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Abstract In this paper we propose a multilevel approach for the analysis of repeated
cross-sectional data that exhibit volatility effects. We treat individuals as clustered
within time-points so that the dynamics over time is modelled at the second level.
Items sold in auction present a structure like that of repeated cross-sectional surveys
since different goods are sold at different time-points. For prices of artworks, as well
as for other assets (financial, insurance, etc.) the hypothesis of constant volatility ap-
pears unreasonable. In this work we combine a multilevel model with autoregressive
random effects and a stochastic volatility model in order to account for the kurtosis
and the volatility pattern of prices. We apply the model to Tribal art auction prices
and show improvement over existing proposals both in terms of fit and forecasting.
Abstract Il presente lavoro propone un approccio multilivello per l’analisi di dati
cross-section ripetuti che presentano volatilità. Si considerano gli individui rag-
gruppati per istante temporale cosicché la dinamica temporale è modellata al se-
condo livello. Gli oggetti venduti all’asta presentano una struttura di cross-section
ripetute in quanto beni differenti vengono banditi in asta in momenti diversi. Per i
prezzi di opere d’arte, come per altri tipi di asset, l’ipotesi di volatilità costante nel
tempo è troppo restrittiva. Noi combiniamo un modello multilevel con effetti casuali
autoregressivi e un modello con volatilità stocastica per tener conto dell’andamento
della volatilità dei prezzi d’asta. Applicando il modello proposto a prezzi d’asta di
opere d’arte tribale si ottiene un migliore adattamento ai dati e una migliore previ-
sione rispetto ai modelli tradizionali.
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1 Introduction

The main aim of this work is to propose a multilevel approach ([8]) for repeated
cross-sectional data. Differently from longitudinal data, repeated cross-sectional
data consist of observations on individual survey respondents drawn from the same
context (e.g. the same country) at many different time-points, and can therefore be
treated as clustered within time-points ([3]). In this collection of data there are not
specific individuals followed over time; nevertheless, there is often a time dynamics
that manifests itself in different ways. To our knowledge, the analysis of repeated
cross-sectional data in a multilevel framework is not well established both from the
theoretical and the practical point of view. Most specifications are ad hoc solutions
with no available software so that such models result poorly developed and rarely
applied.

In [6] we proposed a specification that combines the multilevel framework and
autoregressive effects for this kind of data by treating individuals as level-1 units
and time-points as level-2 units. Clearly, the key trait of such specification is the
possibility of modelling time effects by allowing serial correlation among level-2
units (time-points). Such specification has been successfully applied for modelling
auction prices of artworks. Now we extend the framework and combine the multi-
level model with Autoregressive Random Effects (ARE) with the stochastic volatil-
ity model. The proposal is able to account for kurtosis and volatility patterns that
are often present in auction price dynamics. In fact, items sold in auctions present
a structure like that of repeated cross-sectional surveys since different and strongly
heterogeneous baskets of goods are sold in different time-points. For prices of het-
erogeneous investment goods, like artworks or financial assets, the hypothesis of
constant volatility over time is not reasonable. Clearly, series of financial assets
show high persistence in the autocorrelation of squared observations and leptokur-
tosis. Two classes of models that are often used to model and forecast unobserved
volatility in asset returns are the ARCH-type models ([2]) and the stochastic volatil-
ity model ([9]).

The present work is motivated by the analysis of the first world database of Tribal
art prices. Such database, built by a team of researchers of the University of Bologna
(Rimini campus), in conjunction with other institutions, contains information on
over 20000 artwork items auctioned by the most important auction houses from
1998 to 2011. We apply the proposed model on Tribal art prices and compare it
with the traditional hedonic regression model ([7]).
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2 A multilevel model with a stochastic volatility component

The multilevel model with time series components in [6] fits repeated cross-sectional
data by considering units grouped in time-points. It relaxes the usual assumption of
independence among random effects of the multilevel model and treats them as a
time series at the second level. Consider a random intercept model with k level-1
covariates:

yit = β0t +xT
itβββ + εit , εit |xT

it ∼ NID(0,σ2)

for i = 1, . . . ,nt and t = 1, . . . ,T . The slopes β ’s are fixed slopes and the β0t ’s are
time-specific random intercepts accounting for the heterogeneity between individ-
uals within each time point. The variability of the time-specific random intercepts
over time can be modeled as follows

β0t = β0 +ut ,

where ut represents the deviation of the group-specific intercept β0t from the overall
mean, β0. The assumption of independence among random effects of the classic
multilevel model is relaxed by assuming an autoregressive process of order 1 for
level-2 errors (ARE - Autoregressive Random Effects):

ut = ρut−1 +ηt , ηt |Xt ∼ NID(0,σ2
η),

with |ρ| < 1, that guarantees stationarity, ηt⊥us and ηt⊥εit for all s < t and for all
i.

We further extend the ARE model by including the log-normal stochastic volatil-
ity model in the multilevel structure (SVARE - Stochastic Volatility and Autoregres-
sive Random Effects) as follows:

yit = β0 +ut +xT
itβββ + exp(ht/2)εit

ut = ρut−1 +ηt

ht = α +δht−1 +σν νt

for i = 1, . . . ,nt and t = 1, . . . ,T,

for i= 1, . . . ,nt and t = 1, . . . ,T . Both the volatility component ht and the random ef-
fect ut are latent variables with autoregressive behaviour assumed strictly stationary
(therefore |ρ|< 1 and |δ |< 1). As initial conditions for the two autoregressive pro-

cesses, we use the unconditional distributions of ht and ut , that is h1∼N
(

α

1−δ
,

σ2
ν

1−δ 2

)
and u1 ∼ N

(
0,

σ2
η

1−ρ2

)
. Moreover, it is assumed that

εit ∼ NID(0,1), ηt ∼ NID(0,σ2
η), νt ∼ NID(0,1)

ηt ⊥ εit⊥νt , ηt⊥us, ∀s < t

Under these assumptions, the conditional densities result
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yit |ut ,ht ∼ NID(β0 +ut +xT
itβββ ,exp(ht))

ut |ut−1 ∼ NID(ρut−1,σ
2
η)

ht |ht−1 ∼ NID(α +δht−1,σ
2
ν ).

We perform a full maximum likelihood estimation method by treating this model as
a nonlinear state space model (see [4]) and by maximizing the likelihood obtained
by integrating the latent variables out of the joint density of the responses. The
likelihood takes the following form

L(θθθ |y) =
∫

h

∫
u

f (y|u,h) f (u,h)dudh =

=
∫ +∞

−∞

∫ +∞

−∞

. . .
∫ ∫

f (y1|u1,h1) f (u1) f (h1)

T

∏
t=2

f (yt |ut ,ht) f (ut |ut−1) f (ht |ht−1)duT . . .du1dhT . . .dh1

where f (yt |ut ,ht) = ∏
nt
i=1 f (yit |ut ,ht) for t = 1, . . . ,T .

Computing the 2T -dimensional integral is a challenging task. However, the like-
lihood may be approximated by applying an iterated numerical integration proce-
dure introduced in [5] for non-Gaussian filtering problems. In particular, we use the
Gauss-Legendre quadrature rules (see [4]). The resulting approximated likelihood
function is

L̃(θθθ |y) =
(

b−a
2

)T(e−d
2

)T nu

∑
i1

wui1

nh

∑
j1

wh j1

[
n1

∏
i=1

f (yi1|u∗i1 ,h
∗
j1)

]
f (u∗i1) f (h∗j1)

nu

∑
i2

wui2

nh

∑
j2

whi2

[
n2

∏
i=1

f (yi2|u∗i2 ,h
∗
j2)

]
f (u∗i2 |u

∗
i1) f (h∗j2 |h

∗
j1) . . .

. . .
nu

∑
iT

wuiT

nh

∑
jT

whiT

[
nT

∏
i=1

f (yiT |u∗iT ,h
∗
jT )

]
f (u∗iT |u

∗
iT−1

) f (h∗jT |h
∗
jT−1

)

(1)

where {u∗i }, with i = 1, . . . ,nu, and {h∗j}, with j = 1, . . . ,nh, are sets of Gauss-
Legendre quadrature points, wui and wh j are the corresponding weights and [a,b]
and [d,e] are finite integration limits which replaces the infinite ones for the random
effects and the volatility process respectively. The choice of the grids and the number
of evaluation points is crucial for the numerical precision. First, as proposed in [4],
we center the grids for the two latent processes on µu = 0 and µh = α/(1−δ ) with
a width of 3σu = 3ση/(

√
1−ρ2) and 3σh = 3σν/(

√
1−δ 2); this allows the grids

to cover the support of the unconditional distributions with non negligible mass.
Second, the numbers of quadrature points, nu and nh, are chosen by considering the
degree of smoothness of the integrands, thus such that the average distance between
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two points is less or equal to ση/2 for the random effect process and σν/2 for the
volatility process.

In order to compute and maximize the approximated likelihood Eq. 1, we
trasform it in a more compact form which is an extension of those in [4] and [1].
Also, we perform filtering and smoothing to achieve optimal estimators of the
unobserved-state vectors u and h, and we show how to obtain one-step-ahead pre-
diction values.

3 Application of the SVARE model

The potential of the proposed model is shown by means of an application to the first
database on Ethnic artworks. In literature, art prices are typically modelled through
the hedonic regression model, a time-varying fixed-effect model that takes into ac-
count the heterogeneity of artworks by explaining prices through object features and
constructs a price index by neutralizing the effect of quality. Here we first apply the
ARE model that allows to overcome the well-known drawbacks of the fixed-effects
regression model. Although the model provides similar estimates and interpretation
of results of the hedonic model, the resulting fit is more parsimonious and results in
a smaller BIC (see Table 1); also, it provides a decomposition of the total variability
of the response in between-time and within-time variability. Finally, the ARE model
allows better one-step-ahead forecasting of the responses i.e. the prices of objects
that will be sold one semester later. However, the assumption of normality for the
(first level) errors of both models is questionable and, similarly to other assets, the
residuals show a leptokurtic behaviour. Furthermore, the Levene’s test rejects the
hypothesis of homogeneity of variances across groups. Hence, we fit the proposed
SVARE model to take into account the time-dependent heteroscedasticity of the er-
rors.

Preliminary results of the SVARE model with no covariates, show that, unlike
competing models, the SVARE specification fits the trend both of the mean and of
the volatility of artwork prices (Figure 1). The resulting predicted volatility values
provide useful information on the predictability of the prices that can be exploited by
art market stakeholders. Moreover, as shown in Table 1, the SVARE model presents
a better fit in terms of information criteria and superior forecasting performance.

Table 1 Loglikelihood and Information criteria for the hedonic regression model (Hed), ARE and
SVARE. The results refer to models without covariates.

Hed ARE SVARE

loglik -14380.460 -14446.162 -14097.464
AIC 28816.920 28900.324 28212.929
BIC 29028.640 28930.570 28280.981
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Fig. 1 (Left) Fitted price index for ARE and SVARE models. (Right) Predicted volatility for the
SVARE model.
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