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Abstract Proper scoring rules can be use to motivate You to assess Your true uncer-
tainty honestly, as well as to measure the quality of Your past probability forecasts in
the light of the actual outcomes. They also have many other statistical applications.
In this overview paper I discuss characterisations, properties and specialisations of
proper scoring rules, and describe some of their uses, including robust estimation
and Bayesian model selection.
Abstract Regole di punteggio proprie possono essere utilizzate per motivarci a va-
lutare la nostra incertezza onestamente, cosı̀ come per misurare la qualità della
nostra previsione probabilistica, alla luce dei risultati effettivamente ottenuti. Esse
hanno anche molte altre applicazioni statistiche. In questo lavoro presenterò carat-
terizzazioni, proprietà e specificità delle regole di punteggio proprie, e mi soffermerò
su alcune delle loro applicazioni, far cui problemi di stima robusta e selezione del
modello Bayesiano.

Key words: probability forecasting, log score, Brier score, Bregman score, Hyvärinen
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1 Introduction

The theory of proper scoring rules, originally developed to assist meteorologists in
issuing weather forecasts, can be considered as belonging to various statistical sub-
disciplines: subjective Bayesianism, decision theory, prequential analysis,. . . Re-
cently it has become apparent that it has many uses that transcend all these, and
that it supplies a valuable general tool in statistical theory, where we can often, with
advantage, use a proper scoring rule as an alternative to likelihood. The aim of this
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paper is to present a brief overview of the theory and applications of proper scoring
rules. For more details, see e.g. [5, 12, 7].

2 Proper scoring rules

Suppose You have to assess Your uncertainty about an observable (but as yet unob-
served) uncertain quantity X , taking values in X . You will quote a distribution Q
over X . A proper scoring rule can be thought of as a device to encourage You to
be honest in this task: that is, to ensure that, if Your “true” uncertainty is in fact rep-
resented by distribution P, then You will choose to announce Q = P as Your quoted
distribution.

Formally, a scoring rule is a function S : X ×P → R, where P is a class of
probability distributions over X . The interpretation is that, if You quote distribution
Q, and Nature later reveals the value of X to be x, then You will suffer a penalty
S(x,Q). Thus S is a loss function in a certain game between You and Nature.

The principles of decision theory say that You should act so as to minimise
Your expected loss. If You believe X ∼ P but quote Q, Your expected loss will
be S(P,Q) := EX∼PS(X ,Q). We say that the scoring rule S is proper with respect to
P if, for P,Q ∈P , Your expected score S(P,Q) is minimised in Q at Q = P; and
S is strictly proper if this is the unique minimum: S(P,Q) > S(P,P) for P,Q ∈P ,
Q 6= P.

3 Examples

3.1 Quadratic score

For binary X , with X = {0,1}, the quadratic or Brier score is: S(x,Q) = (x−q)2

with q := Q(X = 1). Then S(P,Q) = (p−q)2 + p(1− p), where p := P(X = 1). For
any p this is uniquely minimised at q = p, showing strict propriety.

Brier [3] developed this scoring rule to assist meteorologists in forecasting rain.
de Finetti [8] used it to argue that subjective probabilities ought to obey the classical
axioms. For example, suppose You quote probability q1 for an event A, and q0 for its
complement A, and that both of these are assessed by means of the quadratic score.
Your total penalty will be (1−q1)

2+q2
0 if A occurs, q2

1+(1−q0)
2 if not. It is easy to

show that, if (and only if) q0+q1 6= 1, You could have made alternative assessments
(for example, q∗1 = (q1+1−q0)/2, q∗0 = 1−q∗1) that would have produced a smaller
total penalty, for either outcome — so Your initial assessment was “incoherent”.

A similar argument can be based on any other proper scoring rules, and further
used to be show that Your assessments should be the same no matter which scoring
rule is used [15].
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3.2 Log score [9]

Let P,Q have density functions p(·), q(·) with respect to a fixed measure µ on X .
The log score is given by: S(x,Q) =− logq(x). Then

S(P,Q) = −
∫

p(x) logq(x)dµ(x)

=
∫
{q(x)− p(x) logq(x)}dµ(x)−1.

Since q− p logq is uniquely minimised in q at q = p, the log score is strictly proper.
An important property is locality: to compute it we only need to know the value

of the function q(·) at the realised outcome x. So long as #(X )> 2 the log score is
essentially the only local proper scoring rule [1].

Many fundamental statistical concepts — most obviously, log likelihood — are
intimately related to the log score. The minimised expected score H(P) := S(P,P)
is the Shannon entropy. The difference between prior and expected posterior Shan-
non entropy, C(X ,U) := H(PX )−EU{H(PX |U}, is the mutual information between
X and an additional variable U . The excess expected score over the minimum,
D(P,Q) := S(P,Q)−H(P), is the Kullback-Leibler discrepancy. Its local form,
D(Pθ ,Pθ+dθ ) defines a Riemannian metric structure g(θ)dθ 2, where g(θ) is the
Fisher information; likewise other concepts of information geometry arise naturally.
All the above definitions can be applied starting from an arbitrary proper scoring
rule, and lead to generalisations of these concepts which retain many of their famil-
iar properties.

3.3 Bregman score [2]

Define

S(x,Q) =−ψ
′{q(x)}−

∫
dµ(y) ·

[
ψ{q(y)}−q(y)ψ

′{q(y)}
]
, (1)

where ψ : R+ → R is strictly convex and differentiable. We find (writing p =
p(y),q = q(y)):

S(P,Q)−S(P,P) =
∫

dµ(y) ·
[
ψ(p)−

{
ψ(q)+ψ

′(q)(p−q)
}]

. (2)

The integrand in (2) is positive for q 6= p, so S is strictly proper. This class includes
the Brier score, for ψ(q) = (2q2−1)/4, and the log score, for ψ(q) = q lnq.
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3.4 Hyvärinen score [10]

Take X =Rk, and

S(x,Q) = ∆ lnq(x)+
1
2
|∇ lnq(x)|2 =

∆
√

q(x)√
q(x)

(3)

where ∇ denotes gradient, and ∆ the Laplacian operator ∑
k
i=1 ∂ 2/(∂xi)

2, on X . As-
suming that boundary terms arising on integrating by parts vanish, it can be shown
that

S(P,Q)−S(P,P) =
1
2

∫
dµ(y) · |∇ ln p(y)−∇ lnq(y)|2

which is positive unless Q = P, demonstrating strict propriety.
This scoring rule depends on q(·) through its value and its first two derivatives

at the realized value x — it is local of order 2. It is also homogeneous: it can be
computed even if the normalising constant of q(·) is unknown. These properties can
be generalized and characterized [13].

3.5 General construction

Consider a general decision problem, with state space X , action space A , and
loss function L(x,a). For P ∈P , the Bayes act is aP := argmina∈A L(P,a) where
L(P,a) := EX∼PL(X ,a). Define a scoring rule S by: S(x,Q) = L(x,aQ) (x ∈
X ,Q ∈P). Then S(P,Q) = L(P,aQ)≥ L(P,aP) = S(P,P). Thus S is a proper scor-
ing rule with respect to P . This construction converts any statistical decision prob-
lem into one involving a proper scoring rule.

4 Motivating and assessing probability forecasts

Just like the penal code, a proper scoring rule S has a dual function: both to deter and
to punish dishonesty. Suppose You know You will be penalised according to S. The
deterrent function applies when, ahead of observation of X , You are contemplating
Your announcement of Q: then, as described above, You should announce Your true
distribution P. The punishment function applies when, after You have announced Q,
Nature reveals the value x of X , and You receive the associated penalty, S(x,Q). An
observer could use this penalty, accumulated over a sequence of forecasting tasks,
to compare the performances of several forecasters.
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4.1 Motivation

A good way to motivate You to be careful in assessing Your probabilities is to re-
place the numerical details of Your Q by a table of its consequences. Suppose You
wish to assess Your probability for an event A. You are presented with Table 1 (based
on the Brier score — other proper scores could be used), but with the last column
covered up. Each row specifies a pair of penalties: one that You would suffer if A
occurs, the other if not. Your task is to select Your most favoured row. Intuitively,
if You believe A is very improbable You will be willing to suffer a large penalty
if it occurs in exchange for a small penalty if not, and so gravitate towards the top
of the table. When You have chosen Your favoured row, the value in the third col-
umn is revealed: it is Your implicit probability value, consistent with Your displayed
preferences.

A A q
100.0 0.0 .00

81.0 1.0 .10
64.0 4.0 .20
49.0 9.0 .30
36.0 16.0 .40
25.0 25.0 .50
16.0 36.0 .60

9.0 49.0 .70
4.0 64.0 .80
1.0 81.0 .90
0.0 100.0 1.00

Table 1 Brier score disguised

4.2 Assessment

Suppose, on each day i− 1, a weather forecaster issues probability forecasts qi for
the event Ai of rain on the following day, i, and the actual outcome is ai ∈ {0,1}.
Over n such days his cumulative Brier penalty score is

S+ :=
n

∑
i=1

(qi−ai)
2. (4)

We can partition S+ into components that measure two effectively orthogonal di-
mensions: substantive ability, representing knowledge and skill in the forecasting
task; and normative ability: accuracy in assessing empirical frequencies.

Suppose that the forecasts are confined to a set (π j : j = 1,2, . . . ,k) of values,
and that forecast π j is issued on n j occasions, forming a group G j say, in which a
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proportion ρ j result in the event occurring. Then we find

S+ =
k

∑
j=1

n j
{

ρ j(1−π j)
2 +(1−ρ j)π

2
j
}

= S1 +S2

= S0 +S1−S3

where

S1 =
k

∑
j=1

n j(π j−ρ j)
2

S2 =
k

∑
j=1

n jρ j(1−ρ j)

S3 =
k

∑
j=1

n j(ρ j−ρ)2

S0 = ρ(1−ρ).

and ρ = (∑n
i=1 ai)/n= (∑k

j=1 n jρ j)/n is the overall proportion of rainy days. Similar
decompositions can be based on other proper scoring rules.

The criterion of calibration requires that π j ≈ ρ j: that is, in the group G j, the is-
sued forecast π j should approximate the actual proportion ρ j of rainy days. We can
interpret the non-negative component S1 as measuring overall departure from cali-
bration: it vanishes for a “well-calibrated” forecaster who has π j = ρ j, all j, and so
has normative abilty, in being able to assign realistic probability values. This com-
ponent can be eliminated (without affecting the other components) by recalibration,
whereby on each day in G j the forecast value is changed to ρ j.

The term S2 measures refinement, or substantive ability. It is small when all the
ρ j’s are close to 0 or 1: this will be so for a forecaster who is able to sort the
days effectively into rainy and dry. We can also express S2 = S0− S3. Here S0 is
fixed by Nature, while S3 is large (so reducing the overall penalty) when the sample
variance of the proportions ρ j’s is large; S3 attains its minimum (cooresponding to
highest penalty) when the ρ j’s do not vary across the groups {G j}, meaning that the
forecaster is totally unable to discriminate between rainy and dry days.

5 Classical inference

Likelihood inference, while efficient, can be non-robust, as well as requiring the
often problematic computation and manipulation of the normalising constant of a
distribution. Some of these issues can be addressed if we replace the negative log
likelihood by some other proper scoring rule S. For a smooth parametric family
P = {Pθ}, define
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s(x,θ) =
∂S(x,Pθ )

∂θ
. (5)

Given a random sample (x1, . . . ,xn), we can estimate θ by solving the equation

n

∑
i=1

s(xi,θ) = 0. (6)

Generalising the likelihood equation, to which it reduces when S is the log score,
(6) yields an unbiased estimating equation. Its root will be consistent, though typ-
ically inefficient, in repeated sampling, with an asymptotic variance that follows
from standard M-estimation theory [7, 14].

Such an estimator will however often be robust. For the case of a location fam-
ily, with density pθ (x) = f (x− θ), and a Bregman scoring rule (1), the influence
function will be bounded if and only if ψ ′′{ f (u)} f ′(u) is bounded.

Other advantages accrue if we use a homogeneous scoring rule, such as (3). Then
we can construct the estimator without having to compute the normalising constant
of the distribution [11].

6 Bayesian model selection

Bayesian model selection is based on the predictive density function assuming the
validity of a putative model M:

pM(x) =
∫

ΘM

pM(x |θM)πM(θM)dθM. (7)

As a function of M, L(M) ∝ pM(x) supplies the marginal likelihood function over
models M, based on data x.

However, use of (7) requires that the within-model prior density πM be proper.
This constraint can be evaded on noting that − log pM(x) is the log-score for the
predictive distribution, and replacing this by a homogeneous scoring rule S, such as
SH given by (3). If in (7) we formally take πM(θM)∝ αM(θM) for an unnormalisable
function αM , the unspecified normalising constant will not appear in SH(x,πM).
Specifically, we find

SH(x,PM) = E{SH(x,PΘ ) |X = x}+∑
i

var
{

∂ log p(x |Θ)

∂xi

∣∣∣∣X = x
}
, (8)

which will be well-defined so long as the posterior means and variances appearing
in it exist. We can then compare models M by means of their scores (8). When this
score is computed prequentially [4], this will typically lead to consistent selection
of the correct model [6].
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