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Abstract Mixture models may be a useful and flexible tool to describe data with
a complicated structure, for instance characterized by multimodality or asymmetry.
In a Bayesian setting, it is a well established fact that one need to be careful in using
improper prior distributions, since the posterior distribution may not be proper. This
feature leads to problems in carry out an objective Bayesian approach. In this work
an analysis of Jeffreys priors in the setting of finite mixture models will be presented.
Abstract I modelli mistura sono uno strumento utile e flessibile per descrivere
dati dalla struttura complicata, ad esempio multimodale o asimmetrica. In am-
bito Bayesiano, è un fatto noto in letteratura che sia necessario essere attenti con
l’utilizzo di distribuzioni a priori improprie, dal momento che la distribuzione a pos-
teriori potrebbe non essere propria. Purtroppo, questa caratteristica rende difficile
un approccio Bayesiano oggettivo. In questo lavoro, verrà presentata un’analisi dei
risultati ottenuti utilizzando distribuzioni a priori (non informative) di Jeffreys.
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1 Introduction

Using a mixture of distributions to model a random variable provides great flexi-
bility. Mixture models have an obvious application when the sampling population
consists of several sub-populations, nevertheless a mixture model provides also a
mean to model different zones of support of the true distribution.

Mixture models are defined as follows:

f (x | θ , w) =
K

∑
i=1

wi fi (x | θi) (1)

where wi ∈ (0,1) and ∑
K
i=1 wi = 1, K is the number of components and θ i is the

vector of parameters of the ith-component.
In this setting, the maximum likelihood estimation may be problematic, even in

the simple case of mixture of normal distributions, as shown in [1]. In general, max-
imum likelihood estimation in this setting is obtained through the EM algorithm.
For a comprehensive review see [4].

In a Bayesian setting, [3] shows that it is not possible to have noninformative
priors and obtain proper posterior distributions because it’s always possible that the
sample does not include observations for one or more components, so the data are
not informative about the model. One can refers to [5] for a proposal prior distribu-
tion in the setting of general mixture models.

In this work we want to analyze the posterior distribution for the parameters of a
mixture model with a finite number of components when a Jeffreys prior is applied.

We remind that the Jeffreys prior (see [2]) is defined as:

π
J (θ) ∝

√
det(I(θ)) (2)

where I(θ) is the expected Fisher information matrix. This prior distribution as
some appealing properties, in particular it is invariant by reparameterization, nev-
erthless it may be proper or improper depending on the model.

This prior has been applied to different parameters of finite mixture models. We
have always considered different scenarios, with normal and not normal compo-
nents, and the results obtained are always comparable.

We will analyze the results when only the weights are unknown in Section 2 and
the results for the case where only the means of a mixture of normal distributions are
unknown in Section 3. In Section 4 there will be a discussion, with some suggestions
for future work.
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2 Jeffreys prior for the weights of a 3-component mixture model

In the general case of a 3-component mixture model, the Jeffreys prior for the
weights of the components is a function of two parameters, since there is a con-
straint on the sum of the weights. The expected Fisher information matrix is then

I(w1,w2)=

 ∫
X

[ f1(x;θ)− f3(x;θ)]2

∑
3
i=1 wi fi(x|θi)

dx
∫
X

[ f1(x;θ)− f3(x;θ)][ f2(x;θ)− f3(x;θ)]
∑

3
i=1 wi fi(x|θi)

dx∫
X

[ f1(x;θ)− f3(x;θ)][ f2(x;θ)− f3(x;θ)]
∑

3
i=1 wi fi(x|θi)

dx
∫
X

[ f2(x;θ)− f3(x;θ)]2

∑
3
i=1 wi fi(x|θi)

dx


(3)

and the Jeffreys prior is

π (w1,w2) ∝
√

det(I(w1,w2)) (4)

and w3 = 1−w1−w2.
This prior distribution may be only numerically managed.

2.1 Prior distribution

The marginal Jeffreys prior approximations for w1, w2 and w3 are described in Fig-
ure 1 which shows that this prior gives a higher weight to values close to 0. The
simulations seem to suggest that this prior distribution is proper, since the chains
have neither stopped because of problems of numerical integration nor got stuck at
values at the limit of the parameter space.

2.2 The posterior distribution

Figure 2 shows the histograms approximating the marginal posterior distributions
of the weight w1 of a mixture of normal distributions with well-separated compo-
nents (the histograms for w2 are completely analogous). The chains always seem to
reach convergence and the histograms show that the approximated posterior distri-
bution is concentrated around the true values and closely follow the numerical (not
probabilistic) approximation.

3 Jeffreys prior for the means of a 3-component mixture model

Consider a mixture of 3 normal distributions, with known weights and variances.
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Fig. 1 Histograms of the approximations of the Jeffreys prior distribution for the weigths of a
normal mixture model f (y | w1,w2,w3) = w1N (−10,1)+w2N (0,5)+w3N (15,0.5)
obtained with a Metropolis-Hastings random walk algorithm with 106 simulations.

The Jeffreys prior for the means depends on the expected Fisher information
matrix, whose elements are
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and

∂ 2 log f
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Fig. 2 Histograms of the approximations of the marginal posterior distribution of w1 in a normal
mixture model f (y | w1,w2,w3) = w1N (−10,1)+w2N (0,5)+w3N (15,0.5)
with a Jeffreys prior for the weigths, the numerical approximation of the posterior distribution
obtained with the integrate function in R (red line) and the true value (blue line) for different
sample sizes.

3.1 The posterior distribution

In this case the prior distribution seems to be improper. See [5] for a proof that in
the case of 2-component normal mixture models with only one unknown mean the
Jeffreys prior on the unknown mean leads to an improper posterior distribution.

Neverthless, the simulation study in Figure 3 shows that the chains approximat-
ing the marginal posterior distributions of the means reach convergence around the
true values, even if problems of label swtiching appear in this context. Figure 3
shows the boxplots of the approximated posterior means for 10 different simulation
studies.

4 Discussion

An objective Bayesian analysis is advisible in some contexts, in particular when
the experimenter’s influence has to be reduced. Unfortunately non-informative prior
distributions are often improper and this could lead to improper posterior distribu-
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Fig. 3 Boxplots for the approximated posterior means for the mean paramters of a normal mixture
model f (y | w1,w2,w3) = w1N (−10,1)+w2N (0,5)+w3N (15,0.5)
with a Jeffreys prior. The boxplots represents 10 simulation study with a sample size equal to 100
and 106 simulations. The true values are in red.

tion in some settings, for instance this often happens in the case of mixture models.
We have presented some encouraging examples of the use of the Jeffreys prior with
these models. The situation where only the standard deviations are unknown or the
one where both the means and the weights are unknown have been already tested,
with good results in terms of properness of the posterior distribution. These first
results may suggest some applications of the Jeffreys prior in the case of model se-
lection when comparing mixture models with different types or different numbers
of components.
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