of the adjusted procedure is investigated through simulation stud-
ies. The methodology here proposed helps accounting for survey designs different
from s.r.s. when learning a BN. Nevertheless model search is limited to decompos-
able graphs. This is quite a substantial restriction, although it is often introduced in
much of graphical model research. In future work it will be necessary to work on an
extension of this algorithm to non decomposable graphs.
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