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Abstract A multi-armed bandit problem models an agent that simultaneously at-
tempts to acquire new information (exploration) and optimizes the decisions based
on existing knowledge (exploitation). In clinical trials, this framework applies to
Bayesian multi-armed randomized adaptive designs. The allocation rule of experi-
mental units involves the posterior probability of each treatment being the best. The
trade-off between gain in information and selection of the most promising treatment
is modulated by a quantity γ , typically prefixed or linearly increasing with accumu-
lating sample size. We propose a predictive criterion for selecting γ that also allows
its progressive reassessment based on interim analyses data.
Abstract Un multi-armed bandit è un esperimento sequenziale in cui un soggetto,
per scegliere tra più azioni alternative, tenta simultaneamente di acquisire nuova in-
formazione (“exploration”) e di ottimizzare le decisioni sulla base dei dati disponi-
bili (“exploitation”). Nelle prove cliniche, lo schema si applica ai disegni Bayesiani
randomizzati adattivi in cui si confrontano due o più trattamenti. Le unità sperimen-
tali vengono assegnate ai diversi gruppi mediante regole di allocazione basate sulle
probabilità a posteriori che ciascun trattamento sia il migliore. Il compromesso tra
le contrapposte esigenze di esplorare e selezionare con maggior frequenza il trat-
tamento più promettente è modulato da una quantità γ che tipicamente è prefissata
o cresce linearmente con il numero di osservazioni. La nostra proposta prevede
invece l’adozione di opportuni criteri predittivi per la scelta iniziale di γ e il suo
progressivo aggiornamento sulla base dei dati effettivamente osservati ad interim.
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1 Introduction

Amulti-armed bandit problem is a sequential allocation experiment aimed at obtain-
ing the largest possible reward by optimally allocating unit resources to alternative
treatment arms (for an overview on this topic see among others [5]). The metaphoric
term bandit alludes to a one-armed bandit which colloquially indicates a slot ma-
chine. In our setup the payoff associated to an action is simply the response under
a given treatment arm and the overall objective is to maximize the number of suc-
cesses obtained in a sequence of allocations. At each stage the decision-maker must
simultaneously respond to a twofold purpose: (i) exploiting the treatment that ap-
pears to be the most promising in light of the current available knowledge, and (ii)
keep exploring all arms in search of better treatments that momentarily appear to
be inferior, due to limited experimental information (see [1] for discussion). An
overview of several techniques used to manage the multi-armed bandit problem
is provided by [3], with special emphasis on the so-called randomized probabil-
ity matching and on its implementation in a Bayesian framework which naturally
allows to handle the trade–off between exploration and exploitation.

Although multi-armed bandits are currently used in many fields, ranging from
website optimization to packet routing, clinical trials still represent the most classi-
cal application context (see [2]). In this area the typical Bayesian adaptive random-
ized (BAR) design for binary outcomes is actually a binomial bandit (see [3]).

This paper is organized as follows. In the next section we briefly sketch the basic
idea underlying BAR, first proposed by Thompson [8] and subsequently developed
in several papers and applied in actual trials. Then in Section 3.2 we suggest pre-
dictive criteria for selecting a suitable tuning parameter for the trade-off between
exploration and exploitation. This predictive approach is based on the use of two
distinct prior distributions in the sense explained in Section 3.1. Finally Section 5
contains some concluding remarks and open problems.

2 Bayesian adaptive randomization

An adaptive clinical trial includes a prospectively planned opportunity for mod-
ification of one or more specified aspects of the study design. In this paper we
specifically focus on adaptive modifications of treatment randomization probabil-
ities, according to the accumulating observed responses at interim analyses. The
Bayesian approach has provided the ideal framework to develop this idea, thanks to
the straightforward iterative application of Bayes theorem for knowledge updating.
For a comprehensive review on Bayesian adaptive designs see [4].

Here we consider the simplest case of a comparative clinical trial with binary
outcomes under two competing treatments. In this scheme each patient is enrolled
sequentially and is randomly assigned to one treatment arm based on a suitable
allocation rule that will be discussed later on. Once a generic patient i is assigned to
arm k with k = 1,2 indicating the new and the standard treatment respectively, let
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Xk,i denote her binary response to treatment k, which follows a Bernoulli distribution
with unknown response probability θk. Moreover, let Yk,nk = ∑

nk
i=1 Xk,i denote the

random number of successes out of nk patients under treatment k. For the current
sample size n = n1 +n2, the observed data will be indicated by yn = (y1,n1 ,y2,n2).

We assume that available prior information on the unknown parameters θ1 and
θ2 is formalized by a prior distribution of independence π(θ1,θ2) = π(θ1)π(θ2),
where each π(θk) is a conjugate Beta prior density of parameters (αk,βk) to be up-
dated given the data yk,nk . However, it is worth noticing that both these assumptions,
although realistic and widely used in many application contexts, are not strictly re-
quired in the following procedure.

Back to the randomization mechanism, the basic ingredient to define the alloca-
tion rule is the posterior probability of superiority of the new treatment with respect
to the standard one, namely

Pπ (θ1 > θ2 |yn) . (1)

As argued in [7], in order to avoid the undesirable variability obtained when using
(1) tout court as probability of allocation to arm 1, it is common practice to consider
the following stabilizing transformation:

Pπ (θ1 > θ2 |yn)
γ

Pπ (θ1 > θ2 |yn)
γ +Pπ (θ1 < θ2 |yn)

γ , (2)

where γ is a positive quantity that modulates the trade–off between exploration and
exploitation. It is straightforward to see that γ = 0 leads to equal allocation, while
for γ = 1 we retrieve probability (1). In practice, in [7] a value of γ = 1/2 is rec-
ommended, based on empirical experience. Alternatively, it is possible to set γ as
a linear function of n/N, where n is the current sample size and N is the prefixed
maximum dimension of the trial. In [9] a practical method for the selection of γ is
outlined. The Authors focus on a function of the form γ(n) = a(n/N)b depending on
two parameters a and b and they suggest to find optimal values of a and b in terms
of the operating characteristics of the adaptive design under realistic scenarios. In
this work, we propose instead to adopt a predictive approach for selecting γ , that
will be detailed in the next section.

3 Our proposal

Before describing our proposal, a brief premise is necessary to introduce the distinc-
tion between two prior distributions involved in the criteria that will be described in
Section 3.2.
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3.1 Predictive two–priors approach

In our predictive setup, following several previous contributions (see, among others,
[10]), we consider two distinct prior distributions. Specifically,

• πA (analysis prior) is employed to determine the posterior distribution and, there-
fore, the posterior probability (1), involved in the allocation mechanism of exper-
imental units as well as in the inferential analysis;

• πD (design prior) describes a conjectured scenario (for example superiority of
the new treatment) and induces the marginal distribution of the data mD upon
which the proposed predictive criteria rely on.

Notice that the marginal distribution mD exists only if πD is a proper distribution,
whereas πA can also be a noninformative improper prior.

3.2 Predictive criteria to select γ

In this section we introduce two alternative predictive criteria to optimize the choice
of γ = γ(n) that will be then used to modulate the allocation probabilities for ran-
domizing the next n experimental units. Reasonably, under a given scenario depicted
by πD, our goal is to select γ in such a way that (i) the best arm is privileged dur-
ing the allocation process and (ii) it is likely to identify with satisfying accuracy
the most effective treatment in terms of its posterior probability of superiority. To
this end, the optimal value γ? is selected to maximize a suitable summary of the
predictive distribution of the posterior probability in (1), such as, for example, the
predictive expectation

EπD

[
PπA (θ1 > θ2 |yn)

]
(3)

or the predictive probability

PπD

[
PπA (θ1 > θ2 |yn)> λ

U
]
−PπD

[
PπA (θ1 > θ2 |yn)< λ

L
]

(4)

where λU and λL are prefixed cutoffs (e.g. λU = 0.9, λL = 0.1), introduced to control
the tail behavior of this distribution.

In addition, in the ongoing trial a certain number of interim analyses is planned.
At each intermediate stage j the prior distributions πA is updated given the actually
observed data, and the chosen criterion is repeatedly applied, with n = n j denot-
ing the sample size of the next interim analysis. In particular, notice that it is also
possible to update πD, in the spirit of the Bayesian interim power described in [6]:
this allows to reassess the optimal value γ? in light of the actual progress of the
trial, even if the real interim data turn out to be in contrast with the initial prefixed
scenario.



A predictive look at Bayesian Bandits 5

4 Simulation study

In order to assess the performance of the predictive criteria introduced in the previ-
ous section, we have conducted an extensive simulation study, referring to a previous
example by [7]. Figure 1 shows a relevant example under the following setup:

• the true underlying response rates are 0.45 and 0.25 for arm 1 and 2 respectively;
• the analysis prior is neutral, that is πA(θ1) = πA(θ2) = Beta(·|1.25,3.75);
• the design prior is slightly optimistic towards the new treatment, with πD(θ1) =

Beta(θ1|3,7) and πD(θ2) = Beta(θ2|2.5,7.5).

Po
st

. p
ro

b.
 (N

ew
 >

 S
td

) &
 A

llo
ca

tio
n 

pr
ob

.

         

0.
00

0.
25

0.
50

0.
75

1.
00

0.
0

0.
5

1.
0

O
pt

im
al

 � 
va

lu
e

46.7%
53.3%

25%

46.7%
53.3%

28.6%
50%

66.7%

33.3%
50%

20%

60%

40%
66.7%

16 7%

56.7%
43.3%

29.4%
15 4%

70%

30%
42.9%

93.3%

6.7%

50%

100%

0%

46.7%

Post. prob. (New > Std)  Allocation probability  Optimal � valuePost. prob. (New > Std)  Allocation probability  Optimal � value

Sample size (at interim)

Po
st

er
io

r d
en

sit
ie

s

0 15 30 45 60 90 120 150 180

0.
00

0.
25

0.
50

0.
75

1.
00

7 8
6

14 16

7 7

24 21

13 8

33 27

18 10

50
40

27
11

71

49

41

12

99

51
55

12

129

51

Analysis post. (New) Analysis post. (Std) Design post. (New) Design post. (Std) Sampl. prior (New) Sampl. prior (Std)

(a)

(b)

(c)

(d)

Fig. 1 Panels description (from top to bottom): (a) Progressive updating of the (analysis) poste-
rior probability that θ1 > θ2 and the corresponding probability of allocation to arm 1 with respect
to the sample size; optimal choices of γ? at each interim analysis; (b) Actual allocation proportions
to arms 1 and 2 with the corresponding observed response proportions at each interim analysis; (c)
Progressive updating of analysis and design priors given the interim data; (d) Cumulated sample
sizes and absolute number of successes under 1 and 2 at each interim analysis.
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At the beginning of the trial, during the first two interim analyses, the control arm
seems to perform better than the innovative treatment. This is in contrast with the
expectations of the experimenter summarized by the design scenario. Hence, even if
the posterior probability (1) tends to be smaller than 0.5, apparently privileging the
allocation in arm 2, the selected value of γ? = 0 actually leads to equal allocation,
allowing for a further exploration of both arms. In the subsequent interim analyses,
since the actual data progressively appear to become more favorable towards treat-
ment 1, γ? starts to increase and finally allows the allocation probability to be very
close to 1, which implies that almost all new patients are assigned to arm 1.

5 Concluding remarks

In this paper we consider predictive criteria for selecting the exploration/exploitation
parameter γ involved in Bayesian adaptive randomized designs. The proposed ap-
proach is extremely flexible and in simulation studies it appears to be promising. In
future research we would like to further compare our procedure with existing meth-
ods, possibly by introducing suitable stopping rules that allow early termination
for either efficacy or futility. Finally, we will investigate the problem of covariate-
adjustment, already addressed for instance by [11].
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