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Abstract In this work we analyze a Blind Source Separation (BSS) problem for the
EEG signals of patients affected by alcoholism. We solve the BSS problem through
an innovative algorithm, named Hierarchical Independent Component Analysis
(HICA), able to provide a multi-resolution non-orthogonal data-driven basis. More-
over we show the improvements obtained by HICA in terms of the phenomenologi-
cal interpretation of the components with respect to other popular BSS techniques.

Abstract In questo lavoro viene preso in considerazione un tipico problema di
Blind Source Separation (BSS) applicato ad un dataset relativo a segnali EEG di
pazienti affetti da alcolismo. Il problema e risolto attraverso un algoritmo inno-
vativo, chiamato Hierarchical Independent Component Analysis (HICA), in grado
di fornire una base non ortogonale, data-driven e multi-risoluzione. In particolare
vengono mostrati i miglioramenti ottenuti dal HICA in termini di interpretazione
fenomenologica delle componenti rispetto ad altre tecniche note in letteratura.
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1 Introduction

In the analysis of high-dimensional and complex data, the attention is often focused
on two connected issues: dimensional reduction (possibly data-driven) and a mean-
ingful synthetic description related to the physics of the problem under study. We
look for a reduced space where to represent data. In particular we search for a basis
whose elements are representative of the most important features of the phenomenon
analyzed. Some of these may involve a great number of the original variables while
others may be restricted only to a few. Hence a multi-scale analysis is desirable.
Multi-resolution is a crucial property in several applicative scenarios. In particular
we consider the analysis of EEG signals of subjects affected by alcoholism. For
each patient in the study, measurements from 61 electrodes placed on the scalp are
available. The electrodes are located at standard sites [5]. For each electrode, the
recorded signal measures the electrode electric potential with respect to some refer-
ence electrode and describes the electrical activity of the brain in the neighborhood
of the electrode across time. In particular we analyze the brain signals related to one
patient.
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Fig. 1 On the left: EEG brain signals at a fixed instant of time. On the right: EEG for a specific
electrode along time.

The subject was exposed to two stimuli. Specifically, the patient was shown two
pictures chosen from the 1980 Snodgrass and Vanderwart set [8]. The two stimuli
were presented in a matched condition (i.e., the subject has been asked to look at the
same picture twice). For each electrode, we observe the signal at 256 equally spaced
instants along a time span of 1 second (see Figure 1). We assume that time indexes
the sample of observations of a random vector whose components are indexed by
electrodes. Hence we consider a sample of n = 256 realizations of a random vector
X in R”, whith p = 61. Moreover for the component x;; of x;, which represents the
observed signal of the electrode j at time instant i, we assume the following model:

Xij = si1@j1 + ... + SikajK,
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where s;1,...,six are the components of a latent source vector s; € RX  while
aji,...,ajk represent unknown real coefficients. This model fits in the well known
Blind Source Separation (BSS) framework. If the rows of the n x p matrix X collect
n observed realizations Xi,...,X, € R? of the random vector X, while the rows of
the n x K matrix S represent the corresponding unobserved realizations of the latent
random source vector S, a BSS problem can be written as

X =saT, (1)

where A is a p X K matrix of unknown coefficients. A BSS problem consists in esti-
mating A and S, given X. In the EEG analysis, the columns of A contain the spatial
maps of the brain associated to some reference elements generating the whole sig-
nal. Multi-resolution is a compelling property for these maps. Indeed, some brain
processes could involve the whole brain, while others activities involve only a spe-
cific part of the brain. Imposing multi-resolution property on the elements of A im-
plies the potential for the identification of a wide range of different behaviors char-
acterizing the brain activity. In this work we solve the BSS through Hierarchical In-
dependent Component Analysis (HICA), an innovative method for the construction
of a multi-scale non-orthogonal data-driven basis (see [7] for a detailed description
of the algorithm).

In section 2 we describe the main ideas driving the HICA algorithm, while in sec-
tion 3 we present the EEG case study in order to highlight the improvements due to
this new approach in terms of phenomenological interpretation of the components.

2 Methods

We here briefly describe a new approach based on the integration between two BSS
techniques: Independent Component Analysis (ICA) [3] and Treelets [4]. While
ICA assumes stochastic independence between the sources, Treelets provides an
estimate of the matrix A through a multi-resolution orthonormal data-driven basis.
Even if in many circumstances orthogonality is a desirable property, it often in-
troduces an artificial constraint not related to the phenomenological characteristics
of the analyzed problem. The HICA algorithm is a hierarchical procedure that at
each level [ of the tree provides a multi-resolution non-orthogonal data-driven ba-
sis. Specifically, after estimates for S and A are initialized, the algorithm iterates for
p — 1 times the following three steps:

1. find the two most similar variables according to a suitable measure of dependence
(i.e., the distance correlation [9]);

2. compute an Independent Component Analysis of the variables found in step 1
and replace these variables with the new variables identified by the ICA transfor-
mation. In this step data, as usual in ICA, are standardized before performing the
ICA algorithm;
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3. order the two new variables according to their variances. The variable with the
lowest variance is stored and, at the next step, only the variable with the greatest
variance is considered as a possible candidate for a new aggregation.

At each iteration /[ we obtain a new estimateAfor the basis matrix A, say 2(1), and
a new estimate for the source matrix S, say S(). Strategies for choosing the opti-
mal estimates A() and S) as well as selecting the appropriate dimension K for the
source space, are discussed in [7], where we also prove some consistency properties
of the HICA algorithm.

3 EEG analysis

In this section we analyze through HICA EEG signals for a single subject affected
by alcoholism. The dataset is courtesy of the online UCI Machine Learning Repos-
itory [1]. We show how the properties characterizing the HICA solution, allow to
obtain noticeable improvements in terms of phenomenological interpretation. All
the analyses are carried out with the fastHICA R package [6] we developed to im-
plement HICA. We compare the results obtained by HICA with those provided by
Treelets, ICA (exploiting the fastICA algorithm [3]), and PCA. In Figure 2, for each
method we show the five most important basis elements (i.e., K = 5) related to the
analyzed subject. In details, for PCA we show the first 5 principal components, for
ICA the results obtained with the fastICA algorithm selecting 5 sources, while for
Treelets and HICA we select the level [ = 55 and show the 5 components found
by the criterium described in [7]. By inspecting Figure 2, it is clear how multi-
resolution methods provide localized basis elements. These highlight components
defined on localized brain regions and allow to identify more precisely the areas
involved in the task. PCA and ICA, instead, provide more unspecific components,
possibly difficult to read. This is apparent in the fourth row of Figure 2, where HICA
and Treelets select a single electrode (i.e., a single variable). This electrode clearly
represents some noise either related to facial muscles activity or due to an unex-
pected saturation of the electrode. Another interesting component that shows the
benefits due to a multi-resolution approach can be seen in the first row of Figure 2.
This component is captured both by HICA and Treelets and identifies the associative
activity in the frontal brain area which is devoted to elaborate the information re-
lated to similarities and differences between images. This crucial component is not
caught by PCA and ICA. The second and the fifth row in Figure 2, instead, point out
the differences between HICA and Treelets. While Treelets yield an unclear result,
with components involving the entire occipital cerebral hemisphere, HICA splits
this information into two separate components. The HICA component shown in the
second row is related to the primary visual cortex, the first area reached by visual
information, which analyzes it in terms of shape and pattern recognition. Then the
information flow goes to the internal area of the occipital hemisphere, which asso-
ciates to the stimulus specific features like color, direction or origin. This area is
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highlighted in the fifth row. This separation of the occipital area is caught only by
HICA.
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Fig. 2 First five loadings found by HICA (first column on the left), Treelets (second column), ICA

(third column), and PCA (fourth column).
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