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Abstract Linearization methods are customarily adopted in sampling surveys to ob-
tain approximated variance formulae for estimators of nonlinear functions of finite-
population totals which can be usually rephrased in terms of statistical functionals.
In the present paper, by considering Deville’s (1999) approach stemming on the
concept of design-based influence curve, we provide a general result for linearizing
large families of inequality indexes. As an example, the achievement is applied to
the Gini and the Amato indexes. We also discuss the case when income data are
supposed to be collected by means of the randomized response technique.
Abstract I metodi di linearizzazione sono tradizionalmente impiegati in indagini
campionarie al fine di ottenere approssimazioni per la varianza di stimatori di fun-
zioni non lineari di totali. Tali funzioni possono essere spesso riformulate in ter-
mini di funzionali statistici. Nel presente lavoro, adottando l’approccio basato sulle
curve di influenza nel disegno campionario proposto da Deville (1999), si fornisce
un risultato generale per linearizzare famiglie di indici di disuguaglianza. Il risul-
tato viene esemplificato mediante l’applicazione agli indici di Gini e di Amato. In-
fine, si considera la situazione in cui la variabile reddito venga rilevata attraverso
il metodo delle risposte casualizzate.
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1 Introduction

Sampling surveys frequently involve the estimation of target parameters which are
nonlinear functions of population totals. Consequently, variance estimation is not a
trivial matter and requires specific procedures. Methods for variance estimation can
be classified according to two main approaches: (a) the resampling methods, and (b)
the linearization methods. In this paper, we focus on the latter approach.

Under the usual design-based approach, let U = {1, . . . ,N} be a fixed population
of N identifiable individuals, and let yi be the value of the study variable on the
i-th individual. Moreover, let θ = θ(y1, . . . ,yN) be the population parameter to be
estimated on the basis of a random sample S of fixed size n selected from U with
probability P(S = s) = p(s). Let πi > 0 and πi j > 0 denote the first- and second-
order inclusion probabilities, respectively. The linearization approach provides an
approximation of the complex parameter θ and of its estimator θ̂ . The rationale
underlying linearization consists in obtaining a linearized variable vi for each obser-
vation yi such that

θ̂ −θ = ∑
i∈S

vi

πi
−∑

i∈U
vi +Rp ,

where Rp is a (stochastically negligible) remainder term. Hence, the variance of
the random variable ∑i∈S vi/πi may be used to approximate the variance of θ̂ . In
practice, vi is unknown and it is generally replaced by its sample counterpart v̂i.
Once the v̂i’s are computed, variance estimation may be achieved by means of

V̂ar[θ̂ ] = ∑
i, j∈S

πi j−πiπ j

πiπ jπi j
v̂iv̂ j .

Several techniques have been proposed to provide the v̂i’s (see, e.g., Kovac̆ević and
Binder, 1997; Demnati and Rao, 2004). In the present paper, we consider Deville’s
(1999) method based on the concept of influence curve in the design-based ap-
proach. The next Section will be devoted to this linearization method when a large
family of population functionals - which includes inequality indexes - is considered.

2 Linearization via influence curve

Let M = ∑i∈U δyi be the discrete measure on R which allocates a unit mass on
each yi and where δy represents the Dirac mass at y. In Deville’s approach, it is
assumed that the target parameter θ can be written as a functional F with respect to
M, namely θ = F(M). Under this set-up, if M̂ = ∑i∈S δyi/πi denotes the empirical
measure corresponding to M, a substitution estimator of θ is given by θ̂ = F(M̂). If
F is homogeneous of degree α , under broad assumptions, Deville (1999) has proven
the linearization
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√
nN−α(F(M̂)−F(M)) =

√
nN−α

∫
IFF(u;M)d(M̂−M)(u)+op(1) ,

where
IFF(u;M) = lim

t→0

1
t
(F(M+ tδu)−F(M))

represents the influence function in the design-based approach. The influence curve
plays a central role in Deville’s approach and - in particular - in the variance estima-
tion. In fact, it provides the linearized variable in the sense that vi =IFF(yi;M).

We now introduce a rule for dealing with the influence function in the presence
of complex functionals. In this setting, let us consider a functional which may be
expressed as

F(M) =
∫

ψy(Ly(M))dM(y) , (1)

where Ly(M) = (L1,y(M), . . . ,Lk,y(M))T is a vector of further functionals (eventu-
ally) indexed by y and ψy : Rk 7→R is a function family assumed to be differentiable
and regularly indexed by y. For instance, the inequality measures commonly con-
sidered in practice are members of the functional family F , or may be expressed at
most as ϕ(F(M)) = (ϕ ◦F)(M) where ϕ : R 7→ R is a smooth function. In the next
Section some illustrative examples will be provided. In order to obtain the lineariza-
tion of the functional F defined in expression (1), the following result is useful.

Proposition 1. Let F be the functional defined in (1). If L j,y is Fréchet differentiable
for each j, the influence function of F is given by

IFF(u;M) = ψu(Lu(M))+
∫

∇ψy(Ly(M))TIFLy(u;M)dM(y) ,

where IFLy(u;M) = (IFL1,y(u;M), . . . , IFLk,y(u;M))T.

The formal proof of Proposition 1 is given by Barabesi et al. (2014a).
Hence, Proposition 1 provides a simple rule for obtaining the influence function

corresponding to the functional (1). Finally, it should be remarked that the influence
function of (ϕ ◦F) promptly follows as

IFϕ◦F(u;M) = ϕ
′(F)IFF(u;M) ,

by assuming that ϕ be differentiable.

3 Application to some inequality indexes

The result stated in Proposition 1 turns out to be particularly useful for the lineariza-
tion of inequality measures. Indeed, it can be easily shown that the Gini concen-
tration index, the Amato index, the families of Generalized Entropy and Atkinson
indexes and the Zenga index (2007) may be expressed as functionals of type (1). For
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illustrative purposes, we solely discuss the achievement of the influence function for
the Gini index and the Amato index.

The finite-population version of the Gini index (see, e.g., Berger, 2008) may be
expressed as the functional

G(M) =
∫ 2yHy(M)

N(M)T (M)
dM(y)−1 ,

where
N(M) =

∫
dM(x) , T (M) =

∫
xdM(x)

respectively represent the population size and the population total rephrased as func-
tionals. In addition, by assuming that IB is the usual indicator function of a set B, in
the following we also assume that

Hy(M) =
∫

I[x,∞[(y)dM(x) , Ky(M) =
∫

xI[y,∞[(x)dM(x) .

In this case, we have Ly(M) = (Hy(M),N(M),T (M))T, while

ψy(Ly(M)) =
2yHy(M)

N(M)T (M)

and ϕ(F) = F − 1. Thus, with a slight abuse in notation, i.e. by suppressing the
argument of the functionals for the sake of simplicity, it holds that

∇ψy(Ly(M)) =
2y
NT

(
1,−

Hy

N
,−

Hy

T

)T

and IFLy(u;M) = (I[u,∞[(y),1,u)T. Hence, by applying Proposition 1, after some al-
gebra it follows that

IFG(u;M) =
2

NT
(uHu +Ku)− (G+1)

(
1
N
+

u
T

)
.

The Amato index has recently received renewed interest for its properties by
Arnold (2012). The influence function for the Amato index is not available in litera-
ture. To this aim, on the basis of the continuous-population expression of the Amato
index (Arnold, 2012), the finite-population counterpart of this inequality measure
may be given as the functional

A(M) =
∫ √ 1

N(M)2 +
y2

T (M)2 dM(y) .

Hence, in this case Ly(M) = (N(M),T (M))T, while
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ψy(Ly(M)) =

√
1

N(M)2 +
y2

T (M)2

and, trivially, ϕ(F) = F . By adopting the same notational simplification as above,
and by assuming that µ = T/N denotes the population mean, it holds that

∇ψy(Ly(M)) =
T√

µ2 + y2

(
− 1

N3 ,−
y2

T 3

)T

and IFLy(u;M) = (1,u)T. Hence, by applying Proposition 1, it turns out that

IFA(u;M) =
1
T

√
µ2 +u2− µ

N2

∫ 1√
µ2 + y2

dM(y)− u
T 2

∫ y2√
µ2 + y2

dM(y) .

4 Collecting income data via randomized response theory

When dealing with inequality indexes based on income data, it should be realized
that income is notoriously considered a sensitive character to be surveyed, in the
sense that people are reluctant to disclose it - mostly, in the case of income from
self-employment, property and financial assets. Consequently, this issue may result
in seriously-biased estimates of inequality indicators. To alleviate this problem, the
respondent cooperation has to be increased. The randomized response technique
can be used to achieve this aim (see, e.g, Barabesi et al., 2013 and the references
therein). For quantitative data, the idea behind the technique is to perturb the true
response yi for ensuring confidentiality to the respondents. Let us suppose that the
randomization procedure proposed by Greenberg et al. (1971) is adopted. Under this
protocol, the i-th individual reports her/his true income value yi with probability q, or
she/he generates a random variate from a (suitable) absolutely-continuous random
variable (r.v.) X with probability (1−q). Note that q = 1 leads to direct questioning.
In order to obtain the influence function when the randomization stage is added, let
the r.v. Zi represent the answer of the i-th individual and let us consider the measure
MR on R given by

MR = ∑
i∈U

(qδyi +(1−q)λX ) ,

where λX represents the law of the r.v. X with expectation µX . In such a case, the
empirical measure corresponding to MR is given by M̂R = ∑i∈S δZi/πi. By suit-
ably reformulating the original functional, i.e. by determining the further functional
FR(MR) = F(M), the substitution estimator for FR(MR) is given by FR(M̂R) and the
influence function may be in turn defined as

IFFR(u;MR) = lim
t→0

1
t
(FR(MR + tδu)−FR(MR)) .
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From the previous definition of the influence function, a result equivalent to Propo-
sition 1 holds. As an example, in the case of the Gini concentration index, Barabesi
et al. (2014b) shown that

GR(MR) =
2
q2

∫ yHy(MR)

NR(MR)TR(MR)
dMR(y)−

2(1−q)
q2

CR(MR)

TR(MR)

+
2(1−q)2γX

q2
NR(MR)

TR(MR)
−1 ,

where

NR(MR) =
∫

dMR(y) , TR(MR) =
1
q

∫
ydMR(y)−

1−q
q

µX NR(MR)

and
CR(MR) =

∫
(yHy(λX )+Ky(λX ))dMR(y) ,

while γX =
∫

Ky(λX )dλX (y). Hence, with the usual slight abuse in notation, it reads

IFGR(u;M) =
2

q2NRTR
(uHu(MR)+Ku(MR))−

2(1−q)
q2TR

(uHu(λX )+Ku(λX ))

+
2(1−q)CR

q2NRTR
+

4(1−q)2γX

q2TR
− (GR +1)

(
1

NR
+

u
qTR
− (1−q)µX

qTR

)
.
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