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Abstract We introduce the class of generalised linear cepstral models with Box-
Cox link, which is based on the truncated Fourier series expansion of the Box-
Cox transformation of the spectral density. The link function depends on a power
transformation parameter, and encompasses the exponential model. Other important
special cases are the inverse link (which leads to modelling the inverse spectrum),
and the identity link. One of the merits of this model class is the possibility of nesting
alternative spectral estimation methods (autoregressive, exponential, etc.) under the
same likelihood-based framework.
Abstract Il lavoro introduce la classe dei modelli lineari generalizzati cepstrali con
link di Box-Cox, che si basa sul troncamento di una base di Fourier per la trasfor-
mazione di Box-Cox dello spettro. La classe annida il modello esponenziale e lo
spettro inverso. Ciò consente di unificare il trattamento basato sulla verosimiglianza
e la selezione di modelli alternativi per la stima dello spettro.

Key words: Frequency Domain Methods, Generalised linear models, Iteratively
reweighted least squares.

1 Introduction

The analysis of stationary processes in the frequency domain has a long tradition
in time series analysis; the spectral density provides the decomposition of the total
variation of the process into the contribution of periodic components with different
frequency as well as a complete characterization of the serial correlation structure of

Tommaso Proietti
University of Rome Tor Vergata and CREATES, e-mail: tommaso.proietti@uniroma2.it

Alessandra Luati
University of Bologna e-mail: alessandra.luati@unibo.it

1

tommaso.proietti@uniroma2.it
alessandra.luati@unibo.it


2 Tommaso Proietti and Alessandra Luati

the process, so that it contains all the information needed for prediction and interpo-
lation. Inferences on the spectrum are based on the periodogram, which possesses a
well established large sample distribution theory that leads to convenient likelihood
based estimation and testing methods.

This paper is concerned with a class of generalised linear models formulated
for the logarithm of the spectral density of a time series, known as the exponen-
tial model, which emerges by truncating the Fourier series expansion of the log-
spectrum. The coefficients of the expansion are known as the cepstral coefficients
and are in turn obtained from the discrete Fourier transform of the log-spectrum;
their collection forms the cepstrum. This terminology was introduced by Bogert,
Healy and Tuckey (1963), cepstral and cepstrum being anagrams of spectral and
spectrum, respectively.

Bloomfield (1973) introduced the exponential (EXP) model and discussed its
maximum likelihood estimation. Local likelihood methods with logarithmic link
for spectral estimation have been considered by Fan and Kreutzberger (1998). Also,
the exponential model has played an important role in regularized estimation of the
spectrum (Wahba, 1980; Pawitan and O’Sullivan, 1994), where smoothness priors
are enforced by shrinking higher order cepstral coefficients toward zero, and has
been recently considered in the estimation of time-varying spectra (Rosen, Stoffer
and Wood, 2009, and Rosen, Wood and Stoffer, 2012).

The paper contributes to the current literature by introducing the class of gener-
alised linear cepstral models with Box-Cox link, according to which a linear model
is formulated for the Box-Cox transformation of the spectral density. The link func-
tion depends on a power transformation parameter, and encompasses the exponential
model, which corresponds to the case when the transformation parameter is equal
to zero. Other important special cases are the inverse link (which leads to modelling
the inverse spectrum), and the identity link. The coefficients of the model are related
to the generalised autocovariances, see Proietti and Luati (2012), and are termed
generalised cepstral coefficients. This framework is able to nest alternative spectral
estimation methods, in addition to the exponential approach, namely autoregressive
spectral estimation (inverse link) and moving average estimation (identity link), so
that the appropriate method can be selected in a likelihood based framework.

2 The Exponential Model and Cepstral Analysis

Let {yt}t∈T be a stationary short memory zero-mean stochastic process indexed by a
discrete time set T , with covariance function γk,k = 0,±1, . . . , and spectral density
f (ω) bounded in (−π,π).

As f (ω) is a positive, smooth, even and periodic function of the frequency, its
logarithm can be expanded in a Fourier series as follows,

ln[2π f (ω)] = c0 +2
∞

∑
k=1

ck cos(kω), (1)
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where the coefficients ck, k= 0,1, . . ., are obtained by the (inverse) Fourier transform
of ln[2π f (ω)],

ck =
1

2π

∫ π

−π
ln[2π f (ω)]exp(ıωk)dω.

The coefficients ck are known as the cepstral coefficients and the sequence {ck}k=0,1,...
is known as the cepstrum (Bogert, Healy and Tukey, 1963). The interpretation of the
cepstral coefficients as pseudo-autocovariances is also discussed in Bogert, Healy
and Tukey (1963) and essentially follows from the analogy with the Fourier pair
2π f (ω) = γ0 +2∑∞

k=1 γk cos(kω) and γk =
∫ π
−π f (ω)exp(ıωk)dω.

3 The Periodogram and the Whittle likelihood

Due to its sampling properties of the periodogram, a generalised linear model for
exponential random variables with logarithmic link can be formulated for the spec-
tral analysis of a time series in the short memory case. The strength of the approach
lies in the linearity of the log-spectrum in the cepstral coefficients.

Let {yt , t = 1,2, . . . ,n} denote a time series, which is assumed to be a sample
realisation from a stationary short memory Gaussian process, and let ω j =

2π j
n ,

j = 1, . . . , [n/2], denote the Fourier frequencies, where [·] denotes the integer part of
the argument. The periodogram, or sample spectrum, is defined as

I(ω j) =
1

2πn

∣∣∣∣∣ n

∑
t=1

(yt − ȳ)e−ıω jt

∣∣∣∣∣
2

,

where ȳ = n−1 ∑n
t=1 yt . In large samples (Brockwell and Davis, 1991, ch. 10)

I(ω j)

f (ω j)
∼ IID

1
2

χ2
2 , ω j =

2π j
n

, j = 1, . . . , [(n−1)/2], (2)

whereas I(ω j)

f (ω j)
∼ χ2

1 ,ω j = 0,π, where χ2
m denotes a chi-square random variable with

m degrees of freedom, or, equivalently, a Gamma(m/2,2) random variable. As a
particular case, 1

2 χ2
2 is an exponential random variable with unit mean.

Estimation by maximum likelihood (ML) of the EXP(K) model was proposed
by Bloomfield (1971); later Cameron and Turner (1987) showed that ML estimation
is carried out by iteratively reweighted least squares (IRLS).

4 Generalized Linear Cepstral Models with Power Link

The generalization that we propose is based on the observation that any continuous
monotonic transform of the spectral density function can be expanded as a Fourier
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series. We focus, in particular, on a parametric class of link functions, the Box-
Cox link (Box and Cox, 1964), depending on a power transformation parameter,
that encompasses the EXP model (logarithmic link), as well as the the identity and
the inverse links; the latter is also the canonical link for exponentially distributed
observations.

Let us thus consider the Box-Cox transform of the spectral density function
2π f (ω),

gλ (ω) =

{
[2π f (ω)]λ−1

λ , λ ̸= 0,
ln[2π f (ω)], λ = 0.

Its Fourier series expansion, truncated at K, is

gλ (ω) = cλ ,0 +2
K

∑
k=1

cλ ,k cos(ωk), (3)

and the coefficients cλk =
1

2π
∫ π
−π gλ (ω)cos(ωk)dω will be named generalised cep-

stral coefficients (GCC).
Hence, a linear model is formulated for gλ (ω). The spectral model with Box-Cox

link and mean function

f (ω) =

{
1

2π [1+λgλ (ω)]
1
λ , λ ̸= 0,

1
2π exp[gλ (ω)], λ = 0

will be referred to as a generalised cepstral model (GCM) with parameter λ and or-
der K, GCM(λ ,K), in short. The EXP model thus corresponds the the case when the
power parameter λ is equal to zero, and c0k = ck, are the usual cepstral coefficients.

For λ ̸= 0, the GCC’s are related to the generalised autocovariance function, in-
troduced by Proietti and Luati (2012), γλk =

1
2π

∫ π
−π [2π f (ω)]λ cos(ωk)dω by the

following relationships: cλ0 = 1
λ (γλ0 − 1), cλk =

1
λ γλk,k ̸= 0. In turn, the gener-

alised autocovariances are interpreted as the traditional autocovariance function of
the power-transformed process:

uλ t =
[
σφ

(
Bs(λ )

)]λ
ξ ∗

t , (4)

where ξ ∗
t = σ−1ξt , S(λ ) is the sign of λ , and

[
σφ

(
Bs(λ )

)]
is a series in the lag

operator whose coefficients can be derived in a recursive manner based on the Wold
coefficients. For λ = 1, c1k = γk, the autocovariance function of the process is ob-
tained. In the case λ =−1 and k ̸= 0, c−1,k =−γik, where γik is the inverse autoco-
variance of yt . The intercept cλ0 for λ =−1,0,1, is related to important character-
istics of the stochastic process, as 1/(1− c−1,0) is the interpolation error variance,
exp(c0,0) = σ2, the prediction error variance, and c1,0 +1 = γ0 is the unconditional
variance of yt . Also, for λ → 0, cλk → ck, i.e. the cepstrum is the limit of the GCC
as λ goes to zero.
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4.1 Whittle Likelihood Estimation

Let gλ (ω j) = z′jθλ , with z j = [1,2cosω j,2cos(2ω j), . . . ,2cos(Kω j)]
′ and θλ =

[cλ0,cλ1, . . . ,cλK ]
′. Then, the approximate Whittle likelihood is

ℓ(θλ ) = N ln2π −
N

∑
j=1

ℓ j(θλ ),

where, for 1+λ z′jθλ > 0,

ℓ j(θλ ) =


1
λ ln(1+λ z′jθλ )+

2πI(ω j)

(1+λ z′jθλ )
1
λ
, λ ̸= 0,

z′jθ0 +
2πI(ω j)

exp(z′jθ0)
, λ = 0

and the approximate Whittle estimator of θλ is θ̃λ such that

ℓ(θ̃λ ) = max
θλ∈Θ

ℓ(θλ ),

where Θ ⊆ RK+1.
The score vector and the Hessian matrix, when λ ̸= 0, are respectively

s(θλ ) =
∂ℓ(θλ )

∂θλ
=−∑

j
z∗ju j, z∗j =

z j

1+λ z′jθλ
, u j =


1− 2πI(ω j)

(1+λ z′jθλ )
1
λ
, λ ̸= 0,

1− 2πI(ω j)

exp(z′jθλ )
, λ = 0,

H(θλ ) =
∂ 2ℓ(θλ )

∂θλ ∂θ ′
λ
=−∑

j
W ∗

j z∗jz
∗′
j ,

with

W ∗
j =


2πI(ω j)

(1+λ z′jθλ )
1
λ
−λu j, λ ̸= 0,

2πI(ω j)

exp(z′jθλ )
, λ = 0,

so that the expected Fisher information is I (θ) =−E[H(θ)] = ∑ j z∗jz
∗′
j .

Maximum likelihood estimation is carried out numerically by the Newton-
Raphson algorithm, i.e. iterating until convergence θ̃i+1 = θ̃i − [H(θ̃i)]

−1s(θ̃i) or
by the method of scoring: θ̃i+1 = θ̃i +[I (θ̃i)]

−1s(θ̃i) with fixed initial conditions.
The asymptotic theory for θ̃λ is based on Dzhaparidze (1986, ch. 2). For a

Gaussian process with positive spectral density function, under the usual regular-
ity conditions (the true parameter θ0 is an inner point of Θ , the model is identifi-

able and the derivatives ∂ f−1
θ (ω)

∂θ (l) exist and are continuous for all l), then θ̃ →p θ .

If, additionally, h′z j

[2π fθ (ω)]λ
̸= 0 for all ω and h = (h0, . . . ,hK) ̸= 0 then, setting

z(ω) = [1,2cos(ω),2cos(2ω), . . . ,2cos(Kω)]′,
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√
n(θ̃λ −θλ )→d N(0,Vλ ), V−1

λ =
1

4π

∫ π

−π

1
[2π f (ω)]2λ z(ω)z(ω)′dω.

In the exponential case, when λ = 0, the derivation is the same and so are the
asymptotic results, provided that z∗j is replaced by z j.

4.2 Reparameterization

The main difficulty with maximum likelihood estimation of the GCM(λ ,K) model
for λ ̸= 0 is enforcing the condition 1+λ z′jθλ > 0. This problem is well known in
the literature concerning generalised linear models with the inverse link for gamma
distributed observations.

The most appropriate solution is to reparameterize the generalised autocovari-
ances and the cepstral coefficients as follows:

[2π f (ω)]λ = σ2
λ bλ (e

−ıω)bλ (e
ıω), bλ (e

−ıω) = 1+b1e−ıω + · · ·+bKe−ıωK , (5)

where the bk coefficients are such that the roots of the polynomial 1+ b1z+ · · ·+
bKzK lie outside the unit circle, so that, for λ ̸= 0, the GCC’s are obtained as

cλ0 =
1
λ
[
σ2

λ (1+b2
1 + · · ·+b2

K)−1
]
, cλk =

1
λ

σ2
λ

K

∑
j=k

b jb j−k.

To ensure the positive definiteness and the regularity of the spectral density we
adopt a reparameterization due to Barndorff-Nielsen and Schou (1973) and Mon-
ahan (1984): given K coefficients ςλk,k = 1, . . . ,K, such that |ςλk| < 1, the coeffi-
cients of the polynomial bλ (z) are obtained from the last iteration of the Durbin-
Levinson recursion

b(k)λ j = b(k−1)
λ j + ςλkb(k−1)

λ ,k− j, b(k)λk = ςλk,

for k = 1, . . . ,K and j = 1, . . . ,k−1. The coefficients ςλ j are in turn obtained as the
Fisher inverse transformations of unconstrained real parameters ϑ j, j = 1, . . . ,K,

i.e. ςλ j =
exp(2ϑ j)−1
exp(2ϑ j)+1 for j = 1, . . . ,K, which are estimated unrestrictedly. Also, we

set ϑ0 = ln(σ2
λ ).

By this reparameterisation, alternative spectral estimation methods are nested
within the GCM(λ ,K) model. In particular, along with the EXP model (λ = 0),
autoregressive estimation of the spectrum arises in the case λ =−1, whereas λ = 1
(identity link) amounts to fitting the spectrum of a moving average model of order
K to the series. The function that maps the partial autocorrelation coefficients to the
model parameters is one to one and smooth (see Barndorff-Nielsen and Schou, 1973,
Theorem 2), so that the asymptotic properties of the Whittle estimator continue to
hold. The profile likelihood of the GCM(λ ,K) as λ varies can be used to select the
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spectral model for yt . A similar idea has been used by Koenker and Yoon (2009) for
the selection of the appropriate link function for binomial data; another possibility
is to test for the adequacy of a maintained link (e.g. the logarithmic one) using the
goodness of link test proposed by Pregibon (1980).

In conclusion, the GCM framework enables the selection of a spectral estima-
tion method in a likelihood based framework. Another possible application of the
GCM(λ ,K) is the direct estimation of the inverse spectrum and inverse autocorrela-
tions up to the lag K, which arises for λ =−1 (this corresponds to the inverse link)
and of the optimal interpolator (Battaglia, 1983), which is obtained in our case from
the corresponding bk coefficients as ∑K

k=1 ρ−1,kyt±k with

ρ−1,k =
∑K

j=k b−1, jb−1, j−k

∑K
j=0 b2

−1, j
.

which represents the inverse autocorrelation at lag k of yt .

5 Illustrations

5.1 Southern Oscillation Index

The Southern Oscillation Index (SOI) measures the difference in surface air pressure
between Tahiti and Darwin and it is an important indicator of the strength of El Niño
and La Niña events, with values below -8 indicating an El Niño event while posi-
tive values above 8 indicate a La Niña event. The index reflects the cyclic warming
(negative SOI) and cooling (positive SOI) of the eastern and central Pacific, which
affects the sea level pressure at the two locations. The monthly series from January
1876 to December 2013 is plotted in figure 1 along with the autocorrelation func-
tion. The series has a periodic behaviour: often the El Niño and La Niña episodes
alternate and this confers the SOI a cyclical feature, with an irregular period of about
3-7 years (see e.g. http://earthobservatory.nasa.gov).

We investigate what GCM(λ ,K) representation provides the best fit to the sample
spectrum of the time series. This depends on two crucial parameters, the truncation
parameter K and the power parameter λ , which can be selected by an information
criterion, such as the Akaike Information Criterion:

AIC(K,λ ) =−2ℓ(θ̃λ )+2K,

where ℓ(θ̃λ ) is the Whittle likelihood of the GCM(λ ,K) model, evaluated at the
maximum likelihood estimate of the parameters θλ ; the latter is obtained using the
reparameterisation considered in section 4.2.

The AIC always leads to K = 7 for all values of λ . Figure 2 displays the pre-
diction error variance and the profile Whittle likelihood of GCM(λ ,7) models, as

http://earthobservatory.nasa.gov/Features/WorldOfChange/enso.php
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a function of λ . This suggests that the optimal value of the power transformation
parameter is λ̃ =−2.28.

Fig. 1 Southern Oscillation Index. Time series and sample autocorrelation function. In the first
plot the horizontal lines are drawn at ±8,
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Fig. 2 Southern Oscillation Index. Prediction error variance and Whittle likelihood as a function
of λ for GCM(λ ,K) models with K = 7.
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The estimated spectrum is f̃ (ω) = 1
2π

[
σ̃2

λ b̃λ (e−ıω)b̃λ (eıω)
]−1/2.278

, with σ̃2
λ =

2161.74, and the coefficients of b̃λ (e−ıω) are 1,1.02,0.03,0.05,0.08,−0.04, 0.02,
−0.23. From the second panel of figure 2 it is evident that the likelihood ratio test
of λ = −2 for a GCM(λ ,K) model with K = 7 is not significant, so that the spec-
trum that is fitted by maximum likelihood does not differ from that arising from
fitting an autoregressive model of order 14 such that the autoregressive polynomial
is the square of a polynomial of order 7. This polynomial has three pairs of complex
conjugate roots and real root.

Figure 3 plots the periodogram of the SOI series and overimposes the spectral
densities fitted fitted by the GCM(λ ,K) model with K = 7 and λ set equal to 1, 0, -1
and λ̃ =−2.28. The case when λ is set equal to 1 corresponds to fitting an MA(7)
model to the series, whereas the case λ = 0 corresponds to fitting the EXP(7) model;
λ = −1 corresponds to fitting an AR(7). It should be noticed that in none of these
cases a spectral peak arises at a frequency other than zero. The spectrum fitted by
maximum likelihood, on the contrary has a clear mode at a frequency corresponding
to a period of about four years.

Fig. 3 Southern Oscillation Index. Comparison of the spectral density estimates arising from dif-
ferent GCM(λ ,K) models with K = 7.
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6 Conclusions

Modelling the log-spectrum has a long tradition in the analysis of univariate time
series and leads to computationally attractive likelihood based methods. We have
devised a general frequency domain estimation framework within which nests the
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exponential model for the spectrum as a special case and allows for any power trans-
formation of the spectrum to be modelled, so that alternative spectral fits can be en-
compassed. As a direction for future research we think that the exponential frame-
work can have successful applications for modelling the time-varying spectrum of a
locally stationary processes (Dahlhaus, 2012), by allowing the cepstral coefficients
to vary over time.
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