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Abstract A comprehensive understanding of the factors that affect capture proba-
bility in a capture-recapture study plays a fundamental role in determining the ac-
curacy and precision of population parameter estimates. In this paper we provide an
updated account of recent advances in the statistical modelling of capture recapture
experiments for closed populations which highlight general frameworks to explore
and fit alternative behavioural patterns and point out some key issues which are
relevant for developing possibly efficient and flexible inferential tools.
Abstract Si fornisce una rassegna aggiornata dei recenti avanzamenti introdotti
nella modellistica degli effetti comportamentali per esperimenti di tipo cattura-
ricattura per popolazioni chiuse. Si evidenziano alcuni nuovi modi di strutturare
modelli generali ed alcune problematiche nella derivazione di procedure inferen-
ziali efficienti
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1 Introduction

In the context of discrete-time closed capture-recapture modelling for estimating
the unknown size of a finite population it is often required a flexible framework
for dealing with the behavioural variability due to the change of behaviour of each
unit after trapping experience. Many alternative settings have been proposed in the
literature to account for the variation of capture probability. Some of them exploit
general regression frameworks such as the Poisson loglinear model in [8] or the lo-
gistic regression [1] for the classical multinomial model [15]. Other proposals start
from more specific perspectives. The most basic way to involve the behavioural ef-
fect to capture in the model is to assume that once a unit is captured its probability
of being recaptured is modified permanently [15]. In the last decades alternative
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modelling approaches have been proposed to account for flexible behavioural re-
sponse to capture [23, 17, 6]. Inference is typically carried out relying on either the
so-called conditional likelihood or the full likelihood approach. However, in [2] is
highlighted that the maximum likelihood approach may, with positive probability,
lead to an inferential pathologys called likelihood failure (unbounded estimates for
the finite size of the population). Such annoying phenomenon has been character-
ized within a very general class of behavioural effect models.

2 Large subclasses of behavioural models

In the process of modelling the joint probability distribution of all the observed
capture outcomes xi j for all the N units in the population including the unobserved
ones during the experiment it seems a rather natural approach to model for each unit
the sequence of consecutive conditional probabilities of capture which can indeed
be specified so that many sources of variability can be easily accommodated

p j(xi1, ...,xi j−1) = Pr(Xi j = 1|xi1, ...,xi j−1) ∀ j > 1 , ∀(xi1, . . . ,xi j−1) ∈X j−1(1)

In fact it is easy to realize that whenever the conditional probabilities in (1) are
constrained to be all equal we get the classical null model M0 where no source of
heterogeneity among units or capture/temporal occasions or behavioral pattern is
allowed. On the other hand the specification of suitable subclasses of partial cap-
ture histories H1, ...,Hb, ...,HB partitioning the set of all partial capture histories
so that the corresponding conditional probabilities are constrained to be the same
whereas the conditioning partial capture history belongs to the same Hr can be a
very flexible device to embed heterogeneity which can be interpreted in terms of
the common characteristics of the partial capture histories within the same subset.
In fact, if in a capture-recapture experiment with t trapping occasions one considers
as partition subsets H1, ... ,H j, ... , Ht where the generic H j comprises all the partial
capture histories with length equal to j this partition can be easily interpreted as
follows: the change in the conditional capture probability is driven by the number
of previous trapping occasions encountered and hence this has to be understood as
a temporal source of herterogeneity. Since our main focus is on modelling possible
heterogeneity due the behavioural changes we can readily provide few examples of
behavioural pattern at different degrees of flexibility which can be studied within
the general framework of partitioning into equivalence classes the subset of partial
capture histories and the related conditional probabilities. Consider for instance the
bipartition H (Mb) = {H1,H2} where the first subset contains all the partial cap-
ture histories with no capture at all. This partition recovers the classical behavioral
model where only after the first trapping experience there is a behavioural effect
which may turn its probability to become larger (trap-happiness) or smaller (trap-
shyness) according to whether the common conditional probability corresponding
to the partial capture history in H2 is larger or smaller. This kind behavioural pattern
is an example of the so called enduring effect to capture which implies that once the
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unit has modified its capture probability this modification is permanent. A different
behavioural pattern called ephemeral effect can be set up in terms of Markovian de-
pendence of consecutive capture occurrences as already illustrated in [23] and later
on extended to arbitrary k-th order in [6] where the general and flexible framework
related to general partition of capture histories was indeed introduced in terms of
linear constraints for the saturated parameterization of conditional probabilities. To
our knowledge there have been only few other attempts to setup alternative model
frameworks for a deeper understanding of behavioural patterns and we refer the
reader to [22] for an ephemeral effect specified in terms of autoregressive structure
with unknown lag or to the more specific pattern of memory persistence in [17].

Models combining behavioural patterns and heterogeneity have been considered
in [14, 9] and [3] although with more emphasis on the the flexibility in accounting
for unobserved heterogeneity rather than on understanding behavioural efffects.

Indeed a possible general strategy for designing and fitting a flexible class on
nested behavioural models would require the definition of a suitable sequence of
nested partitions H1,H2, ...,HK such that each one represents, with a suitably in-
creasing number of parameters, the complexity of some behavioural pattern. Of
course this task has a two-fold difficulty of searching within the subset of all pos-
sible partitions which is actually made of a formidable number of alternatives and
providing an appropriate behavioural interpretation. In fact we will show how both
goals can be hit starting from the definition of a suitably interpretable quantification
of partial capture histories and embedding the model building within a regression
framework.

3 Flexible regression settings

When we acknowledge the key role of the reparametrization of the joint probability
of all the binary capture occurrences of each unit in terms of the product of con-
ditional probabilities we then have to understand how the saturated model can be
simplified in terms of possible hierarchical/nested reduced parameterization which
can balance the usual trade-off between goodness of fit and parsimony. A very nat-
ural and conventional way of addressing this issues could rely for instance on the
use of arbitrary order Markovian models or on the arbitrarily lagged autoregressive
model. The first approach has the disadvantage of requiring a number of parame-
ters which grows exponentially with the order whereas in the second approach the
progression of the number of parameters is linear. In both cases the conditional de-
pendence on the past is limited to most recent occasions and the behavioural pattern
would be of ephemeral nature.

Alternatively, we could follow and extend the ideas in [7] where the use of a suit-
able meaningful behavioural covariate is first introduced as a way of summarizing
the partial capture history which can be relevant in affecting the conditional proba-
bility of being trapped in the next occasion. We could for instance consider for each
unit i the quantification at each occasion j given by zi j = g(xi1, ...,xi j−1) = ∑

j−1
s=1 xi j.

This covariate may convey the information of the possible impact that previous cap-
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tures in the past can modify the probability of being trapped in the next capture
occasion. We may refer to zi j as a memory-effect covariate.

The availability of a univariate covariate could be exploited within the framework
of linear logistic regression in order to embed behavioural patterns in terms of of few
regression parameters. In our previous example modelling logit p j(xi1, ...,xi j−1) =
α +β zi j could help inferring an enduring (and possibly reinforced) behavioural ef-
fect. The flexibility of this device can be arbitrarily extended in terms of non-linear
regression whose flexible shape could account for possible non linear decay of mem-
ory effects or more complex conflicting patterns of trap-happiness followed by trap
shyness. One of the most remarkable results achieved in [7] is the fact that using an-
other suitable definition of the memory-effect covariate zi j = g(xi1, ...,xi j−1) and an
appropriate non-linear step functions whith jumps at prescribed values of an alter-
native new behavioural covariate are able to recover Markovian models of arbitrary
order. This opens up the possibility of exploring within a regression context larger
and possibly more parsimonious classes of behavioural patterns by exploiting the
meaningful covariate and searching the model space of regressions with arbitrary
step functions. On one hand rephrasing the search of a suitable behavioural model
within such a rarge classes as a suitable selection of a regression function of one
behavioural covariate allows to exploit all the standard devices to fit non linear re-
gressions with possible integration of auxiliary information such as environmental
or individual covariates.

Unfortunately the task of model selection within large class of non linear func-
tions can be computationally demanding and alternative efficient approaches for
exploring this kind of model space should be carefully selected. One can use simple
classical AIC or BIC selection criteria and easily carry out a grid search for step
functions with few jumps possibly extending the search to more jumps using greedy
forward selection. However we briefly mention the possibility of implementing al-
ternative selection strategies using regression trees or more sophisticated statistical
learning techniques.

4 Likelihood issues and alternative inference

After the modelling phase we need to select an appropriate methodology to infer on
the unknown parameters of the model with particular emphasis on the size N of the
population. Several alternative strategies have been proposed in the literature and
successfully implemented in the currently available software [4]. One of the most
poular is still the conditional likelihood advocated for its simplicity in the seminal
works of [21], later advocated in [10] and, more recently in [23, 11, 6]. However we
need to stress here the fundamental relevance of the behavioural component of the
model in inferring the unknown N and the role of the inferential approach. In fact
in [2] it has been shown that for a large class of behavioural models represented in
terms parameters associated to subsets of partitions of conditional probabilities the
use of conditional likelihood as well as of the complete likelihood can lead to an
annoying unboundedeness of the estimate N̂ (likelihood failure) and it is also shown
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how the use of an integreated likelihood or a fully Bayesian analysis circumvent
this problem and provide a more accurate inference. The class of models suffering
this likelihood pathology contains the most basic behavioural model denoted as Mb
and all the other models where the partial capture histories corresponding to no
capture belongs to the same partition set so that the model prescribes a common
conditional probability of first capture pH1 . For this general class of models the
likelihood factorization L = Lc× Lr is such that the residual likelihood Lr is a a
function of N and pH1 only. The conditional maximum likelihood estimator is

N̂CMLE =
M

1− P̂0
=

M
1− (1− p̂H1)

t

where P0 is the probability of never being captured during all the experiment. When
failure conditions are met we have that p̂H1 = 1 and hence N̂CMLE = ∞ [2].

Indeed there are many other general approaches and model extensions to fit
capture-recapture data in the discrete setting where the number of capture occasions
are fixed. The log-linear framework originally proposed in [8] deserves a special
mention as well as later developments in order to account for individual unobserved
heterogeneity within loglinear as well as logistic reparameterizations [5, 16, 3]. Al-
though the Bayesian approach has witnessed a successful developement especially
in the last two decades with only few contributions specifically devoted to a better
understanding, modelling and fitting behavioural effects [13, 12, 9]. Only more re-
cently it has become a routinely viable option due to the possibility of embedding
flexible models within general all purpose software such as WinBUGS which yield
an MCMC approximation of the posterior distribution. One relevant contribution to
this aim is [19, 20] and the monograph [18].

On the other hand we must acknowledge that little effort has been made in order
to provide an easy-to-use interface which can guide both the process of elicitation
of a suitable prior distribution and select (or average among) competing models
especially for behavioural features.
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