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Abstract It is valuable to have a better understanding of factors that influence sea
motion in order to provide more accurate forecasts. Our application here is to data on
wave heights and outgoing wave directions over a region in the Adriatic sea during
the time of a storm, with the overarching goal of understanding the association be-
tween wave directions and wave heights and enabling improved prediction of wave
behavior. Our contribution is to develop a fully model-based approach to capture
joint structured spatial and temporal dependence between a linear and an angular
variable. Model fitting is carried out using a suitable data augmented Markov chain
Monte Carlo (MCMC) algorithm. Spatial interpolation and temporal forecasting is
straightforward. We illustrate with data outputs from a deterministic wave model for
region in the Adriatic Sea.

Key words: angular variable, Bayesian kriging, hierarchical model, latent vari-
ables, Markov chain Monte Carlo, projected Gaussian process, significant wave
height

1 Introduction

Sea motion data are mostly available as outputs from deterministic models, espe-
cially if we are interested in exploring a relatively broad area of the sea. Recently,
deterministic models based on the dynamics and thermodynamics of the atmosphere
have been used to forecast the weather with increasing reliability. The outputs from
such models are usually computed at several spatial and temporal resolutions. Build-
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ing upon earlier work in [9] which focused solely upon wave directions, in this
paper, we extend our interest to include wave heights along with outgoing wave di-
rections and provide a general framework for joint modeling of these two variables.
More generally, we offer a modeling approach for joint spatial and spatio-temporal
analysis of an angular and a linear variable.

[9] have dealt with wave directions associated with spatial locations over time.
In fact, our available data include both significant wave heights and outgoing wave
directions (formally defined below) at the same spatial and temporal resolution. Fig-
ure 1 displays both the outgoing wave directions and wave heights over a region of
the Adriatic sea, for a subset of available locations, at a particular time point during a
storm. The wave heights are displayed in the image plot, as an additional layer over
the arrow plots of the directions. There is strong visual evidence of spatial depen-
dence for both heights and directions, although with quite different patterns. Rather
than separately modeling the wave heights and wave directions, it is natural to think
of building a joint model to accommodate the underlying association between them.

More broadly, the contribution of this paper is to develop a fully model-based ap-
proach to capture joint structured spatial dependence for modeling linear data and
directional data at different spatial locations. We show that Bayesian model fitting
under our model specification is straightforward using a suitable data augmented
Markov chain Monte Carlo (MCMC) algorithm. This joint model framework al-
lows natural extension to space-time data and can directly incorporate space-time
covariate information, enabling both spatial interpolation and temporal forecasting.

Wave heights, like wind speed, are linear variables while wave directions are cir-
cular variables, measured in degrees relative to a fixed orientation. Some recent work
to build space and space-time models for wave directions can be found in [5] and in
[9]. Modeling linear and circular variables in a marine context has been considered
in a likelihood framework by [6] and [1]. We often simultaneously observe realiza-
tions of a circular variable Θ and a linear variable X as pairs (θ1,x1), . . . ,(θn,xn). In
a spatio-temporal setting the pair might be the time of day of a robbery along with
the amount stolen, indexed by a geo-coded location. Other pairs include the direc-
tion of departure and the distance to the destination or wind direction and humidity.
In the literature to date, the discussion usually focuses on conditional modeling. For
instance, if the angular variable Θ depends on linear variables, it is referred to as
a Linear-Circular regression model. i.e. a regression specification to use the linear
covariates to explain a directional response. Such modeling typically adopts the von
Mises distribution and with a suitable link function which maps Rk to (−π,π), e.g.,
the arctan function, where k is the dimension of covariates [4, 3]. Regression under
the general projected normal was proposed in [8]. Very recent work by [2] con-
siders nonparametric estimation in the regression setting, creating weighted mean
direction estimators by minimizing expected angular distance.

Conditioning in the opposite direction, now using an angular covariate to explain
a linear response, i.e., if the linear variable X depends on an independent angular
variable, Θ , we have a regression model with a linear response and angular co-
variates, known as a Circular-Linear regression model. Again, a link function is
employed [7, 4].
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Fig. 1 Plot of wave heights and wave directions at 12:00 on April 5th, 2012

The circular-linear association between these two random variables is not as ob-
vious as that between two linear variables. Since the angular variable Θ has the
support on the circle, the pair (Θ ,X) has the support on a cylinder. If their relation-
ship can be written as X = a+ bcosΘ + csinΘ , [7] proposes a measure using the
ordinary multiple correlation in the regression setting between X and (cosΘ ,sinΘ).
Similarly, [4] discuss the dominant canonical correlation coefficient between X and
(cosΘ ,sinΘ). The modeling that we offer below is in the spirit of this representa-
tion, of conditioning X on Θ .

2 Model specification

We begin with a single linear variable and a single directional variable, e.g., wave
height and wave direction. We build a joint parametric model for the wave height H
and the wave direction Θ by introducing a latent variable R (which will be specified
below), in the form

f (H,Θ |Ψ h,Ψ θ ) =
∫

f (H,Θ ,R|Ψ h,Ψ θ )dR

=
∫

f (H|Θ ,R,Ψ h) f (Θ ,R|Ψ θ )dR, (1)
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where Ψ h and Ψ θ are sets of parameters associated with the conditional model for
height and the marginal model for direction, respectively.

More precisely, as stochastic processes, for each location s in the domain of in-
terest D , the linear variable (height) is denoted as H(s) and the angular variable
(direction) as Θ(s). For the marginal distribution Θ(s)|Ψ θ , we propose a stationary
projected Gaussian process [9] with a constant mean µ = (µ1,µ2)

T and separable
cross-covariance Cθ (s,s′) = ρθ (s− s′;φθ ) ·T , where Ψ θ = {µ,T,φθ}, φθ is the de-
cay parameter associated with the correlation function ρθ (·) and T is a 2×2 matrix

defined as T =

(
τ2

θ
ρτθ

ρτθ 1

)
.

As defined in [8], the projected Gaussian process is induced from an inline Gaus-
sian process Y(s) = (Y1(s),Y2(s))T with a constant mean µ and cross-covariance
Cθ (s,s′). Essentially, we can transform back and forth between the two random
variable spaces (Θ(s),R(s)) and (Y1(s),Y2(s)) through Y1(s) = R(s)cosΘ(s) and
Y2(s) = R(s)sinΘ(s), thus defining the latent process, R(s).

At the top or conditional level of the hierarchy in (1), [H|Θ ,R,Ψ h], we specify
a univariate Bayesian spatial regression (a customary geostatistical model) for the
wave height H(s)|Θ(s),R(s),Ψ h, with Θ(s) and R(s) included in the mean through
a link function g(·). That is,

H(s) = g(Θ(s),R(s))+w(s)+ ε(s).

As usual, the residual is partitioned into the spatial effect term w(s) and the non-
spatial error term ε(s), where w(s) is assumed to follow a zero mean stationary
Gaussian process with covariance function Ch(s−s′) and the ε(s)’s are uncorrelated
pure errors. A natural choice for the link function g(·) will be the linear combination
of the trigonometric terms of Θ(s) multiplied by the latent R(s). In fact, this actually
is the linear regression on Y1(s) and Y2(s) from the “unobserved” inline Gaussian
process Y(s). Explicitly, with this choice of g(·), we have

H(s) = β0 +β1R(s)cosΘ(s)+β2R(s)sinΘ(s)+w(s)+ ε(s) (2)
= β0 +β1Y1(s)+β2Y2(s)+w(s)+ ε(s)

= X(s)T
β +w(s)+ ε(s) (3)

where the spatial random effect w(s) follows a zero-centered GP with covariance

function Ch = σ2
h ρh(s− s′;φh), the error term ε(s) iid∼ N(0,τ2

h ). In (3), we denote
the regression coefficient vector by β = (β0,β1,β2)

T and the location specific co-
variate vector as X(s) = (1,R(s)cosΘ(s),R(s)sinΘ(s))T . Under this model speci-
fication, the parameters associated with the heights are Ψ h = {β ,φh,σ

2
h ,τ

2
h}. Alto-

gether, (H(s),Y1(s),Y2(s))T specifies a trivariate Gaussian process.
The coefficients β1 and β2 provide information regarding the association between

the circular random variable Θ and the linear variable H under the specific speci-
fication in (2). When β1 and β2 are both 0, we are fitting the wave heights and the
wave directions separately as a spatial regression model and a projected Gaussian
process model. The square of the multiple correlation coefficient, R2

H|Y, is a measure
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of the strength of the conditional dependence (explanation), as is customary in lin-
ear regression. Notably, it is for a regression where the covariates are not observed.
However, it can be obtained, as a parametric function, from the joint dependence
structure and is free of location. In particular, if ∆ = β 2

1 τ2
θ
+β 2

2 +2β1β2τθ ρ ,

R2
H|Y =

∆

∆ +σ2
h + τ2

h
. (4)

The posterior distribution of R2
H|Y can be obtained directly from posterior samples.

3 Implementing kriging

Bayesian kriging under the joint model framework is straightforward. For a new
location s0, our goal is to obtain a joint distribution of H(s0) and Θ(s0) given the
data (θ ,h), expressed as

f (θ(s0),h(s0)|θ ,h))=
∫ ∫ ∫

f (θ(s0),h(s0),r(s0)|r,Ψ ,θ ,h) f (r,Ψ |θ ,h)drdr0dΨ ,

where R(s0) is the latent random variable associated with Θ(s0) and the parameters
Ψ = {Ψ θ ,Ψ h}.

For kriging of the circular variable at the new location, Θ(s0), we simplify by
starting from the lower level, the joint distribution of Y(s0) = (Y1(s0),Y2(s0))

T and
Y∗ = (Y1(s1),Y2(s1), . . . ,Y1(sn),Y2(sn))

T is,(
Y(s0)

Y∗

)
∼MV N

((
µ(s0)

µ∗

)
,

(
1 ρT

0,Y(φθ )

ρ0,Y(φθ ) Γ Y(φθ )

)
⊗T

)
,

where µ∗=(µT (s1), . . . ,µ
T (sn))

T , {Γ Y(φθ )} j,k = ρθ (s j−sk;φθ ) and {ρ0,Y(φθ )} j =
ρθ (s0− s j;φθ ), j,k = 1, . . . ,n. Thus, the conditional distribution for Y(s0)|Y∗ is a
bivariate normal with mean Es0 and covariance matrix Σ s0 , where

Es0 = µ(s0)−µ
T
0,Y(φθ )⊗T ·Γ−1

Y (φθ )⊗T−1(Y∗−µ
∗),

Σ s0 = (1−ρ
T
0,Y(φθ )Γ

−1
Y (φθ )ρ0,Y(φθ ))⊗T.

In fact, the conditional distribution for Θ(s0)|Y∗ is a general projected normal
PN2(Es0 ,Σ s0). The latent variable R(si) associated with the i-th location is updated
during the model fitting. At the g-th iteration, we gather the posterior samples of Y∗
through y1(si)

(g) = r(si)
(g) cosθ(si) and y2(si)

(g) = r(si)
(g) sinθ(si), i = 1, . . . ,n and

g= 1, . . . ,G. Finally, we are able to draw samples of Θ(s0) from the predictive distri-
bution f (θ(s0)|θ ,h), since there exists an explicit form for Θ(s0)|Y∗, equivalently,
Θ(s0)|Θ ,R. As a byproduct of sampling Θ(s0), we also obtain a sample of R(s0) at
the g-th iteration, r(s0)

(g). Let r(g) be the realization of R = (R(s1), . . . ,R(sn))
T at

the g-th iteration. We can evaluate f (θ(s0)|r(g),Ψ (g),θ) using a fine grid of points



6 Alan E. Gelfand and Fangpo Wang

on [0,2π) and take the average of the density values on each grid. This resulting av-
erage is a usual Rao-Blackwellized estimate of the predictive density at the kriged
location s0.

For kriging of the linear variable at the new location, H(s0), again we simplify,
starting from the joint distribution of H(s0) and H = (H(s1), . . . ,H(sn))

T ,(
H(s0)

H

)
∼MV N

((
X(s0)

T β

Xβ

)
,

(
τ2

h +σ2
h τ2

h ρT
0,H(φh)

τ2
h ρ0,H(φh) τ2

hΓ h(φh)+σ2
h In

))
,

where X(s0) = (1,R(s0)cosΘ(s0),R(s0)sinΘ(s0))
T , {Γ h(φh)} j,k = ρh(s j− sk;φh),

{ρ0,H(φh)} j = ρh(s0 − s j;φh), j,k = 1, . . . ,n and X is a n× 3 matrix with the i-
th row as (1,R(si)cosΘ(si),R(si)sinΘ(si)), i = 1, . . . ,n. At the g-th iteration, the
posterior samples, θ(s0)

(g) and r(s0)
(g), are included in x(s0)

(g) as the covariates.
The remaining kriging steps for the linear variable H(s0) are standard.

We can easily infer about the mean direction and the mean resultant length of
the predictive density of Θ as well as the mean of the predictive density of H at a
new location s0, enabled by MCMC Bayesian model fitting using posterior samples.
According to the definition, the mean direction is ω = arctan∗(S/C) and the resul-
tant length is γ =

√
(C2 +S2), where C = EcosΘ and S = EsinΘ . Thus, for each

posterior draw, Ψ
(g) and r(g), we draw a posterior sample y(s0)

(g) of Y(s0) from
N2(E

(g)
s0 ,Σ

(g)
s0 ), and then convert to θ(s0)

(g). We compute C(s0) = Σg cosθ(s0)
(g)/G

and S(s0) = Σg sinθ(s0)
(g)/G. Then, ω̂(s0) = arctan∗(S(s0)/C(s0)) and γ̂(s0) =√

C2
(s0)+S2

(s0).

4 A data example

We study wave heights and directions in the Adriatic Sea, a semi-enclosed basin.
The orography of the Adriatic Sea plays a key role in associated wave behavior as
most of the waves tend to travel from north-northwest in a south-easterly direction
along the major axis of the basin. Monitored buoy data, supplying wave height and
wave direction measurements would seem to be attractive for such analysis. How-
ever, at present, buoy networks are too sparse to be used as a data source for spatial
analysis; currently, they also yield unreliable angular measurements. Instead, we
employ output from a deterministic model providing climatic forecasts at several
spatial and temporal resolutions. These models are increasingly accurate and may
be eventually calibrated using buoy data, a data fusion problem.

In particular, we use data outputs from a deterministic wave model implemented
by ISPRA (Istituto Superiore per la Protezione). Details about this deterministic
model can be found on their web page (http://www.isprambiente.gov.
it/pre_mare/wam.htm). ISPRA outputs are given in deep waters with a spatial
resolution of 0.1 degree longitude, approximately on a grid with about 12.5×12.5
km cells. The ISPRA dataset has observations on a total of 1494 locations. We note
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that, though these data are not random, we model them stochastically in order to
enable kriging and forecasting with uncertainty given them.
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Fig. 2 Plot of wave heights and wave directions under calm sea motion status

According to meteorologists, the definition of “calm” in the Adriatic Sea refers to
a time period with wave height lower than 1 meter. When the wave height is between
1 and 2 meters, a pre-storm warning is triggered and above 2 meters there is a storm
warning. We plot the data, wave directions and wave heights, for an illustrative hour
under each sea state, in Figures 2-4, with arrow plots for the wave directions and
image plot (color) for the wave heights. We apply the joint modeling framework
proposed in Section 2 separately to each of the three datasets and we employ the
joint model in the simplest case. There are 1494 locations and we randomly select
300 (approximately 20%) locations for the purpose of validation. For the fitting, we
run the MCMC algorithm for 25000 iterations with a burn-in of 5000 and thinning
by every fifth sample.

The prior setting for Ψ θ is as follows: µ ∼ N(0,4I), τ2
θ
∼ IG(2,1) and ρ ∼

Unif(−1,1). A continuous uniform prior Unif(0.0004,0.1) is used for φθ , corre-
sponding to a maximum and minimum range of 7500 km and 30 km respectively. In
fact, the strong spatial dependence for the directions under storm conditions suggest
that we may require a range beyond the largest pairwise distance in the dataset when
there is little variation in wave directions. For the parameters associated with the
heights Ψ h = {β ,τ2

h ,σ
2
h ,φh}, a continuous uniform prior Unif(0.005,0.5) is used

for φh, corresponding to a maximum and minimum range of 600 km and 60 km
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Fig. 3 Plot of wave heights and wave directions under transition sea motion status
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Fig. 4 Plot of wave heights and wave directions under storm sea motion status
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respectively. Since φh is the decay parameter in the regular linear spatial regression
model, we can adopt customary priors for ranges with linear variables. We employ
a non-informative prior for β as β ∼ N3(0,10I). Inverse gamma priors are used for
τ2

h and σ2
h , respectively, IG(2,0.3) and IG(2,0.75).

We compare our results with those for independently modeling the spatial wave
height and the spatial wave direction by setting β1 and β2 to be zero. In the indepen-
dence case, the marginal model for wave heights is a spatial regression with constant
mean β0, written as

H(s) = β0 +w(s)+ ε(s), w(s)∼ GP(0,σ2
h ρh(s− s′;φh)), ε(s) iid∼ N(0,τ2

h ),

where the parameters set is Ψ hm = {β0,φh,σ
2
h ,τ

2
h}. The marginal model for wave

directions becomes a constant mean projected Gaussian process model.
The posterior summaries of parameters are shown in Table 1, for both the joint

model and the independence model above. Model comparison between the joint
model and the independence model is provided in Table 2. Regarding the model
comparison criterion for circular variables, we utilize the continuous ranked prob-
ability score (CRPS) and the predictive log scoring loss (PLSL), following the dis-
cussion [8]. For the linear variable, predictive mean square error and average length
of 95% credible intervals are evaluated for each model.

During a calm day, we observe small values of wave heights (less than 1 meter)
and large variation in wave directions over the region of interest. Conversely, at a
time point during the storm, wave directions are fairly homogeneous while there
is a large variation in wave heights over the region (ranging from 1 meter up to 6
meters). During the transition period, there is considerable variation both in wave
heights and wave directions. From Table 1, the posterior means of the spatial vari-
ance component for wave heights under the joint model (σ2

h ) are 0.0051, 0.0344
and 0.0702 for the three different datasets. Since the contribution of τ2

h is relatively
negligible, these differences across time points agree with our remark regarding in-
creasing variation of wave heights from calm to storm. For the wave directions,
perhaps there is no single parameter which can capture the variation across the re-
gion. Specifically, it is hard to glean much from the posterior summaries of the
parameters of the marginal projected normal distribution since the four parameters
of a general projected normal altogether determine the shapes in a complex fash-
ion. However, the decay parameter φθ associated with the spatial correlation kernel
of the projected Gaussian process provide some indication of the smoothness of the
surface of directions. For the calm day, φθ is much larger than in the other two cases,
indicating less smoothness in this surface, as expected.

Finally, we discuss the model comparison results in Table 2. During the calm
days, the model comparison criteria find the performance of the two models to be
essentially equivalent. For the transition case, the joint model emerges as slightly
better, with shorter average length of 95% credible intervals and slightly smaller
average CPRS and PLSL. For the time point chosen during a storm, the biggest gain
is achieved. We have a substantially narrower average length of credible intervals
and a roughly 5% smaller value of CRPS. As mentioned above, the independent



10 Alan E. Gelfand and Fangpo Wang

Table 1 Posterior summaries of the parameters: joint model (H,Θ) and independent models H, Θ

parameter mean 2.5% 97.5% mean 2.5% 97.5%

data (Calm) (H, Θ ) H, Θ

β0 0.2446 0.1925 0.2918 0.2331 0.1836 0.2800
β1 0.0125 -0.0242 0.0446 - - -
β2 0.0653 0.0502 0.0800 - - -
σ2

h 0.0051 0.0046 0.0057 0.0055 0.0051 0.0060
τ2

h 0.0011 0.0011 0.0013 0.0011 0.0010 0.0013
φh 0.0101 0.0084 0.0126 0.0126 0.0105 0.0116
φθ 0.0020 0.0019 0.0022 0.0019 0.0017 0.0022
µ1 0.2856 -0.4034 0.9887 0.3039 -0.4285 1.0073
µ2 -0.5055 -1.8380 0.7821 -0.4141 -1.7264 0.9531
τ2

θ
0.2717 0.2314 0.3242 0.2747 0.2392 0.3205

ρ -0.4874 -0.5609 -0.4107 -0.4790 -0.5537 -0.4110

data (Transition) (H, Θ ) H, Θ

β0 0.4660 0.3251 0.6138 0.5394 0.3651 0.6882
β1 0.1887 0.1246 0.2432 - - -
β2 0.3062 0.2448 0.3688 - - -
σ2

h 0.0344 0.0295 0.0381 0.0413 0.0379 0.0487
τ2

h 0.0021 0.0019 0.0024 0.0021 0.0019 0.0024
φh 0.0101 0.0084 0.0126 0.0084 0.0072 0.0090
φθ 0.0006 0.0005 0.0007 0.0006 0.0005 0.0007
µ1 -0.1066 -2.3993 2.1268 0.0617 -2.1378 2.1864
µ2 -0.2935 -1.8709 1.3000 -0.2152 -1.8383 1.4209
τ2

θ
2.4400 2.1205 2.9033 2.2318 1.9467 2.5801

ρ -0.2264 -0.3069 -0.1467 -0.2257 -0.3084 -0.1454

data (Storm) (H, Θ ) H, Θ

β0 0.3795 0.1754 0.5712 0.4737 0.0414 0.8596
β1 -0.3052 -0.4035 -0.2046 - - -
β2 0.8794 0.7580 0.9876 - - -
σ2

h 0.0702 0.0551 0.0835 0.1930 0.1687 0.2302
τ2

h 0.0033 0.0028 0.0038 0.0034 0.0029 0.0040
φh 0.0105 0.0087 0.0122 0.0070 0.0063 0.0076
φθ 0.0006 0.0005 0.0007 0.0006 0.0005 0.0007
µ1 0.5853 -0.8101 1.9415 0.6990 -0.6806 1.9630
µ2 -0.6064 -2.0839 0.9323 -0.5152 -2.0437 0.9872
τ2

θ
0.7216 0.6562 0.8090 0.7312 0.6536 0.8054

ρ -0.6433 -0.6873 -0.6039 -0.6631 -0.7107 -0.6095
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Table 2 Model comparison: joint model (H,Θ) and independent models H, Θ

(a) calm (b) transition (c) storm

Feature (H,Θ) H, Θ (H,Θ) H, Θ (H,Θ) H, Θ

Predictive Mean Square Error (height) 0.0006 0.0006 0.0031 0.0030 0.0109 0.0108
Average Length of 95% Credible Interval (height) 0.1821 0.1788 0.3405 0.3586 0.5163 0.6345
mean CRPS for wave direction 0.0407 0.0408 0.0276 0.0279 0.0213 0.0223
PLSL for wave direction -977 -974 -1098 -1104 -1321 -1318

model is nested in the joint model framework. The posterior summaries of β1 and
β2 in Table 1 concur with these findings. For the time point during a calm day, β1
and β2 are nearly zero, which supports the independence of wave heights and wave
directions. As we move from calm to transition to storm, the β1 and β2 become
increasingly different from 0. The multiple correlation coefficient is computed, as in
(2) and we show the posterior densities of the multiple correlation coefficient for all
three scenarios in Figure 5. The figure concisely supports Table 1, revealing stronger
association between height and direction as we move from calm to storm. Finally,
we note that the negative β1 and positive β2 are not unexpected. With storms tending
to travel from the north-northwest to the southeast, and with the sin increasing and
cos decreasing in these directions, this supplies an expectation of an increase in
wave height as a function of θ as the storm develops.
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Fig. 5 The posterior densities of the square of the multiple correlation coefficient R2
H|Y
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5 Joint space-time models

In the previous section, we modeled spatial wave directions and wave heights at
a static time slice. It is natural to envision an underlying process for heights and
directions in continuous space and time; fitting such a model would enable both in-
terpolation and forecasting at future time points. In fact, such data are also available
across time at hourly resolution using the ISPRA output; here we suggest a natu-
ral extension to accommodate such data. Now, wave heights and wave directions at
location s and time t are denoted as H(s, t) and Θ(s, t) both over both the domain,
s ∈ D and t ∈ (0,K). We adopt the same joint framework shown in expression (1),
where Ψ h and Ψ θ are sets of parameters associated with the conditional model for
height and the marginal model for direction, respectively.

Again, this joint space-time model is provided conditionally. For the marginal
distribution of the circular variables Θ(s, t)|Ψ θ , we propose a stationary spatio-
temporal projected Gaussian process with a constant mean µ = (µ1,µ2)

T and sepa-
rable cross-covariance form,

Cθ

(
(s, t),(s′, t ′)

)
= ρθ ,s(s− s′;φθ ,s)ρθ ,t(t− t ′;φθ ,t) ·T, (5)

where ρθ ,s is the spatial correlation and ρθ ,t is the temporal correlation. The pa-
rameters associated with the directions Ψ θ = (µ,T,φθ ,s,φθ ,t), φθ ,s and φθ ,t are the
decay parameters associated with their corresponding correlation functions ρθ ,s and

ρθ ,t and T is still defined as in the previous section, T =

(
τ2

θ
ρτθ

ρτθ 1

)
. This model

has been considered in [9].
Again, we only need one space-time covariance function. Under this model

specification, the projected Gaussian process is induced from an inline Gaussian
process Y(s, t) with a constant mean µ and cross-covariance Cθ ((s, t),(s′, t ′)). So,
we can transform back and forth between the spaces for the pairs of random vari-
ables, (Θ(s, t),R(s, t)) and (Y1(s, t),Y2(s, t)) through Y1(s, t) = R(s, t)cosΘ(s, t) and
Y2(s, t) = R(s, t)sinΘ(s, t).

At the conditional level, we introduce

H(s, t) = X(s, t)T
β +w(s, t)+ε(s, t) = β0+β1Y1(s, t)+β2Y2(s, t)+w(s, t)+ε(s, t).

(6)
Suppose we simplify w(s, t) to w(s), a zero-centered GP with covariance function

Ch = σ2
h ρh(s− s′;φh) and the random the error term ε(s, t) iid∼ N(0,τ2

h ). Then, the
model asserts that the temporal dependence between H(s, t) is fully contributed by
the latent components Y1(s, t) and Y2(s, t).
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