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Abstract Home Care (HC) service is an alternative to conventional hospitalization
and consists of delivering medical, paramedical and social services to patients at
their homes rather than in hospitals or nursing homes. Human resource planning
in HC is a difficult task and, for a good quality of planning, knowledge of future
patients’ demands is required. The aim of this paper is to propose a Bayesian model
for predicting the number of visits required by HC patients, which is fundamental
for planning human and material resources, and at the same time describing the
natural history of Care Profiles. We model patients’ holding times, i.e., the duration
of Care Profiles, and the number of nurses’ visits at each future time slot. The model
has been applied to the real data of one of the largest public HC providers in Italy.
We computed the estimates of all model parameters and the predictions for both new
patients and patients already in the charge. Preliminary results show the applicability
of the approach in the practice and good quality of predictions.
Abstract L’Assistenza Domiciliare (HC) è un’alternativa al ricovero ospedaliero
convenzionale e consiste nell’erogazione di prestazioni mediche, paramediche e so-
ciali ai pazienti direttamente a casa loro piuttosto che negli ospedali o nelle case
di cura. La pianificazione delle risorse umane in Assistenza Domiciliare è un com-
pito difficile e, per una pianificazione di buona qualità, è richiesta la conoscenza
delle domande future dei pazienti. Lo scopo di questo lavoro è proporre un mod-
ello bayesiano per prevedere il numero di visite richieste dai pazienti in HC, che
risulta fondamentale per pianificare le risorse umane e materiali, e allo stesso
tempo l’evoluzione dei Profili di Cura. Sono stati modellati i tempi di permanenza
dei pazienti, cioè le durate dei Profili di Cura, e il numero di visite infermieristiche
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per ogni intervallo di tempo futuro. Il modello è stato applicato ai dati reali di uno
dei più grandi erogatori pubblici di HC in Italia. Abbiamo calcolato le stime di
tutti i parametri del modello e le previsioni sia per i nuovi pazienti che per quelli
già in carico. I risultati preliminari mostrano l’applicabilità pratica del metodo e
l’accuratezza delle previsioni.

Key words: Home Care, Bayesian Modeling and Estimation, Generalized Linear
Mixed Effects Model

1 Introduction

Many random events affect Home Care (HC) service delivery and mine the feasibil-
ity of plans. Among them, the most relevant randomness source is related to changes
in patients’ conditions, who consequently have a demand for visits different from the
planned one [1, 2]. For this reason, each reliable resource planning should require an
accurate estimation of the demand in future time periods. In the literature, only few
works deal with the representation of HC patients’ demand evolution along with the
time and its prediction in future periods. Lanzarone et al. [1] proposed a frequen-
tist Markovian model, whereas Argiento et al. [3] proposed a Bayesian framework,
where the Care Profile (CP) is considered as a fixed covariate.

CP is the patient classification often adopted by HC providers, based on the spe-
cific requirements and the costs of the provided service. Usually, a CP is assigned
to each patient at the beginning of his/her care pathway and monthly confirmed or
changed; however, CP can be modified in advance in case of a sudden variation in
patient’s conditions.

In this paper, we propose a Bayesian model for jointly describing and predicting
the evolution of HC patients’ demands and CPs over time. Indeed, we generalize the
model in Argiento et al. [3] considering the CP as a response variable.

2 Dataset

We consider n patients in the charge of a HC provider over a period divided into
discrete time slots. Each patient i enters the service at time slot TL(i) and exits at time
slot TU (i). Data observed for each patient i at each time slot t ∈ {TL(i), . . . ,TU (i)}
are:

• number of visits Ni,t required to nurses (count data);
• Care Profile CPi,t (categorical covariate evolving in time that assume R integer

values, indexed by r = 1, . . . ,R).
• age agei,t .

Moreover, each patient i is characterized by the gender (sexi – categorical variable).
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3 Bayesian Model

We consider CPi,t as a response variable, modeled and estimated together with Ni,t .
Hence, we introduce the joint distribution of Ni,t and CPi,t , which is then factorized
as the conditional distribution of Ni,t given CPi,t times the marginal distribution of
CPi,t .

In particular we assume that, for each patient i, the transitions between CPs are
regulated by a multistate Markov Chain, whereas the holding times of CPs depend
on all CPs durations. Indeed, let ηηη i = (ηi,1,ηi,2, . . . ,ηi,J(i)) be the sequence of all
of the J(i) different values assumed by patient i’s CP during the care pathway (i.e.,
the visited states). Let also Hi, j be the number of time slots that patient i spent
in his/her j-th observed CP (i.e, in ηi, j). In this way, each patient i is character-
ized by the sequences of Care Profiles ηηη iii = (ηi,1, . . . ,ηi,J(i)), of holding times HHH iii =
(Hi,1, . . . ,Hi,J(i)), and of number of nurse visits NNNiii = (Ni,TL(i),Ni,TL(i)+1, . . . ,Ni,TU (i)).
Hence, the CP trajectory {CPi,t , t = TL(i), . . . ,TU (i)} can be represented by two vec-
tors ηηη iii and HHH iii, so that we model L ({CPi,t}t) by assigning L ({(ηi, j,Hi, j)} j). For
each patient i = 1, . . . ,n, we assume:

L (ηηη iii,,,HHH iii) = L (η1)L (H1|η1)L (η2|η1)L (H2|H1,η2) . . .

. . .L (ηJ |ηJ−1)L (HJ |H1, . . . ,HJ−1,ηJ).

We assume conditional independence among patients, i.e., among the trajectories
{CPi,t ,Ni,t , t = TL(i), . . . ,TU (i)}. The contribution to the likelihood of each patient
i is (conditionally to the same covariates and parameters, not reported here) as fol-
lows:

L ({CPi,t}t ,{Ni,t}t) = L ({CPi,t}t)L ({Ni,t}t |{CPi,t}t)

= L ({CPi,t}t)∏
t

L (Ni,t |CPi,t)

where L ({CPi,t}t) is the law of the process described above, and L (Ni,t |CPi,t) the
law of a Generalized Linear Mixed Effects Model (GLMM).

We model Ni,t of patient i at time slot t as a Poisson distribution whose rate
parameter depends on the current CP and the covariates. In particular, we propose
the following formulation:

Ni,t |CPi,t = r ∼ Pois(λre
x′i,t γ), r = 1, . . . ,R, TL(i)≤ t ≤ TU (i) (1)

where xi,t is the vector of the covariates of patient i at time slot t (i.e., agei,t and
sexi) and γγγ = (γ1,γ2) is the corresponding regression parameter vector. Moreover,
the latent variable λr represents the health state of patients with CPi,t = r, which is
responsible for the demand for visits (i.e., the bigger the parameter λr is, the worse
patient’s conditions are, and the higher the expected number of visits is). Here we
assume:

log(λr|µλ ,σ2
λ )

iid∼ N(µλ ,σ2
λ ), r = 1, . . . ,R (2)
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where µλ and σ2
λ are given according to the prior beliefs on the health states

λ1, . . . ,λR.
As far as the law of the CP trajectories is concerned, we assume that the hold-

ing times are distributed according to Negative Binomial distribution on {1,2, . . .},
NB(z,q), where q denotes the probability of “success” and z denotes the “predefined
number of failures before success”:

Hi, j|ηi, j,Hi, j−1, . . . ,Hi,1 ∼ NB(z[ηi, j],qi, j) 1 < j ≤ J(i) (3)
Hi,1 ∼ NB(z[ηi,1],qi,1).

Here the parameters qi, j are modelled through the following logit regression:

logit(qi, j) = log
qi, j

1−qi, j
= β1[ηi, j]+ (Hi,1 + . . .+Hi, j−1)β2

logit(qi,1) = β1[ηi,1].

Model (1)-(3) results a GLMM with three fixed-effects parameters (γ1,γ2 and
β2) and two random effects parameters (β1,r = β1[ηi, j = r] and zr = z[ηi, j = r] that
depend on the current state).

Finally, we consider the transition probability matrix P, whose elements Pr,s de-
note the probability that CP moves from the r-th to s-th category. In the following,
we present the Bayesian regression setup for the R+ 1 dimensional Markov chain
describing the CPs, where the last state R+ 1 represents the exit from the service
and is an absorbing state. The successive CP states ηηη jjj are modeled by a homo-
geneous Markov chain with states {1, . . . ,R+ 1}. We assume that the initial state
ηi,1 ∼ categorical(πr), with πr ≥ 0 for each r and ∑R

r=1 πr = 1. The transition matrix
P between the states is here modeled with independent rows, and each row

(Pr,1, . . . ,Pr,R+1)∼ Dirichlet(a1, . . . ,aR+1).

Typically, in the absence of prior information, we set all parameters ar equal to 1.
Self-transitions are not allowed (i.e., Pr,r = 0,∀r = 1, . . . ,R) according to the def-
inition of holding times, and PR+1,R+1 = 1 almost surely as R+ 1 is an absorbing
state.

Finally, all parameters (γ1,γ2,µλ ,σλ ,λ1, . . . ,λR,Pr,1, . . . ,Pr,R,β1,1, . . . ,β1,R, ,β2,
z1, . . . ,zR are a priori (conditionally) independent. The description of the model is
completed by specifying the prior distributions for µλ , σλ , γ1, γ2, βββ 1, β2, and zzz. We
adopt the following marginal prior densities:

µλ ∼ N (0,σ2
µ), σµ ∼U(0,5), σλ ∼U(0,2), γ1,γ2

iid∼ N (0,1000),

β1,r|σ2
β1

iid∼ N (0,σ2
β1
), r = 1, . . . ,R, with σβ1 ∼U(0,2), β2 ∼ N (0,1000),

zr
iid∼ Γ (2,2), r = 1, . . . ,R,

i.e., a vaguely informative prior is assumed on the parameters.
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4 Application to Real Case

We applied the model to one of the largest Italian HC providers; a dataset from
the same provider has already been analyzed either in the frequentist and Bayesian
framework [1, 3]. The week is considered as the time slot and 252 weeks - from
January 2004 to March 2008 - are included in the study. The provider consists of
three divisions and we refer to patients of the largest one; moreover, we include
only patients who entered and left the service once within the time window, and
patients whose care pathway is entirely contained in the 252 weeks. In this way,
our dataset consists of 2358 patients. Patients are grouped in two main categories
(palliative and non palliative), and each category includes a certain number of CPs.
Fifteen CPs are present in the provider [1]; however, similar CPs are joined together
as in [3], thus reducing R to 9. The model was implemented in JAGS [4] to obtain
the posterior densities of parameters, considering a burn-in of 5000 iterations, a
thinning of 50 iterations, and a final sample size of 5000. The chains passed the
standard convergence tests.

In this study, our goal is to predict the demand for visits at future time slots.
This is highly important for HC decision makers, who are interested in improving
the service efficiency. In fact, predictions of patients’ demands allow HC managers
to make robust decisions (e.g., the number operators needed in next weeks and the
optimal nurse-to-patient assignments under continuity of care) that are supported by
the prediction of the demand for visits from patients in the charge. However, here
we do not show results of the predictions due to lack of space.

Fig. 1 displays the 95% credibility intervals and the posterior medians of param-
eters zr,β1,r and log(λr) (with r = 1, . . . ,9), whereas posterior quantiles of the other
parameters not depending on the CP (i.e., γ1, γ2, and β2) are reported in Tab. 1.
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Fig. 1 Posterior 95% credible intervals and medians of zr,β1,r and log(λr), with r = 1, . . . ,9.

Fig. 1 shows that the random-effects parameters are significantly different with
respect to the CP. This means that the posterior distribution of the holding times
{Hi, j} strongly depends on patient’s CP. For instance, since larger values of β1 im-
ply larger expected values of the holding times, it’s clear from Fig. 1 that patients
with CP equal to 2, 3, 4 and 5 tend to have larger holding times. This agrees with
the clinical evidence because, for the HC provider we are considering, the division
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Table 1 Posterior quantiles of the fixed-effects parameters.

2.5% 50% 97.5%
(age) γ∗1 0.906 0.980 1.057

(gender) γ∗2 0.098 0.119 0.138
(slope) β2 -0.012 -0.010 -0.008

among CPs is done on purpose to classify patients based on care duration and level
of demand. Palliative patients show a high number of requested visits at the begin-
ning of their care pathway (λ6 refers to palliative patients who usually have a high
demand for visits for a limited time period). Finally, we remark that larger credibil-
ity intervals in Fig. 1 are generally obtained for profiles with a smaller number of
observations, as for CP=8 and CP=9.

As far as fixed-effects covariates are considered, the posterior distribution of γ1
and γ2 are mostly concentrated on positive values (Tab. 1), meaning that the demand
for visits increases with age and it is larger for female patients. On the other hand, β2
is a posteriori concentrated on negative values (i.e., the holding time at j increases
when the summation of all holding times until j−1 decreases).

Table 2 Posterior means of transition probability matrix P.

HHHHr
s

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 0.0000 0.0105 0.0398 0.0230 0.0274 0.0356 0.0293 0.0021 0.0063 0.8261
P2 0.0359 0.0000 0.0417 0.0237 0.0298 0.0357 0.3231 0.0241 0.0059 0.4802
P3 0.0300 0.0734 0.0000 0.0707 0.0478 0.0091 0.3682 0.0046 0.0046 0.3916
P4 0.0207 0.0758 0.2149 0.0000 0.0525 0.0159 0.3065 0.0068 0.0024 0.3046
P5 0.0073 0.0288 0.1765 0.2268 0.0000 0.0215 0.1835 0.0018 0.0036 0.3503
P6 0.0039 0.0013 0.0013 0.0013 0.0026 0.0000 0.0013 0.0013 0.0013 0.9855
P7 0.0592 0.0180 0.0495 0.0221 0.0192 0.0151 0.0000 0.0220 0.0014 0.7936
P8 0.1429 0.0283 0.0863 0.0287 0.0860 0.0583 0.0859 0.0000 0.0282 0.4554
P9 0.0302 0.0152 0.0151 0.0304 0.0154 0.0303 0.0154 0.0152 0.0000 0.8328

Posterior means of P (Tab. 2) show that palliative patients (CP=6) exit the study
with higher probability than non palliative ones because most of the palliative pa-
tients die after a relatively short time. Moreover, also extemporary patients (CP=1
and 9) exit the service with high probability (high posterior means of P1,10 and
P9,10), because such patients tend to maintain the same profile during the entire care
pathway.

To conclude, in this paper, we have proposed a Bayesian approach for modeling
and predicting the evolution of HC patients’ demand over time. Here, we show that
the posterior density of model parameters demonstrates a good fit of the generalized
linear mixed model to the dataset, thus allowing the model to catch the clinical
evidence.



Prediction of Demand and Care Duration in Home Care 7

References

1. Lanzarone, E., Matta, A., Saccabarozzi, G.: A patient stochastic model to support human
resource planning in home care. Prod. Plan. Control. 21, 3-25 (2010)

2. Lanzarone, E., Matta, A., Sahin, E.: Operations management applied to home care services:
the problem of assigning human resources to patients. IEEE Trans Syst Man Cyber A. 42,
1346-1363 (2012)

3. Argiento, R., Guglielmi, A., Lanzarone, E., Nawajah, I.: A Bayesian framework for describing
and predicting the stochastic demand for care in home care patients. Under second review
(2014)

4. Plummer, M.: JAGS: A program for analysis of Bayesian graphical models using Gibbs sam-
pling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing,
20-22 (2003) http://www.r-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf


