
On Non-central Beta distributions
Sulle distribuzioni Beta non centrali

Andrea Ongaro and Carlo Orsi

Abstract A new Non-central Beta distribution is defined. Several properties are
derived (including various representations and moments expressions) both for the
new and the standard Non-central Beta distribution, showing in many respects a
greater tractability of the former.
Abstract Nel presente articolo viene introdotta una nuova distribuzione Beta non
centrale. Vengono derivate varie proprietà (in particolare varie rappresentazioni ed
espressioni dei momenti) sia per la nuova Beta non centrale sia per quella standard,
mostrando come sotto molti aspetti la prima appaia maggiormente trattabile.
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1 Introduction and definitions

In this paper we shall introduce a new distribution (distr.) on (0,1) which generalizes
the Beta distr.. It can be viewed as an analogue of the Doubly Non-central Beta distr.
(see [1]). We shall perform a preliminary investigation of the properties of such
distr.. We shall also provide a novel parallel analysis of the Doubly Non-central
Beta distr., which is based on the same techniques employed in the study of the new
one. Such parallel analysis will allow a better understanding of the similarities and
differences between the two distr.s.

Let us first introduce some notations and recall some useful facts.
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It is well known that if Yi, i = 1,2, are independent (ind.) χ2 random variables
(r.v.s) with 2αi > 0 degrees of freedom (d.f.), denoted by χ2

2αi
, then the r.v.:

X =
Y1

Y1 +Y2
(1)

has a Beta distr. with shape parameters (s.p.s) αi, denoted by Beta(α1,α2). Its den-
sity is:

Beta(x;α1,α2) =
xα1−1 (1− x)α2−1

B(α1,α2)
, 0 < x < 1 . (2)

The Beta distr. can also be obtained as conditional distr. of X given the sum
Y+ = Y1 +Y2, as a consequence of the independence of X and Y+. The latter is a
characterizing property of (ind.) Gamma r.v.s.

Now, let χ′2g (λ ) be a Non-central χ2 distr. with g > 0 d.f. and non-centrality
(n.c.) parameter λ ≥ 0. In the following, we shall rely on the representation of the
χ′2g (λ ) distr. as mixture of central χ2 distr.s, which can be easily derived from its
characteristic function. More specifically, let M be a Poisson r.v. with mean λ/2,
λ ≥ 0 (the case λ = 0 corresponding to a r.v. degenerate at zero). Then Y ′ has a
χ′2g (λ ) distr., if Y ′, conditionally on M, has a χ2

g+2M distr..
A r.v. is said to have a Doubly Non-central Beta distr. with s.p.s α1,α2 and n.c.p.s

λ1,λ2, denoted by DNcB(α1,α2,λ1,λ2), if it is distributed as X ′ = Y ′1/(Y
′
1 +Y ′2)

where Y ′i , i = 1,2, are ind. χ′22αi
(λi) r.v.s (see [1]).

Our basic idea to introduce a new parametric family of distr.s on (0,1) which
extends the Beta one is to consider the conditional distr. of X ′ given Y ′1+Y ′2. Because
of the above mentioned characterizing property of the Gamma r.v., such distr. must
depend on Y ′1 +Y ′2 and therefore must be different from the DNcB distr., unless
λ1 = λ2 = 0. The latter case correspond to the Beta distr..

The density of the new distr. (as well as of the standard one) can be derived
by using the above mentioned mixture representation of the Non-central χ2 distr..
Specifically, let Mi, i= 1,2, be ind. Poisson r.v.s with mean λi/2. Then the ind. Non-
central χ2 r.v.s (Y ′1,Y

′
2) can be obtained by asking that, conditionally on (M1,M2),

Y ′i be ind. with distr. χ2
2αi+2Mi

, i = 1,2. By noting that, conditionally on (M1,M2),
X ′ = Y ′1/(Y

′
1 +Y ′2) and Y ′1 +Y ′2 are ind., one has that X ′ given (M1,M2,Y ′1 +Y ′2) has

a Beta(α1 +M1,α2 +M2) distr.. A direct application of Bayes theorem then shows
that, conditionally on Y ′1 +Y ′2 = y, (M1,M2) has a probability function given by:

Pr
(
M1 = i,M2 = j |Y ′1 +Y ′2 = y

)
=

1

0F1(α+,yλ+/4)

(
yλ1

4

)i ( yλ2
4

) j

i! j!(α+)i+ j
, i, j∈N∪{0} ,

(3)
where (a)0 = 1, (a)i = a(a+1) . . .(a+ i−1), ∀i ∈N, α1 +α2 = α+, λ1 +λ2 = λ+

and:

0F1 (a;x) =
+∞

∑
i=0

1
(a)i

xi

i!
, a > 0, x≥ 0 (4)
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is the generalized hypergeometric function pFq with p = 0 and q = 1 coefficients
respectively at numerator and denominator (see [2]).

As the conditioning value y in (3) can be incorporated in the n.c.p.s λi’s, we are
then led to the following definition of the new distr..

Definition 1. A r.v. is said to have a Conditional Doubly Non-central Beta distr. with
s.p.s α1,α2 and n.c.p.s λ1,λ2, denoted by CDNcB(α1,α2,λ1,λ2), if it is distributed

as Y ′1
Y ′1+Y ′2

|Y ′1 +Y ′2 = 1 where Y ′i , i = 1,2, are ind. χ ′22αi
(λi) r.v.s.

2 Representations and density plots

The above discussion directly leads to the following mixture representations.

Property 1 (Mixture representation). Let X ′ have a DNcB(α1,α2,λ1,λ2) distr. and
X ′′ have a CDNcB(α1,α2,λ1,λ2) distr.. Then X ′ and X ′′ admit the following repre-
sentation:

X ′ |(M1 = i, M2 = j)∼ X ′′ |(N1 = i, N2 = j)∼ Beta(α1 + i,α2 + j) , (5)

where Mi, i = 1,2, are ind. Poisson r.v.s with mean λi/2 and the probability function
of (N1,N2) is given by (3) with y = 1.

Although the distr. of (N1,N2) is slightly more complicated than the one of
(M1,M2), it can be easily handled and understood in terms of the r.v.s (N1,N+),
with N+ = N1 +N2. In fact, it is easy to see that N1 |N+ ∼ Binomial(N+,λ1/λ+).
Interestingly, N1 |N+ thus shares the same distr. of M1|M+, with M+ = M1 +M2.
Furthermore, N+ has the following probability function:

Pr
(
N+ = i

)
=

1

0F1 (α+;λ+/4) (α+)i i!

(
λ+

4

)i

, i ∈ N∪{0} . (6)

This allows us to derive expressions for the moments of X ′ and X ′′ (see Sect. 3) and
for the covariance between N1 and N2 as follows:

Cov(N1,N2) = EN+

{
Cov

[
(N1,N2) |N+

]}
+Cov

[
E
(
N1|N+

)
,E
(
N2|N+

)]
=

=
λ1 λ2

(λ+)2

[
Var
(
N+
)
−E

(
N+
)]

, (7)

which can be easily expressed in terms of the hypergeometric function 0F1. An
extensive numerical investigation shows that such covariance is negative.

It is also simple to check that the CDNcB admits an unconditional “ratio” type
representation.

Property 2 (Ratio representation). Let (N1,N2) be distributed as in Property 1. Fur-
thermore, let (Z1,Z2) be conditionally ind. r.v.s given (N1,N2), with Zi | (N1,N2) ∼
χ 2

2(αi+Ni)
, i = 1,2. Then Z1

Z1+Z2
∼ CDNcB(α1,α2,λ1,λ2).
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Notice that (Z1,Z2) are negatively correlated as Cov(Z1,Z2) = 4Cov(N1,N2).
To fully understand the behavior of the Non-central Beta distr.s it is instructive

to realize how they perturbate the Beta distr..

Property 3 (Perturbation representation). Let X ′ ∼DNcB(α1,α2,λ1,λ2) and X ′′ ∼
CDNcB(α1,α2,λ1,λ2). Then the densities fX ′ of X ′ and fX ′′ of X ′′ can be written
as:

fX ′ (x) = Beta(x;α1,α2) e−
λ+

2 Ψ2

[
α
+;α1,α2;

λ1x
2

,
λ2 (1− x)

2

]
, (8)

Ψ2 being the Humbert’s (two variables, double series) confluent hypergeometric
function (see [2]) and

fX ′′ (x) = Beta(x;α1,α2)
0F1

(
α1; λ1x

4

)
0F1

[
α2; λ2(1−x)

4

]
0F1

(
α+; λ+

4

) . (9)

Such representations highlight the greater interpretability and tractability of the
CDNcB distr. with respect to the DNcB. The perturbing factor of the Beta den-
sity in the CDNcB distr., unlike the DNcB one, has a product form involving only
the 0F1 function (and therefore a single series) in a completely symmetric fashion.
Furthermore, 0F1 (a;x) has a very simple behavior and is implemented in common
statistical packages. For any fixed a > 0, it is increasing (with values in [1,+∞))
and convex. For fixed x ≥ 0, 0F1 (a;x) and its first derivative with respect to x are
decreasing in a. See plots in Fig. 1.

It follows that 0F1

(
α1; λ1x

4

)
in (9) has the effect of giving more weight to the

right tail of the Beta density through the scale p. λ1 and the s.p. α1 determining
the rate of increase of the function. Perfectly symmetric considerations hold for the
other component 0F1

[
α2; λ2(1−x)

4

]
of the perturbing factor.

Figures 2, 3 display the CDNcB density for selected values of the parameters.
They show that it can assume a large variety of shapes far beyond the Beta model
ones. The effect of the perturbing factor can be clearly seen when α1 = α2 = 1,
because in this case the Beta density reduces to the Uniform one (see Fig. 3). In
particular notice that the CDNcB density can take on arbitrary finite and positive
limits at 0 and 1. On the contrary, Beta densities cannot display such behavior.

Fig. 1 Plots of 0F1 (a;x) for
x ≥ 0 and selected values of
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Fig. 2 Plots of the density of
X ′′ ∼ CDNcB(α1,α2,λ1,λ2)
for selected values of α1,α2,
λ1,λ2
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Fig. 3 Plots of the density of
X ′′ ∼ CDNcB(α1,α2,λ1,λ2)
for α1 = α2 = 1 and selected
values of λ1, λ2
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3 Moments

By exploiting the mixture representation in Property 1, it is possible to derive new
general formulas for the moments of both Non-central Beta distr.s. Specifically, in
the notation of Property 1, the moments of the CDNcB distr. can be written as:

E
[(

X ′′
)r |N+

]
= E

{
E
[(

X ′′
)r∣∣N1,N+

]∣∣N+
}
, (10)

which then leads to

E
[(

X ′′
)r |N+

]
=

1
(α++N+)r

N+

∑
i=0

(α1 + i)r

(
N+

i

)
θ

i
1 (1−θ1)

N+−i , (11)

where θ1 = λ1/λ+. This reduces the computation of moments from a double series
to a single one. In particular, by setting r = 1 and r = 2 in (11), we have:

E
(
X ′′
)
= E

[
α1 +θ1 N+

α++N+

]
, (12)

E
[(

X ′′
)2
]
= E

[
α1 (α1 +1)+(2α1 +2−θ1)θ1 N++θ 2

1 N+2

(α++N+)(α++1+N+)

]
. (13)

Moments formulas (11), (12) and (13) hold for the DNcB as well, provided we
simply replace N+ by M+.

Quite remarkably, after some manipulations, the first two moments of the CD-
NcB distr. can be written in terms of the easily tractable 0F1 function as follows:
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E
(
X ′′
)
=

α1

α+

0F1

(
α++1; λ+

4

)
+

θ1
λ+

4 ×0F1

(
α++2; λ+

4

)
α1(α++1)

0F1

(
α+; λ+

4

) , (14)

E
[
(X ′′)2]= α1 (α1 +1)

α+ (α++1) 0F1

(
α+; λ+

4

) [0F1

(
α
++2;

λ+

4

)
+

+
2θ1

λ+

4 × 0F1

(
α++3; λ+

4

)
α1 (α++2)

+
θ 2

1

(
λ+

4

)2
× 0F1

(
α++4; λ+

4

)
α1 (α1 +1)(α++2)(α++3)

 . (15)

4 Concluding remarks

We conclude by pointing to two possible developments relative to the new and in
some respects more tractable Non-central Beta distr. here introduced.

In Bayesian analysis, the Beta distr. is often used as a (conjugate) prior for the
Binomial model. Let us shortly analyze the behavior of the CDNcB in such context.
If X |P∼ Binomial(n,P) and P∼ CDNcB(α1,α2,λ1,λ2), then it is easy to see that
the posterior density of P is proportional to:

Beta(p; γ1,γ2) 0F1

(
α1;

λ1 p
4

)
0F1

[
α2;

λ2 (1− p)
4

]
, (16)

where γ1 = α1+x and γ2 = α2+n−x. It follows that the six parameters density de-
fined by (16) is a conjugate class for the binomial model. Although it is an extension
of the CDNcB distr., it maintains the simple structure of a Beta density perturbed
by the same type of product factor. In fact, the only difference with respect to the
CDNcB distr. is the introduction of distinct parameters for the s.p.s of the Beta and
the perturbing part. Therefore the extended distr. keeps a simple interpretation and
it seems worthwhile to further investigate it.

A second promising line of research appears to be the extension of the CDNcB
distr. to the multidimensional setting to obtain a more tractable Non-central Dirichlet
distr.. Indeed, the method employed to construct the CDNcB distr. naturally extends
to such setting.
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