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Abstract In this work we propose a new Bayesian method for making in-
ference on the intrinsic dimension of point cloud data sampled from a low–
dimensional structure embedded in a high–dimensional ambient space. The
basic ingredient of our Bayesian recipe is a composite marginal likelihood
built under working independence assumptions, that was suggested by
MacKay and Ghahramani [6] to improve on an earlier proposal based on
local Poisson process approximations (see [5]). In order to get a posterior
with approximately correct asymptotic behavior and curvature, we calibrate
this pseudolikelihood as in [8] and then compare in simulated and real exam-
ples a standard MCMC method against a variation of the default Bayesian
framework described in [12].
Abstract In questo lavoro proponiamo un nuovo metodo bayesiano per fare in-
ferenza sulla dimensione intrinseca di nuvole punti campionati da strutture di bassa
dimensione immerse in spazi ambiente di dimensione elevata. L’ingrediente princi-
pale della nostra ricetta bayesiana è rappresentato da una verosimiglianza composita
di indipendenza suggerita da MacKay e Ghahramani [6] per migliorare una prece-
dente proposta basata su approssimazioni locali mediante processi di Poisson (cfr.
[5]). Al fine di ottenere una distribuzione a posteriori con (approssimativamemte) il
corretto comportamento asintotico, calibriamo questo pseudoverosimiglianza come
suggerito in [8] e confrontiamo su esempi simulati e dati reali un MCMC standard
ed una variante dell’approccio Bayesiano di default descritto in [12].
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1 Introduction

The need to analyze massive high–dimensional datasets is widespread
nowadays and has spawned a flurry of research papers that tackle the prob-
lem from different statistical perspectives ranging from the more theoretical
to the more applied corners of the discipline. In spite of this abundance,
though, there is always a single crucial assumption, essentially shared by all
these techniques, that make them work; that is, the data are not genuinely
high–dimensional but, in a way or another, can be squeezed back to a lower
dimension, their intrinsic dimension, without losing any relevant portion
of information. In computer vision and image processing, for example, the
intrinsic dimension of a sequence of n pictures taken at a typical resolution
of 720× 480, say, may represent the (small) number of degrees of freedom
needed to capture the dynamic features hidden in these D = 345,600 di-
mensional signals, such as different exposure levels or roto-translations of
single elements. From these basic facts, it becomes almost self-evident how
important practically is to get a reliable estimate of this very fundamental
descriptor of a dataset.

In this work we propose a Bayesian method for making inference on the
intrinsic dimension having as basic ingredient a composite marginal like-
lihood of independence suggested by MacKay and Ghahramani (2005) to
improve on an earlier proposal detailed in [5]. In order to get a posterior
with approximately correct asymptotic behavior and curvature, we calibrate
this pseudolikelihood as in [8], and then compare the performance of a stan-
dard MCMC method against a variation of the default Bayesian framework
described in [12].

2 Background

In this section we will briefly review some of the likelihood based approaches
to estimate the intrinsic dimension already available in the literature and
more strictly related to our developments. So, as in [5], let Xn =

{
Xi ∈R

D
}n

i=1
be a set of i.i.d. observations that represent a sufficiently smooth embedding
of a lower–dimensional sample Yn =

{
Yi ∈ R

d
}n

i=1
drawn from an unknown

smooth density f (·) = fY(·) supported on Rd with d <<D. Typically we tend
to think at d as an appropriate integer quantity, but since we can not rule
out – at least a priori – the case of an underlying fractal structure, in the
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following we will simply assume that d ∈ (0,D]. Then, if Rk(x) denotes the
Euclidean distance from a fixed point x to its k-th nearest–neighborhood
(NN) in the sample Xn, from the smoothness of the embedding we can see
that the proportion k/n of points that fall into a ball of radius Rk(x) around x
satisfies the following

k
n
≈ f (x)V(d)

[
Rk(x)

]d
,

where V(d) is the volume of the unit sphere inRd. With this basic fact at hand,
we can proceed by considering the (inhomogeneous) point process N(R,x)
which counts the number ofXn–samples falling into a small D–dimensional
sphere BR(x) of radius R centered around x. This is a binomial process that
under appropriate conditions can be approximated by a suitable Poisson
process. Hence, finally, if we assume f (x) ≈ const inside a small enough
sphere BR(x), then the rate λ of N(R,x) can be written as

λ(R,x) = f (x)V(d)dRd−1,

and the associated local log–likelihood takes the form (Snyder and Miller,
1991)

L
(
d(x),θ(x)

)
=

∫ R

0
logλ(r,x)dN(r,x)−

∫ R

0
logλ(r,x)dr,

where θ(x) = log f (x). This is an exponential family for which the MLEs solve
the following likelihood equations ∂L

∂θ = N(R,x)−eθV(d)Rd = 0
∂L
∂d =

(
1
d +

V′(d)
V(d)

)
N(R,x) +

∫ R
0 logrdN(r,x)−eθV(d)Rd

(
logR +

V′(d)
V(d)

)
= 0

,

and are equal to 
d̂(x) =

[
1

N(R,x)
∑N(R,x)

j=1 log R
R j(x)

]−1

f̂ (x) =
N(R,x)

V(d̂(x))Rd̂(x)

.

The problem now is to combine the local estimates d̂(xi) obtained in the
neighborhood of each of the n datapoints into a single estimator of the
overall intrinsic dimension d. The original proposal by Levina and Bickel was
simply to average these n estimators, but this solution showed a surprisingly
strong bias at small radius R that MacKay and Ghahramani in [6] fixed just
by considering a composite likelihood built under the working assumption of
independence, which gives the following new set of estimates

d̃ =
[

1∑
i N(R,xi)

∑n
i=1

∑N(R,xi)
j=1 log R

R j(xi)

]−1
,

f̃ (xi) =
N(R,xi)

V(d̃)Rd̃
, ∀ i ∈ {1, . . . ,n}.
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These early developments have been followed by a number of variations
and extensions (see [2, 3, 4]) but, to the best of our knowledge, no Bayesian
procedure is available at this time to directly estimate the intrinsic dimen-
sion of data, although such an estimate may actually arise as a byproduct
of approaches with broader modeling scopes. For example, since a com-
pact d–dimensional Riemannian manifold can always be covered by a finite
number of d–dimensional balls, in [1] the Authors adopt a Bayesian non-
parametric framework to fit a particular mixture of Gaussians to the data.
In this model, each cluster in the mixture may have a different dimensional-
ity – with the overall intrinsic dimension estimated as the average intrinsic
dimension of the clusters – and the algorithm seeks to minimize both the
number of clusters and their intrinsic dimension by adjusting the relevant
posterior log–probabilities.

3 Our proposal

When the full likelihood function is too difficult to handle analytically be-
cause of complex dependencies, but, as in the present case, it is possible to
compute the likelihood function for some subsets of the data, it may be useful
and effective to resort to a class of approximate likelihoods called composite
likelihoods (see [10]). In general a composite likelihood CL(ψ) is defined as
CL(ψ) =

∏
i f (y ∈ Ai;ψ)wi where {wi}i are positive weights and {Ai}i are all

measurable events in the sample space. CL(ψ) can essentially be interpreted
as a proper likelihood but for a misspecified model. For this reason, a com-
posite likelihood do not satisfy the so called information identity, and this
typically implies that it is wrongly too concentrated. As a result, before we
can crunch a composite likelihood CL(ψ) into some sort Bayesian machinery,
we necessarily need to adjust it tweaking the weights {wi}i in order to get
(approximately) the right asymptotic behavior. To this end, here we calibrate
MacKay and Ghahramani’s pseudolikelihood as suggested in [8] – see also
[7] – to get a final composite likelihood defined as follow

CL(ψ) = CL(d,θ) =

n∏
i=1

L
(
d,θ(xi)

)1/λ̄

where λ̄ = (1/p)
∑p

j=1λ j(ψ̂), p = dim(ψ), ψ̂ is the maximum composite like-

lihood estimator, {λ j(ψ)} j are the eigenvalues of I(ψ)−1 J(ψ), I(ψ) = E
(
−

∇u(ψ;Xn)
)

is the expected (Fisher) information matrix, J(ψ) =Var
(
u(ψ;Xn)

)
the variability matrix, and u(ψ) =∇ logCL(d,θ) denotes the score function as-
sociated to CL(ψ). From here, once we choose a suitable prior density π(d,θ),
we may formally get a genuine posterior as
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πCL(d,θ |xn) ∝ π(d,θ)CL(d,θ).

In practice this approach would require not only the use of possibly complex
MCMC schemes to explore the posterior density, but also the specification of
a prior distribution over the whole high dimensional nuisance parameterθ=

log f =
[
log f (x1), . . . , log f (xn)

]T
. As a workaround to these familiar Bayesian

quirks, we also consider the default Bayesian analysis detailed in [11, 12].

4 Simulation study

In order to briefly demonstrate the performance of our proposal, we consider
a noisy data–cloud of n = 500 points generated from a 2–dimensional Gaus-
sian embedded in a 7–dimensional space (noise variance equal to 2). Figure
1 shows the relevant summary plots of a classical MCMC sampler based on
moderately non–informative truncated Gaussian prior distributions over d,
R and f (num. iteration = 2000000 , burn–in = 1000, thinning = 100).
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Fig. 1 Panels description: Top row: MCMC traces for the intrinsic dimension d (left)
and the ball size R (right). Bottom row: Approximate marginal posterior densities for the
intrinsic dimension d (left) and the ball size R (right).

In spite of the non–informative prior setup, the marginal posterior density
of d appears to be well concentrated around the true intrinsic dimension (i.e.
2) with a 95% equal tailed credible interval that ranges from around 2 to
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almost 2.4. In addition the posterior density associated with the ball radius R
is essentially discrete with bumps/modes concentrated around the observed
distances between data–points (shown as a red rug plot in the bottom–right
plot of Figure 1).
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