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Abstract Partial Least Squares Path Modeling (PLS-PM) aims at modeling multi-
variate relations among several blocks of variables observed on the same units. Since
its first presentation in 1975 by Herman Wold, several authors have developed spe-
cific techniques related to the PLS-PM and investigated its mathematical, numerical
and statistical properties. In recent years researchers mainly focused on the opti-
mization criteria behind the PLS-PM algorithm and on modifications of such crite-
ria in order to handle variables independently of the measurement scale on which
they have been observed. In this paper we extend the Non-Metric approach for the
analysis of variables measured on different scales presented by Russolillo in 2012
to inwards directed PLS Path Models.
Abstract Il PLS Path Modeling (PLS-PM) é un metodo per l’analisi di tabelle
multiple che fu introdotto nel 1975 da Herman Wold. Negli ultimi anni le ricerche
sul PLS-PM si sono focalizzate principalmente sulla ricerca dei criteri ottimizzati
dall’algoritmo PLS-PM e su come modificare questi criteri per trattare variabili in-
dipendentemente dalla scala di misura sulla quale sono state osservate. In questo
paper si presenta una generalizzazione dell’approccio Non-Metric PLS, proposto
da Russolillo nel 2012, a modelli PLS con blocchi formativi.
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1 Introduction

Partial Least Squares Path Modeling [13, 3] (PLS-PM) aims at modeling multivari-
ate relations among several blocks of variables observed on the same units. It is so
far the most popular component-based alternative to the classical Analysis of Co-
variance Structures [7] for estimating the parameters of Path Models with Latent
Variables (LVPM), also known as Structural Equation Models. PLS-PM is imple-
mented through a flexible algorithm that, depending on the chosen option, can opti-
mize covariance or correlation based criteria.

Since its first presentation in 1975 by Herman Wold [14], several authors have
developed specific techniques related to the PLS-PM and investigated the related
mathematical, numerical and statistical properties. In the last years researchers have
manly focus on the optimization criteria behind the PLS-PM algorithm [5, 10, 8, 6,
12], on the use of variables measured on different scales [11] and on new ways to
compute the outer weights [3].

In this paper we review the Non-Metric approach to PLS-PM [11], which has
been so far limited to covariance based PLS Path Models, and we extend this ap-
proach to correlation-based PLS-PM. The rest of the paper is structured as follows.
First, we review the main aspect of the PLS-PM (Section 2) and of the Non-Metric
PLS approach (Section 3). Then, we extend the Non-Metric PLS approach to the
case of PLS-PM with inward measurement model (Section 4).

2 PLS Path Modeling

PLS Path Modeling was first introduced by H. Wold [14] for the analysis of
Path Models with Latent Variables. The main idea of such models is that Q la-
tent variables (LVs) ξ 1, . . . ,ξ q, . . . ,ξ Q, linked in a network of linear relationships,
can be used to study the relations between Q blocks of observed variables (MVs)
X1, . . . ,Xq, . . . ,XQ. Each model has two levels of relationships. The first level con-
cerns relationships between LVs (structural model); these relations can be stored in
a symmetric binary matrix C of order Q, whose generic element cqq′ is one if ξ q is
connected to ξ q′ and zero otherwise. The other level of relations concerns the links
between each LV and its own block of MVs (measurement model).

PLS-PM assumes that each block of observed variables can be summarized by a
latent construct obtained as a linear composite of the observed variables. The system
of weights to be applied to the observed variables is obtained trough an iterative two-
step algorithm. In the first step an outer proxy tq of each latent construct is obtained
as a linear composite of the observed variables; in the second step an inner proxy
zq of each latent construct is computed as a linear combination of its adjacent latent
constructs estimated using the outer proxies computed at the previous step. The
inner proxies are then used to update the system of weights (i.e. the outer weights)
to be applied to the observed variables. These two steps are iterated till numerical
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convergence on the outer weights. Refer to [3] for a detailed presentation of the
algorithm.

The PLS-PM algorithm is extremely flexible. Several options, providing slightly
different results, can be used to compute inner and outer proxies of the LVs. In this
work we focus on two options (also called schemes) to calculate the inner weights
for computing the inner proxy zq and two options (also called modes) to compute
the outer weights wpq to be used in computing the outer proxy tq.
As concerns the schemes, for each couple of linked outer proxies tq and tq′ :

1. the centroid scheme (Wold’s original scheme) defines the inner weight (eqq′ ) as:

eqq′ = sign(cor(tq, tq′)

2. the factorial scheme defines the inner weight (eqq′ ) as:

eqq′ = cor(tq, tq′).

With respect to the modes, we will refer to:

1. New Mode A, represented in the path diagram by outwards directed arrows join-
ing the LV to the corresponding MVs; in New Mode A each inner estimate is
modeled as a predictor of corresponding MVs. Hence, the outer weights wq as-
sociated to each LV are the coefficients of the simple regressions of each MV on
the corresponding LV inner proxy. These weights are further transformed such
as ‖wq‖= 1

2. Mode B, represented in the path diagram by inwards directed arrows joining the
MVs to the corresponding LV; in Mode B a multiple regression model defines the
relation between the latent and manifest variables. The outer weights wq are thus
the regression coefficients of a multiple regression model of the inner estimate of
each LV on its own MVs.

Any combination of the these pairs of schemes and modes has been proved to con-
verge to different criteria [12].

In particular, when New Mode A is used for all the blocks, PLS-PM algorithm
converges to the criterion:

argmax
∀wq

∑
q

cqq′g(cov(Xqwq,Xq′wq′)) s.t. ‖wq‖= 1 (1)

where g() is the square function if the factorial scheme is used, and the absolute
value function if the centroid scheme is used.

When Mode B is used for all the blocks PLS-PM algorithm converges to the
criterion:

argmax
∀wq

∑
q

cqq′g(cov(Xqwq,Xq′wq′)) s.t. ‖Xqwq‖= 1 (2)

Hence, when Mode New A is used the PLS-PM maximizes the sum of a function
of the covariances between the connected latent variables, while when Mode B is
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used the sum of a function of the correlations between the connected latent variables
is maximized.

3 Non-Metric PLS Path Modeling

PLS-PM has two main assumptions:

• Each observed variable is measured on a interval (or ratio) scale.
• Relationships between variables are linear and, consequently, monotonic.

Hence, PLS-PM only applies to quantitative (metric) data. In many real applications
users are interested in analyzing data observed on ordinal or nominal measurement
scales.

The Non-Metric PLS (NM-PLS) approach has been recently proposed by Rus-
solillo [11] to extend covariance-based PLS criteria (i.e. solutions to Eq. (1)) to
the treatment of non-metric variables and non-linearity. This approach is based on
the concept of Optimal Scaling (OS) [2, 4]. The OS principle sees observations as
categorical, and represents each observation category by a scaling parameter. This
parameter is subject to constraints deriving from the measurement characteristics
of the variables. In this process each variable x is transformed as x̂ ∝ X̃φ , where
φ ′ = (φ1, . . . ,φK) is a vector of numeric values (the scaling parameters) associated
to the K different values or categories of the variable x, and the matrix X̃ defines a
space in which constraints imposed by the scaling level are respected. The symbol
∝ means that the left side of the equation corresponds to the right side normalized
to unitary variance.

In order to apply the OS principle to the PLS Path Modeling, when New Mode A
is used, the following criterion must be optimized:

arg max
∀wq,φ pq

∑
q

cqq′g(cov(X̂qwq, X̂q′wq′)) s.t. ‖wq‖=
√

n,‖x̂pq‖=
√

n (3)

where x̂pq = X̃pqφ pq represents the observed variable quantified by means of the
scaling parameter φ pq.

The criterion in Eq. (3) requires two set of parameters to be optimized: the model
parameters and the scaling parameters. Recently a new PLS-type algorithm, named
NM-PLS, has been proposed for solving Eq. (3) [11]. This algorithm alternately op-
timizes criterion (3) with respect to each subset, keeping the other fixed. In particu-
lar, Russolillo showed that, keeping fixed PLS parameters wq, the optimal solution
for φ pq was given by the quantification function Q(X̃pq,zq) which orthogonally
projects zq on the space spanned by X̃pq.
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4 Non-Metric PLS Path Modeling for Mode B

Here we propose a new algorithm to extend the results in [11] to the Mode B and to
whatever combination of the modes and schemes presented in Section 2.

To extend the problem in Eq. (2) to the Mode B case, the following optimization
problem must be solved:

argmax
∀wq

∑
q

cqq′g(cov(X̂qwq, X̂q′wq′)) s.t. ‖X̂qwq‖=
√

n,‖x̂pq‖=
√

n (4)

It is possible to show [12] that this criterion can be rewritten as:

arg max
∀wq,φ pq

∑
q

cor(X̂qwq,zq) (5)

A NM-PLS algorithm can be used to maximize this criterion. For fixed scaling pa-
rameters, the optimization problem in (5) can be solved with respect to wq by using
the usual PLS-PM iteration. In order to optimize the problem with respect to φpq
while keeping wq fixed, we propose the following backfitting procedure (see [2, 1],
among others). Following the back fitting principle, the optimal solution for x̂pq
is obtained by applying the quantification function Q(X̃pq,x∗pq) on the back-fitted
variables x∗pq, obtained as:

x∗pq = (1/bpq)(zq− ∑
j 6=Pq

x̂ jqb j)

where bq = (X̂′qX̂q)
−1X̂′qzq .

Criterion (5) is solved by alternating a standard PLS iterative loop, a back fit-
ting step and a quantification step. At each step the criterion (5) increases, thus the
proposed algorithm is expected to converge to a maximum.
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