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Abstract The geometry of von Mises-Fisher distributions offers useful clues to dis-
criminant analysis. The discriminant functions turn out to depend on the cosine of a
non random vector with a von Mises-Fisher random vector and their probability den-
sity functions are explicitly derived. This considerably improves our understanding
of discriminant analysis with hyper - spherical data in arbitrary dimension, espe-
cially in the two-group case. Specific applications include misclassification proba-
bilities and ROC curve.
Abstract La geometria delle distribuzioni di von Mises-Fisher è di grande aiuto
nell’analisi discriminante. Le funzioni discriminanti sono il coseno di un vettore non
stocastico con un vettore aleatorio della famiglia von Mises-Fisher e le loro funzioni
di densità sono ricavate in forma esplicita. Il risultato consente un più agevole
trattamento dei problemi di classificazione con dati sferici in spazi di dimensione
arbitraria, specialmente nel caso di due gruppi. Particolare interesse rivestono nelle
applicazioni le probabilità di errata classificazione e la curva ROC.

Key words: Directional data, Bayes’ discriminant rule, Maximum likelihood dis-
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1 Introduction

There is a renewed interest in classification problems with data distributed on the
surface of hyper-spheres (Banerjee et al, 2005). Fields of applications include com-
positional data (Stephens, 1982), text categorization and gene expression analysis,
where data are frequently normalized to unit euclidean norm. Dimension is typi-
cally higher than just two or three so as computational efficiency is an important
requirement.
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In this work the classical discrimination problem with von Mises-Fisher dis-
tributions is addressed. Related contributions are Morris and Laycock (1974) and
El Khattabi and Streit (1996), both confined to circular and spherical data, hence of
little help in the applications mentioned at the outset. Here the problem is attacked
from a different point of view. The von Mises-Fisher density function depends on
the data through the cosine with a fixed vector. For all dimensions p≥ 2, the cosine
transformation originates a random variable defined in [−1,1] with an explicitly
available probability density function. This random variable is tightly related to the
discriminant functions thus allowing an easier derivation of several parameters , like
misclassification probabilities and ROC curve. The results are particularly encour-
aging in the two-group situation.

The structure of the paper is as follows. In Section 2 some basic notions related
to von Mises-Fisher distributions are reviewed and the probability distribution of the
cosine transformation is derived. Section 3 is devoted to the discriminant problem
and Section 4 gives an application.

2 von Mises-Fisher distribution and cosine transformation

Let Rp, p ≥ 2 denote the p-dimensional euclidean space with general point x =
(x1, ...,xp)

T and euclidean norm ‖ x ‖= (xT x)1/2. Let 0p denote the zero vector of
Rp. The cosine of x,y ∈ Rp, x,y 6= 0p, is xT y/(‖ x ‖‖ y ‖). The unit radius hyper-
sphere of Rp, centered at 0p, is Sp = {x ∈ Rp :‖ x ‖= 1}.

The von Mises-Fisher distribution (vMF) is a classical symmetric model for data
distributed on Sp, indexed by the center µ = (µ1, ...,µp)

T , ‖ µ ‖= 1, and the con-
centration parameter κ ≥ 0. When κ = 0, the uniform distribution on Sp is ob-
tained and, when κ > 0, the distribution is unimodal, with modal direction µ , and
κ measures the concentration of data around µ . We write X ∼Mp(µ,κ) for a p-
dimensional random vector of this family. Let Is(·) denote the modified Bessel func-
tion of first kind and order s. For x ∈Sp, the probability density function is

fM(x) = cp(κ)exp(κµ
T x)dSp, (1)

where dSp is the probability element of Sp and cp(κ)= κ p/2−1/((2π)p/2Ip/2−1(κ)).
The density contours are indexed by the rescaled cosine values κµT x, x ∈Sp,

with a maximum at x = µ , the modal direction, and a minimum at the antipodal
point x = −µ . It is well-known that vMF family is closed under rotations and this
property will be exploited in the following developments.

We will also need the spherical polar coordinates of X ∼ Mp(µ,κ), form-
ing the p− 1-dimensional random vector Θ = (Θ1, ...,Θp−1)

T . The corresponding
transformation is X = ψ(Θ) = (ψ1(Θ), ...,ψp(Θ))T , 0 ≤Θi ≤ π , i = 1, ..., p− 2,
0≤Θp−1 < 2π , where, for i = 1, ..., p,
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ψi(Θ) = cosΘi

i−1

∏
j=0

sinΘ j, sinΘ0 = cosΘp = 1. (2)

For a fixed vector a∈Sp and X ∼Mp(µ,κ), consider the random variable Ua =
aT X , to be interpreted as the cosine of the angle formed by a and X . Of course−1≤
Ua ≤ 1, the minimum and maximum being reached when X = ∓a, respectively.
The cumulative distribution function (cdf) F(a)

U and the probability density function
(pdf) f (a)U are derived below. First, an invariance argument is used. Let Q∗ be the
orthogonal matrix satisfying Q∗a = e1 = (1,0, ...,0)T and observe that X∗ = Q∗X ∼
Mp(Q∗µ,κ).

Lemma 1. Let Θ ∗ be the angular version of X∗ = Q∗X, with X∗1 = cosΘ ∗1 . Then, for
−1≤ t ≤ 1

F(a)
U (t) = P(Ua ≤ t) = P(X∗1 ≤ t) = 1−P(Θ ∗1 < arccos t). (3)

Proof. The proof follows because Ua = aT X = (Q∗a)T (Q∗X) = eT
1 X∗ = X∗1 . ut

The pdf of Ua is given below. Write α = (α1, ...,αp−1)
T for the angular version

of µ and note that Q∗µ = (µ∗1 , ...,µ
∗
p)

T , with µ∗1 = aT µ = cosα∗1 .

Theorem 1. Put κ1(a) = κ cosα∗1 = κaT µ , κ2(a) = κ sinα∗1 = κ(1− (aT µ)2)1/2.

i. If cosα∗1 6=∓1, i. e., a 6=∓µ , for −1≤ t ≤ 1

f (a)U (t) =
(

κ

2π

)1/2 I(p−1)/2−1(κ2(a)(1− t2)1/2)

Ip/2−1(κ)
sin−(p−3)/2

α
∗
1 (4)

× (1− t2)(p−3)/4 exp((κ1(a)t) .

ii. If cosα∗1 =∓1, i. e., a =∓µ , for −1≤ t ≤ 1

f (a)U (t) =
(

κ p−2

2p−2π

)1/2 1
Ip/2−1(κ)Γ ((p−1)/2)

(1− t2)(p−3)/2 exp(κ1(a)t) .(5)

Proof. Switch to Θ ∗, the angular version of X∗, and obtain the distribution of the
first marginal component Θ ∗1 . The proof then follows by differentiation of F(a)

U in
Lemma 1. ut

The following remark gives a geometrical interpretation of Ua.

Remark 1. Suppose p = 3. For x ∈ R3 and t ∈ R, the equation aT x = t describes
the family of parallel hyperplanes orthogonal to a. If −1 < t < 1, they intersect the
sphere S3 in a set of parallel circles and if t =±1 they are tangent to S3 at ±a, the
intersection points of the line λa, λ ∈ R, with S3. It follows that At = {x ∈S3 :
aT x ≤ t} is the spherical cap including −a whose boundary is the circle {x ∈S3 :
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aT x = t}. Rotating the sphere according to Q∗ amounts to rotate the coordinate axes
so as a coincides with e1 = (1,0,0)T , the direction from 03 to the North pole. With
the obvious adaptations, this picture holds in the circular case and carries over the
general p-dimensional case.

3 Discriminant analysis

Suppose the distribution of the random vector X = (X1, ...,Xp)
T to depend on a

partition of the sample space in G≥ 2 classes Cg, 1≤ g≤G. The conditional random
vector X , given Cg, is denoted with X (g) and is assumed to belong to vMF family for
all 1≤ g≤G, with parameters dependent on the class, i. e., X (g)∼Mp(µ

(g),κg). Let
x ∈Sp be the data vector observed on a unit to be allocated to one of the classes.
Two popular allocation criteria are Bayes’ and maximum likelihood rules stating
that x must be assigned to the class providing maximum posterior probability or
maximum likelihood, respectively. In terms of maximum log - likelihood rule, we
have to maximize the function

dg(x) = lncp(κg)+κgµ
(g)T x , (6)

with respect to 1 ≤ g ≤ G. It is clear that, conditional on Cg, 1 ≤ g ≤ G, dg

functions are affine transformations of Ua-type random variables, with a≡ µ(g).
When G = 2, the problem considerably simplifies. In terms of maximum likeli-

hood rule, a unit with data point x is assigned to class C1, say, iff d1(x)≥ d2(x), that
is, µ̃T x≥ γ , where

µ̃ =
κ1µ(1)−κ2µ(2)

‖ κ1µ(1)−κ2µ(2) ‖
, (7)

and

γ =
ln(cp(κ2)/cp(κ1))

‖ κ1µ(1)−κ2µ(2) ‖
. (8)

Once again, the discriminant variable D12 = µ̃T X is a Ua-type random variable,
with known class-conditional distributions. This allows an easy evaluation of several
summaries, including misclassification probabilities. The probability of erroneously
allocating a unit to C1, given that it belongs to C2, is P1|2 = P(µ̃T X (2) ≥ γ) and the
probability of erroneously allocating a unit to C2, given that it belongs to C1, is
P2|1 = P(µ̃T X (1) < γ).

The overall performance of a classification rule in the two-group case is conve-
niently displayed by the ROC curve (Krzanowski and Hand, 2009) ζ = {(ζ1(γ),ζ2(γ)),γ ∈
Γ }, where ζ1(γ), ζ2(γ) are the false positive rate (FPR) and the true positive rate
(TPR), respectively. In the present context, identifying the positive (negative) pop-
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Class µ̂ κ̂

Men .580 .626 .398 .336 16.5
Women .863 .130 .438 .217 22.1

Table 1 Household expenditure. Maximum likelihood estimates of centers (µ̂) and concentration
parameters (κ̂) of class conditional von Mises-Fisher distributions.

ulation with C1 (C2), for a given value of γ , ζ1(γ) = P1|2 and ζ2(γ) = P1|1 =

P(µ̃T X (1) ≥ γ). As the domain of γ we take Γ = {−1≤ γ ≤ 1}.
The allocation domains of ML rule are described below.

Remark 2. Suppose, for simplicity, p = 3. The plane µ̃T x = γ , −1 ≤ γ ≤ 1, inter-
sects the sphere S3 in a circle. Therefore, the domain of allocation to C1, i. e., the
set {x∈S3 : µ̃T x≥ γ} is the spherical cap cut by such a plane which includes µ̃ and
the domain of allocation to C2 is the complementary spherical cap, which includes
−µ̃ . The boundary circle is the set of equal density of the two classes. The normal
direction of the cutting plane, the µ̃-vector, depends on the location and concentra-
tion parameters of the two classes. Bayes’ rule is only a minor modification because
the prior probabilities affect the constant term γ , only, and make the cutting plane
shift nearer to µ(1) or µ(2). This holds for general dimension p.

4 An application

With sample data, unknown parameters are replaced by suitable estimates, e. g.,
maximum likelihood (ML) estimates. Recently, several contributions tried to im-
prove the performance of the ML estimator of the concentration parameter in high
dimension, e. g., Song et al (2012), Sra (2012) and references therein.

As an illustration, we use the household expenditure data set from R package
HSAUR2 (Everitt and Hothorn, 2013). Units are 20 single men and 20 single women
and variables are expenditures on housing, food, other goods and services (currency
is Hong Kong dollars). Our aim is to compare the expenditure profiles of men and
women and evaluate class overlap. After normalization by division of each unit ex-
penditure vector by its total expenditure, data were mapped to S4 by the squared
root transformation (Stephens, 1982). This approach allows data to be described
by vMF distributions, characterized by a unique center µ and a scalar scatter pa-
rameter κ . Two vMF distributions were separately fit to men’s class and women’s
class using the improved ML estimators provided by R package movMF (Hornik
and Grun, 2013). The estimates in Table 1 show a tendency for men to spend more
on food whereas women more heavily weight housing. Moreover, women expendi-
ture profiles appear comparatively more concentrated around the center. The class-
conditional plug-in densities of the discriminant function and the ROC curve are
shown in Figure 1. The estimated misclassification probabilities are about .115 for
men and .0945 for women and the AUC (area under curve) value of ROC curve is
.961.
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Fig. 1 Household expenditure. Left: Plug-in densities of the discriminant function and γ threshold
(vertical line). Right: ROC curve and point corresponding to ML rule (star).
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