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Abstract In this paper, we study inference for the stress-strength reliability based on lower record data,
where the stress and the strength variables are modeled by two independent but not identically distributed
random variables from distributions belonging to the proportional hazard family. Likelihood and Bayesian
estimators are derived and the confidence intervals and credible sets, respectively, are obtained. Finally,
some numerical results are reported in order to show the performance of the proposed procedures.
Abstract Nel presente lavoro si analizzano alcuni aspetti inferenziali relativi alla misura dello stress-
strength basata su dati di tipo lower record, ipotizzando che stress e strength possano essere descritte
da due variabili casuali indipendenti, ma non identicamente distribuite, appartenenti ad una data classe
generale di distribuzioni. Vengono derivati stimatori di massima verosimiglianza e Bayesiani, ottenendo
per essi rispettivamente, gli intervalli di confidenza e di credibilitá. Infine, vengono riportati alcuni risultati
numerici al fine di mostrare la performance delle procedure proposte.
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1 Introduction

In reliability studies, the stress-strength term is often used to describe the life of a component which has
a random strength X and is subject to a random stress Y. The quantity Φ = P(Y < X) is a measure of
a component reliability which has many applications in physics, engineering, genetics, psychology and
economics [4].

Let X1, X2, .. be an infinite sequence of independent and identically distributed random variables from an
absolutely continuous distribution function (df ) F , and probability density function (pdf ) f . An observation
X j is called a lower record value if its value is less than that of all previous observations, i.e. X j is a lower
record if X j < Xi for all i < j. The record time sequence is defined as T1 = 1 and Tn = min

{
j : X j < XTn−1

}
,

for n > 1. The lower record value sequence R1, R2,..., Rn is defined as Rn = XTn , n = 1,2, ... . The pdf of Rn
is given by [2].

fRn(rn) =
1

Γ (n)
[− lnF(rn)]

n−1 f (rn). (1)
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Moreover, the joint pdf of the set of records R1, R2,..., Rn is

fR1,..,Rn(r1, ..,rn) = f (rn)
n−1

∏
i=1

rh(ri). (2)

with r1 > r2 > ... > rn, where rh(ri) =
f (ri)
F(ri)

is the reversed hazard rate (rhr).
Recently, some authors (see for example [5]) have placed considerable interest in flexible families of

distributions defined as
FZ(z) = [G(z)]θ , (3)

with −∞≤ a < z < b≤ ∞ and θ > 0, where G(.) is an arbitrary continuous df free of unknown parameter
and G(a) = 0, G(b) = 1. We refer to G(.) as the generating df or baseline distribution.
In literature the df defined in (3) is called with different names such as: proportional reversed hazard family,
Lehmann alternatives, power distribution. The distribution (3) includes several well-known distribution
as special cases: generalized exponential distribution introduced by [3] F(x) = (1− e−x)θ , the Burr X
distribution F(x) = (1−e−x2

)θ , the Burr III distribution F(x) = (1+x−γ)−β with γ = γ0 known, the Topp-
Leone distribution F(x) = (2x− x2)ν with x ∈ (0,1) .
The pdf and rhr corresponding to (3), respectively, are

fZ(z;θ) = θ [G(z)]θ−1 g(z) and rhZ(z;θ) = θrhG(z),

where g(.) and rhG(.) are the pdf and rhr corresponding to baseline distribution G(.), respectively. In this
work, we suppose that the stress (Y ) and strength (X) are two independent but not identically distributed
random variables with df defined in (3). In particular, we assume that

X ∼ FX (x;θ1) = [G(x)]θ1 and Y ∼ FY (y;θ2) = [G(y)]θ2 ,

where the symbol “∼” indicates “distributed as”. In this case, one can simply verify that the stress-strength
parameter is given by

Φ = P{Y < X}= θ1

∫
ℜ

[G(x)]θ1+θ2−1 dG(x) =
θ1

θ1 +θ2
. (4)

The main aim of this paper is to develop different inferential procedures for the stress-strength reliability
Φ , when X and Y are two independent but not identically distributed random variables with df defined in
(3), based on lower record data.

The paper is organized as follows. In Section 2, we will provide the distribution of maximum likelihood
(ML) of the parameter θ of the distribution defined in (3) based on the lower record data. Confidence
intervals based on the exact as well as asymptotic distribution of the ML estimator (MLE) of Φ are derived.
In Section 3, we will discuss Bayesian inference on Φ under assumption of independent gamma as well as
Jeffreys’ priors. In Section 4, we will study the important special case of proportional reversed hazard family
defined in (3), namely the Topp-Leone distribution. Finally, using simulation studies, different methods of
estimation of Φ are compared.

2 Likelihood inference

In this section, first of all, we determine the distribution of MLE of θ based on the lower record data.
Successively, using the distribution of MLE of θ , we derive the exact distribution of MLE of Φ . To this end,
let r = (r1, ...,rm) be the lower record values from df (3). The likelihood function is
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L(θ ;r) = θ
m [G(rm)]

θ
m

∏
i=1

rhG(ri). (5)

The MLE of θ is given by
θ̂ML =

m
− ln [G(rm)]

(6)

and the Fisher information is I(θ) = m
θ 2 . It is worthwhile pointing out that the MLE of θ depends only on

the m− th lower record value rm. The following Proposition provides the distribution of MLE of θ .

Proposition 1 The MLE θ̂ML of the parameter θ of distribution function defined in (3) has an Inverse
Gamma distribution with parameters m and mθ , i.e.

θ̂ML ∼ IG(m,mθ) (7)

Proof. By (1) and (3), the pdf of Rm is: fRm(rm) =
θ [G(rm)]

θ−1g(rm)[− ln{G(rm)}θ ]
m−1

Γ (m) . Let Y = − lnG(Rm)

be the random variable (rv) with inverse given by Rm = G−1
(
e−Y
)

and ∂Rm
∂Y = −e−Y

g[G−1(e−Y )]
. Using stan-

dard transformation techniques of rv, it is simple to verify that Y is Gamma distributed with pdf given by
fY (y) = fRm(G

−1
(
e−Y
)
) e−Y

g[G−1(e−Y )]
= θ m

Γ (m)ym−1e−θy. Consequently, the pdf of θ̂ML = m
Y is f

θ̂ML

(
θ̂ML

)
=

(mθ)m

Γ (m) θ̂
−m−1
ML exp

{
− mθ

θ̂ML

}
which is the Inverse Gamma distribution with parameters m and mθ .

From general properties of Inverse Gamma distribution, we can say that the MLE θ̂ML is a biased es-
timator of θ . In fact, we have E[θ̂ML] =

m
m−1 θ for m > 1. Moreover, for m > 2, the variance of θ̂ML is

V [θ̂ML] =
m2

(m−1)2(m−2)θ 2. Trivially, an unbiased estimator for θ is θ̂ML,U = m−1
m θ̂ML, with variance given by

V [θ̂ML,U ] =
θ 2

(m−2) , for m > 2.
In the final part of this section, we now discuss the distribution of the MLE of Φ using lower record

data. For this purpose, let us suppose that r = (r1, ...,rm) and s = (s1, ...,sn) are independent sets of lower
records from FX (x;θ1) = [G(x)]θ1 and FY (y;θ2) = [G(y)]θ2 , respectively. By Proposition 1, we have θ̂1,ML ∼
IG(m,mθ1) and θ̂2,ML ∼ IG(n,nθ2). Hence, using the equivariance property of MLE, the MLE Φ̂ML of Φ

can be obtained by substituting θ̂ j,ML in place of θ j in (4) for j = 1,2. That is, the MLE of Φ is given by

Φ̂ML =
θ̂1,ML

θ̂1,ML + θ̂2,ML
. (8)

The following Proposition provides the distribution of MLE Φ̂ML of Φ .

Proposition 2 The pdf of MLE Φ̂ML of Φ is

f
Φ̂ML

(Φ̂ML) =
mmn−m

B(n,m)

(
θ2

θ1

)m (1− Φ̂ML)
m−1

(Φ̂ML)m+1

{
1+

mθ2(1− Φ̂ML)

nθ1Φ̂ML

}−n−m

. (9)

Proof. In order to determine the pdf of Φ̂ML, we consider the following rv W1 = 2mθ1
θ̂1,ML

. By Proposition

1, it is simple to verify that W1 ∼ χ2(2m). Similarly, W2 = 2nθ2
θ̂2,ML

∼ χ2(2n). Hence, given that W1 and W2

are independent, we have that W = 2nW1
2mW2

∼ F2m,2n where F(., .) is the well-known F-distribution, with

density function given by fW (w) = mmnn

B(m,n)
wm−1

(n+mw)m+n . After observing that Φ̂ML can be rewritten as Φ̂ML ={
1+ θ2

θ1
W
}−1

, using transformation techniques of random variable, by fW (w) we get (9).
By now, we discuss the exact and approximate interval estimation for Φ based on the lower record data.

In order to construct an exact confidence interval, we observe that the rv W , after simple algebra, can be

rewritten as W = Φ

1−Φ

θ̂2,ML

θ̂1,ML
. Now, given that W has an F distribution with 2m and 2n degrees of freedom,
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W is a pivotal quantity for Φ . Therefore, having fixed γ1,γ2 ∈ (0,1) such as γ1 + γ2 = γ , with γ ∈ (0,1),
observed rm and sn, calculated the MLE θ̂1,ML and θ̂2,ML, an exact 100(1− γ)% confidence interval for Φ

is: 
(

θ̂2,ML

wγ1 θ̂1,ML
+1

)−1

,

(
θ̂2,ML

wγ2 θ̂1,ML
+1

)−1
 , (10)

where wγ1 and wγ2 are such that P[W < wγ1 ] = γ1 and P[W < wγ2 ] = 1− γ2, respectively.
Intervals based on the asymptotic normality of MLE can be of interest in cases when the number
of records is sufficiently large. Following [1], let p1 = lim︸︷︷︸

n,m→∞

m
n+m and p2 = lim︸︷︷︸

n,m→∞

n
n+m , the entries of

the expected Fisher information matrix I(θ1,θ2) are Iii = lim︸︷︷︸
n,m→∞

E
[
− 1

m+n
∂ 2`(θ1,θ2)

∂θ 2
i

]
= pi

θ 2
i

, for i = 1,2,

and I12 = I21 = 0. Under regularity conditions, the asymptotic distribution of MLE Φ̂ML of Φ , sat-
isfies

√
m+n

(
Φ̂ML−Φ

) d→ N
(
0,V 2

)
, where asymptotic variance is V 2 = g[I(θ1,θ2)]

−1g’ = Φ2(1−
Φ)2

(
1
p1
+ 1

p2

)
with g =

[
∂Φ

∂θ1
, ∂Φ

∂θ2

]
. A 100(1− γ)% approximate confidence interval for Φ is

{
Φ̂ML± z γ

2

V̂√
n+m

}
, (11)

where V̂ is obtained by substituting m
n+m for p1, n

n+m for p2, and MLE θ̂1,ML and θ̂2,ML in the asymptotic
standard deviation V .

3 Bayesian inference

In this section, we discuss the Bayesian inference of Φ based on the derivation of the posterior pdf of Φ

which can be obtained by using a suitable one-to-one transformation of random variables θ1 and θ2.
By looking at the likelihood function of θi given the set of lower record values, we elicit that θi has a
conjugate gamma prior distribution with parameters δi and βi, so that the posterior density is a Gamma
distribution i.e. θi|t ∼ G(δi + l, [βi− lnG(tl)]) where t = r or t = s, l = m or l = n and tl = rm or tl = sn.
Given that under a squared error loss function the Bayes estimator of θi is the mean of the posterior density,
we have

θ̂i,B = E [θi|t] =
δi + l

[βi− lnG(tl)]
. (12)

Since the random variables θ1 and θ2 are independent, their joint posterior density is

ϕ(θ1,θ2|r,s) =
aδ1+m

1 θ
δ1+m−1
1 e−θ1a1

Γ (δ1 +m)

aδ2+n
2 θ

δ2+n−1
2 e−θ2a2

Γ (δ2 +n)
. (13)

where a1 = [β1− lnG(rm)] and a2 = [β2− lnG(sn)]. Following [4] and [7], we obtain the posterior pdf of
Φ by mean of a one-to-one transformation of the type H : (θ1,θ2)→ (Φ ,λ ) with inverse Q = H−1. So,
putting Φ = θ1

θ1+θ2
and λ = θ1 +θ2, taking into account that the Jacobian of transformation is λ , by (13)

the joint pdf of (Φ ,λ ) is:

π(Φ ,λ |r,s) =
aδ1+m

1 aδ2+n
2 Φδ1+m−1(1−Φ)δ2+n−1

Γ (δ1 +m)Γ (δ2 +n)
λ

δ1+δ2+m+n−1e−λ{Φa1+(1−Φ)a2}. (14)

Consequently, we can obtain the posterior pdf of Φ marginalizing (14) with respect to λ ; that is
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πΦ(Φ |r,s) =
∫

∞

0
π(Φ ,λ |r,s)dλ =

aδ1+m
1 aδ2+n

2
B(δ1 +m,δ2 +n)

Φδ1+m−1(1−Φ)δ2+n−1

{Φa1 +(1−Φ)a2}δ1+δ2+m+n . (15)

Remark 3 It is simple to verify that under Jeffreys’ prior π(θ1,θ2) ∝ θ
−1
1 θ

−1
2 the posterior pdf of Φ is:

π
J
Φ(Φ |r,s) = [− lnG(rm)]

m [− lnG(sn)]
n

Φm−1(1−Φ)n−1

B(m,n){Φ [− lnG(rm)]+(1−Φ) [− lnG(sn)]}m+n . (16)

Note that πJ
Φ
(Φ |r,s) can be obtained by (15) putting δ1 = δ2 = β1 = β2 = 0.

After some algebra, the ξ − th moment of Φ is:

E[Φξ |r,s] =
(

a1

a2

)δ1+m B(ξ + p1, p2)

B(p1, p2)
2F1

(
p1 + p2,ξ + p1;ξ + p1 + p2;

a2−a1

a2

)
,

where 2F1(., .; .; .) is the hypergeometric function, with p1 = δ1 +m and p2 = δ2 + n. Consequently,the
posterior mean is:

Φ̂B = E[Φ |r,s] =
(

a1

a2

)p1 p1

(p1 + p2)
2F1

(
p1 + p2, p1 +1; p1 + p2 +1;1− a1

a2

)
. (17)

Under the Jeffreys’ the posterior mean is:

R̂(J)
B =

(
− lnG(rm)

− lnG(sn)

)m m
m+n 2F1

(
m+n,m+1;m+n+1;1− − lnG(rm)

− lnG(sn)

)
. (18)

From (15), an equi-tailed 100(1−α)% Bayesian credible set for Φ is (Φ(α/2),Φ(1−α/2)) such that

∫
Φ(α/2)

0
πΦ(Φ |r,s)dΦ = α/2 and

∫
Φ(1−α/2)

0
πΦ(Φ |r,s)dΦ = 1−α/2.

It is also possible to obtain the highest posterior density (HPD) interval through numerical optimization
techniques.

4 Example and Simulation: Topp-Leone distribution

We now consider two independent sets of lower records, rrr = (r1, ...,rm) and sss = (s1, ...,sn), from two
different Topp-Leone (TL) [6] random variables. A random variable X is said to follow a TL distribution if
it has a cdf and a pdf respectively given by:

FX (x;ν) = (2x− x2)ν and fX (x;ν) = 2ν(1− x)(2x− x2)ν−1, (19)

with ν > 0 and 0≤ x≤ 1. From (6) and (8), the MLE of ν1, ν2 and Φ are given by:

ν̂1ML(rm) =
m

−[ln(2rm−r2
m)]

, ν̂2ML(sn) =
n

−[ln(2sn−s2
n)]

and Φ̂ML = ν̂1ML(rm)
ν̂1ML(rm)+ν̂2ML(sn)

,

and from (10) and (11), it is possible to obtain the exact and asymptotic confidence interval. Furthermore,
from (16) and (18), we obtain the posterior density and the Bayes estimator of Φ under Jeffreys’ prior.

In order to investigate the behavior of the proposed estimators, a simulation study is carried out. For
fixed ν1,ν2 and sample size N, we generate k = 1000 independent samples from G(x;ν1) and G(y;ν2) and
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compute the ML and Bayes estimate of Φ . Moreover, putting α = 0.05, we compute the lower (LB) and
upper bound (UB) for the exact and the asymptotic confidence interval and for the HPD interval for each of
the k samples.The mean of the obtained estimates over all k samples, the empirical bias, the empirical mean
square error (MSE) and the posterior risk (PR =Var(Φ̂ (J)

B |r,s)) for Bayes estimator are shown in Table 1.

Table 1 Simulation results.
Exact CI Asymptotic CI HPD

ν1 ν2 N Φ Φ̂ bias MSE Φ̂
(J)
B PR(Φ̂ (J)

B ) LB UB Cov LB UB Cov LB UB Cov
0.5 0.8 10 0.385 0.468 0.083 0.036 0.472 0.035 0.145 0.820 0.952 0.083 0.853 0.916 0.186 0.783 0.787

200 0.385 0.415 0.030 0.018 0.421 0.018 0.180 0.695 0.957 0.141 0.688 0.941 0.145 0.723 0.926
1000 0.385 0.407 0.022 0.015 0.412 0.016 0.198 0.656 0.942 0.168 0.645 0.93 0.147 0.698 0.933

2 10 0.2 0.412 0.212 0.067 0.426 0.072 0.117 0.790 0.853 0.030 0.794 0.907 0.141 0.756 0.727
200 0.2 0.361 0.161 0.039 0.372 0.043 0.147 0.648 0.781 0.098 0.624 0.867 0.115 0.656 0.85
1000 0.2 0.356 0.156 0.036 0.365 0.039 0.164 0.609 0.726 0.126 0.587 0.827 0.127 0.625 0.83

3 0.8 10 0.789 0.753 -0.037 0.022 0.722 0.027 0.370 0.941 0.949 0.464 1.042 0.901 0.437 0.927 0.809
200 0.789 0.773 -0.017 0.011 0.756 0.013 0.510 0.917 0.939 0.572 0.974 0.917 0.527 0.939 0.915
1000 0.789 0.776 -0.014 0.009 0.762 0.010 0.547 0.908 0.945 0.598 0.953 0.913 0.555 0.936 0.934

2 10 0.6 0.590 -0.010 0.030 0.577 0.028 0.220 0.882 0.96 0.219 0.961 0.896 0.284 0.855 0.804
200 0.6 0.596 -0.004 0.019 0.589 0.019 0.317 0.824 0.951 0.328 0.865 0.914 0.278 0.875 0.907
1000 0.6 0.590 -0.010 0.016 0.584 0.016 0.340 0.799 0.938 0.350 0.830 0.924 0.274 0.870 0.917

5 Conclusions

In this paper we deal with the problem of estimating the stress-strength reliability measure Φ based on two
independent but not identically distributed random variables from a general class of distributions. Moreover,
we consider different inferential procedures based on lower record data. We show that it is possible to obtain
the MLE for Φ and its distribution, so to have both the exact and the asymptotic confidence interval. Next,
in a Bayesian context, under gamma and Jeffreys’ priors, we obtain the posterior density for Φ and the
corresponding Bayes estimator. Finally, we consider two independent sets of lower record from Topp-
Leone random variables and provide some numerical results. The results suggest a good performance of the
considered procedures for finite sample sizes as well.
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