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Abstract The forward search provides a flexible and informative form of robust
regression. We describe two ways of introducing prior information into the regres-
sion model used in the search, either through fictitious observations or through prior
distributions of the parameters. The relationship betweenthe two methods is estab-
lished. The extension to the forward search is not entirely straightforward, requiring
weighted regression. Forward plots are used to exhibit the effect of prior information
on inferences.
Abstract L’obiettivo del paper è mostrare come si può incorporare informazione
a priori all’interno dell’algoritmo di forward search ed illustrare la performance di
questo nuovo approccio.
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1 Introduction

Methods of robust regression have been described in severalbooks, for example
Rousseeuw and Leroy (1987), Atkinson and Riani (2000) and Maronnaet al.(2006).
The recent comparisons of Rianiet al.(2014b) indicate the superior performance of
the forward search (FS). However, none of these methods includes prior informa-
tion; they can all be thought of as developments of least squares. The purpose of
the present paper is to show how prior information can be incorporated into FS for
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regression and to give some results indicating the comparative performance of this
Bayesian method.

In order to detect outliers and departures from the fitted regression model, FS uses
least squares to fit the model to subsets ofm observations. The initial subset ofm0

observations is chosen robustly, for example by least trimmed squares. The subset
is increased from sizem to m+1 by forming the new subset from the observations
with them+1 smallest squared residuals. For eachm(m0 ≤ m≤ n−1), we test for
the presence of outliers, using the observation outside thesubset with the smallest
absolute deletion residual. The algebraic details of this procedure are described in
§2. In §3 we introduce prior information into this forward procedure in the form
of fictitious observations. The alternative form through the specification of prior
distributions of parameters is introduced in§4 and related to statistics derived from
the fictitious observations. The results of the FS are typically presented through a
forward plot of quantities of interest as a function ofm. In §5 we use such plots to
elucidate the change in properties of the search with variation of the amount of prior
information.

2 Algebra for the Forward Search

2.1 Tests in the Linear Model

In the regression modely= Xβ + ε, y is then×1 vector of responses,X is ann× p
full-rank matrix of known constants, withith rowxT

i , andβ is a vector ofp unknown
parameters. The normal theory assumptions are that the errorsεi are i.i.d.N(0,σ2).

The least squares estimator ofβ is β̂ . Then the vector ofn least squares residuals
is e= y− ŷ = y−Xβ̂ = (I −H)y, whereH = X(XTX)−1XT is the ‘hat’ matrix,
with diagonal elementshi and off-diagonal elementshi j . The residual mean square
estimator ofσ2 is s2 = eTe/(n− p) = ∑n

i=1e2
i /(n− p).

FS fits subsets of observations of sizem to the data, withm0 ≤ m< n. Let S∗(m)
be the subset of sizem found by FS, for which the matrix of regressors isX(m).
Least squares on this subset of observations yields parameter estimateŝβ(m) and
s2(m), the mean square estimate ofσ2 onm− p degrees of freedom. Residuals can
be calculated for all observations including those not inS∗(m). Then resulting least
squares residuals are

ei(m) = yi − xT
i β̂ (m). (1)

The search moves forward with the augmented subsetS∗(m+1) consisting of the
observations with them+1 smallest absolute values ofei(m). To start we takem0 =
p and search over subsets ofp observations to find the subset that yields the LMS
estimate ofβ . However, this initial estimator is not important, provided masking is
broken.

To test for outliers the deletion residual is calculated forthen−m observations
not in S∗(m). These residuals, which form the maximum likelihood tests for the
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outlyingness of individual observations, are

r i(m) =
yi − xT

i β̂ (m)
√

s2(m){1+hi(m)}
=

ei(m)
√

s2(m){1+hi(m)}
, (2)

where the leveragehi(m) = xT
i {X(m)TX(m)}−1xi . Let the observation nearest to

those formingS∗(m) be imin where

imin = arg min
i /∈S∗(m)

|r i(m)|.

To test whether observationimin is an outlier we use the absolute value of the min-
imum deletion residual, namelyr imin(m), as a test statistic. If the absolute value is
too large, the observationimin is considered to be an outlier, as well as all other
observations not inS∗(m).

2.2 Estimation of the Variance

In order to test for outliers we need a reference distribution for r i(m) in (2). If we
estimatedσ2 from all n observations, the statistics would have at distribution on
n− p degrees of freedom. However, in the search we select the central m out of n
observations to provide the estimates2(m), so that the variability is underestimated.
To allow for estimation from this truncated distribution, let the variance of the sym-
metrically truncated normal distribution containing the centralm/n portion of the
full distribution beσ2

T(m). See Rianiet al. (2009) for a derivation from the general
method of Tallis (1963). We take as our approximately unbiased estimate of vari-
ances2

T = s2(m)/σ2
T = s2(m)/c(m,n). In the robustness literaturec(m,n) is called a

consistency factor (Rianiet al., 2014a).

3 Prior Information from Fictitious Observations

In some of the applications in which we are interested, for example fraud detection
(Perrotta and Torti, 2010) we have appreciable prior information about the values
of the parameters. This can sometimes be thought of as comingfrom n0 fictitious
observationsy0 with matrix of explanatory variablesX0. Then the data consist of
the n0 fictitious observations plusn actual observations. The search in this case
now proceeds fromm= 0, when the fictitious observations provide the parameter
values for alln residuals from the data. The search then continues as outlined above
but with the fictitious observations always included in those used for fitting, their
residuals being ignored in the selection of successive subsets.

There is one complication in this procedure. Then0 fictitious observations are
treated as a sample with varianceσ2. However, them observations from the ac-



4 Anthony C. Atkinson and Aldo Corbellini

tual data are again from a truncated distribution ofm out of n observations and so
asymptotically have a variancec(m,n)σ2, which must be adjusted before the two
samples are combined. This becomes a standard problem in weighted least squares
(for example, Rao 1973, p. 230). Lety+ be the(n0 +m)× 1 vector of responses
from the fictitious observations and the subset and let the covariance matrix of these
observations beσ2G, with G a diagonal matrix. Then the firstn0 elements of the
diagonal ofG equal one and the lastm elements have the valuec(m,n). In the least
squares calculations we need only to multiply the elements of the sample values of
y andX by c(m,n)−1/2.

4 Prior Distribution of Parameters

Chaloner and Brant (1988), as part of a study of Bayesian methods for outlier detec-
tion, specify prior information for a linear regression model in terms of parameter
values. For comparability between the two approaches, we describe these prior pa-
rameter values in terms of the fictitious observations of theprevious section.

Let τ = 1/σ2. The prior distribution ofτ is gamma, that isp(τ) ∝ τ(a−1)e−bτ .
The mean isa/b and the variancea/b2. To finda andb, we consider the distribution
of s2

0, the customary mean square estimator ofσ2 from then0 observations. The
degrees of freedom areν = n0− p. Let S= νs2

0, that is the residual SS, distributed
asσ2χ2

ν . Then it follows that var(s2
0) = 2σ4/ν. We require var̂τ , whereτ̂ = 1/s2

0.
We use the standard Taylor series expansion, varg(x) = {g′(x)}2var(x), with g(x) =
1/x, x= s2

0 = 1/τ̂, so that var(τ̂) = var(x)/x4 = 2τ2/ν. Then the relationships for
the mean and variance of the gamma distribution ofτ yield

a= ν/2= (n0− p)/2 and b= ν/(2τ̂) = νs2
0/2= S/2.

We now use the prior information for the linear model to obtain an expression forS.
Prior information for the linear model is given as

R= XT
0 X0 and β̂0 = R−1XT

0 y0,

so that
S= yT

0 y0− β̂ T
0 Rβ̂0.

5 Examples

To explore the properties of FS including prior information, we use simulation to
provide forward plots of the distribution of quantities of interest during the search.
In these simulations we kept the prior values fixed, rather than repeatedly simulating
them using fictitious observations. Figure 1 shows plots of the estimate ofσ2. In the
left-hand panel the prior information is overwhelming, with n0 = 1,000, whereas
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Fig. 1 Forward plots of estimates ofσ 2. Left-hand panel, strong prior information (no = 1,000;n=
100). Right-hand panel, weak prior information (no = 100;n = 1,000). 10,000 simulations; 1%,
50% and 99% empirical quantiles. Dotted lines, with prior information; heavy line, without prior
information

n is only 100. The distribution of the estimate is shown by dotted lines; it is lit-
tle affected by the sample information. The continuous lines in the figure are for
the estimate ofσ2 that uses only sample information. Although, by the end of the
search, the median estimate is close to the population valueof five, there is great
variability, particularly at the start of the search, wherethe skewed nature of the
scaled chi-squared distribution of the estimate is evident.

In the right-hand panel the prior information is appreciably reduced, withn0 =
100 andn= 1,000.The estimate using prior information is always less variable than
that based solely on sample information, although they havevirtually converged by
the end of the search. For small values ofm the estimate including prior information
is much more precise, although the distribution is slightlyskewed, reflecting the
asymptotic nature of the action of the correction factor.
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Fig. 2 Forward plots of minimum deletion residuals. Left-hand panel, strong prior information
(no = 1,000;n = 100). Right-hand panel, weak prior information (no = 100;n = 1,000). 10,000
simulations; 1%, 50% and 99% empirical quantiles. Dotted lines, with prior information; heavy
line, without prior information
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The forward plots of minimum deletion residuals form the central tool for out-
lier testing in the FS. Outliers are detected when the curve for the sample values
falls outside a specified envelope. The actual rule for detection of an outlier has to
take account of the multiple testing inherent in the FS (oncefor each value ofm).
One rule, yielding powerful tests of the correct size is given by Rianiet al. (2009).
The left-hand panel of Figure 2 shows the envelopes for strong prior information.
The upper envelopes for procedures with and without prior information agree. For
the 1% and 50% quantiles the values of the statistics in the absence of prior infor-
mation are higher than those in its presence, reflecting the increased prevalence of
smaller estimates ofσ2, division by which give larger values of the statistics. In
the right-hand panel, with weaker prior information, the two sets of curves agree
for all except sample sizes around 100 or less. However, it isnot the agreement in
distribution of the statistics that is important, since theenvelopes apply to different
statistics, but rather the importance is the increase in power of the tests that comes
from including prior information. We look forward to demonstrating this feature in
our future research.
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