Determinantal Priors for Variable Selection

A priori basate sul determinante per la scelta delle
variabili

Veronika Rockova and Edward I. George

Abstract Determinantal point processes (DPPs) provide a probabilistic formalism
for modeling repulsive distributions over subsets. Such priors encourage diversity
between selected items through the introduction of a kernel matrix that determines
which items are similar and therefore less likely to appear together. We investigate
the usefulness of such priors in the context of spike-and-slab variable selection,
where penalizing predictor collinearity may reveal more interesting models.
Abstract I processi di punto basati sul determinante (DPP) rappresentano un for-
malismo probabilistico per modellare distribuzioni su sottoinsemi di tipo repulsivo.
Le distribuzioni a priori basate su tali processi favoriscono la diversit tra gli el-
ementi selezionati attraverso l’introduzione di una matrice nucleo che determina
quali elementi sono simili e quindi meno probabili da apparire insieme. Si investiga
Uutilit di tali a priori nel contesto della selezione di variabili con ricerca stocas-
tica spike-and-slab dove la penalizzazione della collinearit tra predittori pu rivelare
modelli pi interessanti.
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1 Introduction

Suppose observations on y, an n x 1 response vector, and X = [x1,...,xp], ann X p
matrix of p potential standardized predictors, are related by the Gaussian linear
model

fv|B,o) =N,(XB,0%1,), 4))

where 8’ = (Bi,...,Bp) is a p x 1 vector of unknown regression coefficients and &
is an unknown positive scalar. (We assume throughout that y has been centered at
zero to avoid the need for an intercept).
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A fundamental Bayesian approach to variable selection for this setup is obtained
with a hierarchical “spike-and-slab” Gaussian mixture prior on . Introducing a
latent binary vector ¥ = (1,...,%)’, % € {0,1}, each component of this mixture
prior is defined conditionally on ¢ and y by

E(B | 67 Y) = NP(07 GzD}’)v (2)

where
Dy =diag{[(1 = )vo+1ivil,--, [(1 = %)vo +Ypvi]} )

for 0 < vg < v, George and McCulloch (1997). Adding a relatively noninfluential
prior on 6 such as the inverse gamma prior 7(6?) =1G(v/2,vA/2) withv = A =
1, the mixture prior is then completed with a prior distribution 7(y) over the 27
possible values of 7.

By suitably setting vy small and v large in (3), 3; values under (f | G,7) are
more likely to be small when 7% = 0 and more likely to be large when y; = 1. Thus
variable selection inference can be obtained from the posterior 7(y|y) induced by
combining this prior with the data y. For example, one might select those predictors
corresponding to the % = 1 components of the highest posterior probability }.

The explicit introduction of the intermediate latent vector ¥ in the spike-and-slab
mixture prior allows for the incorporation of available prior information through
the prior specification of 7(y). This can be conveniently done by using hierarchical
specifications of the form

7(y) = Exeym(7|6) )

where 0 is a (possibly vector) hyperparameter with prior ().

In the absence of structural information about the predictors, i.e., when their
inclusion is apriori exchangeable, a useful default choice for m(y|6) is the i.i.d.
Bernoulli prior form

nB(y|0) = 0% (1—6)P, (5)

where 6 € [0,1] and g, = Y ;%. Because this 7(y| ) is a function only of model
size gy, any marginal 7(y) in (4) will be of the form

-1
p
n®(y) = ”715(9)(617) 7 (Ylay), 7 (vlay) = (qy)
where ﬂgw)(qy) is the prior on model size induced by 7(6), and 7%(y|g,) is uni-

form over models of size gy.
Of particular interest for this formulation has been the beta prior 7£(8) o< 971 (1 —
0)"~1, a,b > 0, which yields model size priors of the form

Be(a+qy,b+p—qy) (p
Be(a,b) qy

B
ﬂa,h (Q}') =

where Be(-,-) is the beta function. For the choice a = b = 1, under which 6 ~
U (0, 1), this yields the uniform model size prior
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1
”F.I(QY) =—0

p+1
An attractive alternative is to choose a small and b large in order to be more ef-
fective for targeting sparse models in high-dimensions. For example, Castillo and
van der Vaart (2012) show that the choice a = 1 and b = p yields optimal posterior
concentration rates in sparse settings.

2 Determinantal Priors for 7(7)

The main thrust of this paper is to propose new model space priors 7(7y) based on
the hierarchical representation (4) with the conditional form

_ |eoXy'Xy|

D / _
0)=— "« |X,/X,| 097 (1 — )P~ 6
n-(y|9) coX'X +1] Xy Xy| 697 ( ) (6)

where cg = % and Xy is the n x g, matrix of predictors identified by the active
elements in y. The first expression for 7°(y| ) reveals it to be a special case of
a determinantal prior, as discussed below, while the second expression reveals it
to be a reweighted version of the Bernoulli prior (5) as in George (2010). Thus,
this prior downweights the probability of 7y for the predictor collinearity measured
by the determinant |X,’X,|, which quantifies the volume of the space spanned by
the selected predictors in the yth subset. Intuitively, collinear predictors are less
likely to be selected under this prior due to ill conditioning of the correlation matrix.
As will be seen, the use of 7”(y|8) can provide cleaner posterior inference for
variable selection in the presence of multicollinearity, when the correlation between
the columns of X makes it difficult to distinguish between predictor effects.

In general, a probability measure 7(y) on the 2”7 subsets of a discrete set
{1,...,p}, indexed by the binary indices 7, is called a determinantal point process
(DPP) if there exists a positive semidefinite matrix K, such that

n(y) = det(Ky), Vv, (N

where Ky is the restriction of K to the entries indexed by the active elements in 7y.
The matrix K is referred to as a marginal kernel as its elements lead to the marginal
inclusion probabilities and anti-correlations between the pairs of variables, i.e.

P(y,=1)=Ky: P(v=1,7,=1) = KiK;; — Ki;Kji

Given any real, symmetric, positive semidefinite p X p matrix L, a corresponding
DPP can be obtained via the L-ensemble construction

x(y) = det(Ly)

det(L+1)’ ®)

where Ly is the sub matrix of L given by the active elements in y and I is an iden-
tity matrix. That this is a properly normalized probability distribution follows from
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the fact that ), det(Ly) = det(L +1). The marginal kernel for the K-ensemble DPP
representation (7) corresponding to this L-ensemble representation is obtained by
letting K = (L +1)~!L. The first expression for 7£°(y| 6) in (6) can be now seen as
a special case of (8) by letting L = coX'X and L, = coXy'X,.
Applying 71(y) = E(g)7(y|6) to 7°(y| 6) with the beta prior 7(6) < 6! (1 —
6)"~!, we obtain
7P (Y) = hap(ay) X,/ X, ©)

where
1 * _
hap(gy) = m/o leX'X +1| IW dc.

Although not in closed form, &, ;(qgy) is an easily computable one dimensional in-
tegral.

For comparison with the exchangeable beta-binomial priors 2 (), it is useful to
reexpress (9) as

7 (y) =y (4y) 72 (Y1 qy), (10)
where
D _ D _ |X7/XY‘ _ /
”n(e)(QV)*W(qV)ha,b(%/), " (vlay) = , Wig) = Z Xy Xyl (A1)
W(gy) qy=4q

Thus, to generate ¥ from 72 () one can proceed by first generating the model size
gy € {0,..., p}from 7175( 0) (gy), and then generating ¥ conditionally from 7°(y|gy).

Note that the model size prior n,?(e)(qy) may be very different from the beta-

binomial prior 77:7‘?( o) (qy). For example, it is not uniform when a = b = 1. Therefore,
one might instead prefer, as is done in Section 4 below, to consider the alternative
obtained by substituting a prior such as ”fr;(e) (gy) for the first stage draw of gy, but

still use (| gy) for the second stage draw of ¥ to penalize collinearity.

Lastly, note that the computation of the normalizing constant W(g) can be ob-
tained as a solution to Newton’s recursive identities for elementary symmetric poly-
nomials (Kulesza and Taskar 2013). This is better seen from the relation

Z Xy Xy| = ex(2) := Z l—pIYi)«i,

qy=q qy=q i=1

where ¢,(A) is the gth elementary symmetric polynomial evaluated at A = {A1,...,4,},
the spectrum of X'X. Defining p,(A) =Y, A, the gth power sum of the spectrum,
we can obtain normalizing constants e;(4),...,e,(A) as solutions to the recursive

system of equations

—1
qeq(A) = pqg(X) +qZ (=1)"eg—j(X)pj(2).

=
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3 Implementing Determinantal Priors with EMVS

EMYVS (Rockova and George 2014) is a fast deterministic approach to identifying
sparse high posterior models for Bayesian variable selection under spike-and-slab
priors. In large high-dimensional problems where exact full posterior inference must
be sacrificed for computational feasibility, deployments of EMVS can be used to
find subsets of the highest posterior modes. We here describe a variant of the EMVS
procedure which incorporates the determinantal prior 7”(y| @) in (6) to penalize
predictor collinearity in variable selection.

At the heart of the EMVS procedure is a fast closed form EM algorithm, which
iteratively updates the conditional expectations E[7 | l//(k)], where here l//<k) =
(ﬁ(k), c®, 0™ denotes the set of parameter updates at the k' iteration. The de-
terminantal prior induces dependence between inclusion probabilities so that con-
ditional expectations cannot be obtained by trivially thresholding univariate direc-
tions.

With the determinantal prior 7°(y|8), the joint conditional posterior distribution

is
BDyB

1/2
52 >|Dy| 12|co X,/ Xy,

(r1v) <ex (-
where Dy = diag{¥/vi + (1 — %)/vo}"_,. We can then write

1

1 1
wrlw) e |5tz (- ) BoB)Y| I xxd a2)

where o denotes the Hadamard product. The determinant [Dy| can be written as

o) (1) o1}

so that the joint distribution in (12) can be expressed as
n(y|y) e L (LY gopy—t0g ()1 210()1/ 1X,/X, |
o< — = ——— op)— — — .
Yy Xp AR g v g(Co Y 1&y &y

Defining the p x p diagonal matrix

. 11 1 1 Y P
Ay = diag {exp {—2 [02 <v1 - Vo) B? —log <v(1))] —210g(ce)}}-1 ,

the exponential term above can be regarded as the determinant of Ay y, the gy X gy
diagonal submatrix of Ay whose diagonal elements are correspond to the nonzero
elements of 7.

It now follows that the determinantal prior is conjugate in the sense of yielding
the updated determinantal form

Ty W) o< [Ayy Xy Xy
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The marginal quantities from this distribution can be obtained by taking the diagonal
of a matrix Kg = (Ay X'X +1,) " 'Ay X'X, namely

P(vi=1]v) = [Kyli-
4 Mitigating Multicolinarity with Determinantal Priors

In order to demonstrate the redundancy correction of the determinantal model prior
we revisit the collinear example of George and McCulloch (1997) with p = 15 pre-
dictors. The collinearity induces severe posterior multimodality, as displayed in the
plot of 32768 posterior model probabilities in Figure 1. Models whose design ma-
trix is “ill-conditioned”, i.e. with smallest eigenvalue A, () of the gram matrix Ly
below 0.1, are designated in red. The deteminantal prior penalizes such models and
puts more posterior weight on diverse covariate combinations, effectively reducing
both posterior multi-modality and entropy.
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Fig. 1 Posteriors arising from beta-binomial and determinantal priors (uniform on the model size).
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