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Abstract In this paper we summarize some recent findings concerning Bayesian
misspecified density models. We first discuss a prior summability condition for the
posterior to accumulate around the densities in the model closest in the Kullback–
Leibler sense to the data generating density. This condition is shown to be satis-
fied by popular nonparametric priors such as infinite mixtures of normal densities
and Gaussian process priors. In smooth parametric models, the posterior shrinks
at a
√

n-rate of convergence around the parameter value minimizing the Kulback–
Leibler divergence. In this setting we show how Gaussian process priors can be used
to consistently estimate the discrepancy of the parametric model from the data gen-
erating density. A novel Monte Carlo Markov Chain methods is devised for dealing
with intractable normalizing constants.
Abstract In questo lavoro verranno richiamati alcuni recenti risultati sulla stima
Bayesiana per modelli di densità mal specificati. Si discuterà una condizione di
sommabilità sulla distribuzione a priori sufficiente a garantire che la massa di prob-
abilità a posteriori si concentri attorno a densità vicine, rispetto alla divergenza di
Kullback-Leibler, a quella che genera i dati . Tale condizione è soddisfatta da ben
note distribuzioni a priori non parametriche quali misture infinite di densità normali
e processi Gaussiani. Nel caso di modelli parametrici che soddisfano opportune
ipotesi di differenziabilià, la distribuzione a posteriori converge al tasso

√
n attorno

al valore del parametro che minimizza la divergenza di Kullback-Leibler. In questo
contesto si mostrerà come usare processi Gaussiani per stimare la discrepanza del
modello parametrico dalla densità che genera i dati.
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1 Introduction

In this paper we sketch results that are extensively presented and proved in [1, 2]
about posterior inference in misspecified density models. To set the notation, let P
be a probability distribution onR dominated by the Lebesgue measure and p denote
the corresponding density. The expectation of a random variable f with respect to
a probability measure P is denoted P f =

∫
f (x)p(x)dx. We assume that X1,X2, . . .

are i.i.d. observations, each distributed according to a probability measure P0. Given
a prior Π , supported on a set P of dominated probability measures, the posterior
mass of a measurable subset A⊂P is

Πn(A) =
∫

A

n

∏
i=1

p(Xi)dΠ(P)
/∫

P

n

∏
i=1

p(Xi)dΠ(P).

The model is well specified when P0 ∈P; in this case posterior consistency means
that Πn{P∈P : d(P0,P)> ε}→ 0, P0–a.s., for every ε > 0, where d is a metric on
P . The model is misspecified when P0 is at a positive distance from P according to
infP∈P D(P0,P) = δ1 > 0, where D(P0,P) = P0 log(p0/p) is the Kullback-Leibler
(KL) divergence. In Section 2 we do not assume the existence of a unique minimizer
of the KL divergence and focus rather on a set of densities P1 associated with
the minimum divergence δ1. Interest is then in investigating whether the posterior
accumulates around P1 according to

Πn{P ∈P : d(P1,P)> ε}→ 0, P0-a.s. (1)

where d(P1,P) = infP1∈P1 d(P1,P).
Provided there exists a unique P1 ∈ P such that D(P0,P1) = δ1, we define

C0(x) = p0(x)/p1(x) as the correction function which measures the discrepancy
of the model P from P0. In Section 3 we consider Bayesian estimation of C0(x).
Specifically, we consider a parametric model, P = {Pθ ,θ ∈ Θ} with density pθ

supported on a bounded interval I of R, and a prior π on θ . Under mild regular-
ity condition, the posterior π(θ |X1, . . . ,Xn) accumulates in n−1/2 neighborhoods of
θ0 = argminθ D(P0,Pθ ). A nonparametric envelope around P is defined as

pθ ,W (x) =
pθ (x)W (x)∫

I pθ (y)W (y)dy
(2)

for a non negative perturbation function W (x). The infinite dimensional parameter
of interest is then C(x;θ ,W ) = W (x)/

∫
I pθ (y)W (y)dy. We specify a prior for W

via Gaussian process priors and illustrate how coherent updating can proceed given
that the standard Bayesian posterior from an unidentified model is inappropriate.
For estimation, we describe Monte Carlo Markov Chain methods that deal with
intractable normalizing constants in (2). An asymptotic validation is given in terms
of accumulation of the posterior in L1–neighborhoods of C0(x) = p0(x)/pθ0(x),

Πn {
∫
|C(x;θ ,W )−C0(x)|µ(dx)> ε}→ 0, P0–a.s. (3)
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2 Misspecification in nonparametric models

We start by introducing some additional notation. The Hellinger distance between
P and P′ is denoted H(P,P′) = [

∫
(p(x)1/2− p′(x)1/2)2dx]1/2. The space of densities

p, also denoted by P , endowed with the Hellinger metric is complete and separa-
ble. For α ∈ (0,1), we consider the Hellinger integral hα(p, p′) =

∫
p1−α p′α and

the family of divergences Dα(P,P′) = α−1[1− hα(p, p′)], see [3] and references
therein. We recall that limα→0 Dα(P,P′) = D(P,P′) and D1/2(P,P′) = H(P,P′)2. Fi-
nally, upon definition of δ1 = infP∈P D(P0,P), we define

P1 = {P ∈P : D(P0,P)≤ δ1}

where P is the Hellinger closure of P . In order to establish (1), instead of defining
neighborhoods of p1 ∈P1, see e.g. [6], we work with neighborhoods of p0:

Aα,ε = {P : Dα(P0,P)> δ1 + ε/α}, Aα = {P : Dα(P0,P)> δ1 +α}.

Ac
α is monotonically decreasing in α to P1,⋃

α Ac
α ⊆P1. (4)

see Lemma 2 in [1]. Moreover, Aα is recovered by Aα,ε as α → 0 by letting ε

depends on α such that εα/α → 0. Without loss of generality, we take ε = α2, so
that (1) is equivalent to Πn(Aα,α2)→ 0 for all α sufficiently small. As it is customary
in Bayesian asymptotics, we deal with the numerator and denominator of Πn(Aα,α2)
separately. As for the denominator, we extend the usual prior positivity condition on
KL neighborhoods of P0 to the misspecified case as follows,

Π(P ∈P : D(P0,P)≤ δ1 +η)> 0 (5)

for any η > 0, cfr. Theorem 2.1 in [6]. As for the numerator, the key condition can
be stated, similar to [10], in terms of summability of powers of prior probabilities.
Let (B j,ε) j≥1 forms a Hellinger covering of P in terms of balls of size ε > 0. The
main result can be stated as follows, see [1] for details.

Theorem 1. For a given model P and prior Π , assume that (5) holds and that for
some α ≤ 1/2 and ε = 2(ε ′/2)1/2α ,

∑
j≥1

Π(B j,ε)
α < ∞, (6)

Then Πn(Aα,ε ′)→ 0 P0–a.s.

A corollary to Theorem 1 and (4) provides the sufficient condition for accumulation
of the posterior at P1.

Corollary 1. Assume that Π satisfies (5) and (6) for any α ≤ 1/2 and ε = 2(α2/2)1/2α .
Then Πn{P ∈P : d(P1,P)> ε}→ 0 P0–a.s.
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Consistency in the well specified case is recovered from Theorem 1. In fact Πn(Aα,ε)→
0 for α = 1/2 and any ε > 0 corresponds to Hellinger consistency when δ1 = 0. It
turns out that in the well specified case it is sufficient that the prior summability
condition (6) is satisfied by an arbitrary power of α .

Corollary 2. Let δ1 = 0. Assume that Π satisfies (5) and (6) for some α ∈ (0,1).
Then Πn{P ∈P : d(P0,P)> ε}→ 0, P0–a.s.

Corollaries 1 and 2 show clearly how sufficient conditions for consistency in the
well specified case (δ1 = 0) are weaker than in the misspecified case (δ1 > 0). We
conclude this section by considering two popular nonparametric density models and
illustrate the prior summability condition (6). The first example is given by infinite
mixtures of normal densities,

pσ ,F(x) =
∫ 1

σ
φ
( x−θ

σ

)
dF(θ)

with prior π on the scale parameter σ and a prior on the space of mixing distribu-
tion F with prior guess F∗. According to [5], (6) holds under π(σ < 1/k) ≤ e−γk

for all γ > 0 and F∗([−a,a]c) = O(a−(1+r)) for r > 1/α − 1. It can be shown that
in the misspecified case one needs to restrict further the tail behavior of F∗ to
F∗([−a,a]c) ≤ e−ηa for some η > 0. The second example is given by Gaussian
process priors

p(x) =
eµ(x)+Z(x)∫

I eµ(s)+Z(s)ds
, (7)

where µ(x) is a fixed continuous function and Z(x) is a Gaussian process with co-
variance kernel σ(x,y) =σ0(λx,λy). Here σ0 is a fixed covariance kernel and λ ≥ 0
is assigned a prior π(λ ). See [8]. For smooth σ0, it can be shown that the summabil-
ity condition (6) boils down to the tail behavior of the prior on the scale parameter
λ , in particular the key requirement is π(λ > t)∼ e−γt2

for some γ > 0 for both the
well and misspecified cases.

3 Discrepancy in misspecified parametric models

In this section we turn to parametric models {pθ ,θ ∈ Θ}, and assume there is
no θ ∈ Θ such that p0 = pθ . Define θ0 as the parameter value θ minimizing
p 7→ P0 log(p0/pθ ), provided it exists and is unique. The discrepancy of the para-
metric model can be measured by a divergence of the type Pθ0g(p0/pθ0) for a con-
vex function g : R+ → R such that g(1) = 0, see [3]. Specifically, g(u) = u logu
and g(u) = (α − 1)−1(uα − 1) yield the KL and the α-divergence Dα(P0,Pθ0), re-
spectively. Such divergences can be used to undertake model selection and evaluate
model adequacy. Therefore it is of interest to estimate the correction function

C0(x) = p0(x)/pθ0(x)

C0(x) also coveys information about the local fit of the model {pθ ,θ ∈ Θ}, the
closer C0 is to a constant function, the better the fit.
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Let π be a prior measure on the parameter set Θ . Under mild regularity condi-
tions, see Theorem 3.1 in [7],

π(|θ −θ0|> Mnn−1/2|X1, . . . ,Xn)→ 0 (8)

for every sequence Mn→∞. In order to estimate C0(x), consider model (2), obtained
by perturbing pθ by a nonnegative function W and Π a prior on W . (2) builds upon
the Gaussian process prior (7) and its semi–parametric extension by [4]. In fact,
(7) is an instance of (2) for pµ(x) = eµ(x)

/∫
I eµ(s)ds perturbed by W (x) = eZ(x).

Therefore posterior consistency at P0 implies that the posterior distribution of
eZ(x)/

∫
I eµ(s)+Z(s)ds accumulates around the correction function p0(x)/pµ(x). In the

present setting, we need to take into account the fact that model (2) is not identified.
Note however that the conditional posterior distribution

Π(dW |θ ,X1, . . . ,Xn) ∝ Π(dW )
n

∏
i=1

C(Xi;θ ,W ) (9)

is a valid update for learning about the correction function p0(x)/pθ (x) via C(x;θ ,W ).
Hence, we consider the posterior mean Cn(x;θ) =

∫
C(x;θ ,W )Π(dW |θ ,X1, . . . ,Xn)

as a functional depending on both the data and θ , to be estimated by using the
parametric model {pθ ,θ ∈Θ} in view of the asymptotic behavior in (8). To esti-
mate C0(x) = p0(x)/pθ1(x) we then average Cn(x;θ) with respect to the parametric
posterior,

∫
Cn(x;θ)π(θ |X1, . . . ,Xn)dθ . This now is effectively pursued by sampling

C(x;θ ,W ) with respect to the joint distribution of (θ ,W ) given by

Πn(dW,dθ) := Π(dW |θ ,X1, . . . ,Xn)π(θ |X1, . . . ,Xn)dθ (10)

noting however that (10) is not a proper posterior distribution. The use of a formal
semi–parametric Bayesian model to update (θ ,W ) would be through the posterior

Π̃n(dW,dθ) ∝ Π(dW )π(θ)dθ

n

∏
i=1

pθ ,W (Xi). (11)

However, while (11) is appropriate for learning about p0, it is not so for learn-
ing about (θ0,C0) due to the lack of identifiability of (2). A practical consequence
is that the marginalized Π̃(θ |X1, . . . ,Xn) =

∫
Π̃(θ ,W |X1, . . . ,Xn)dW has no inter-

pretation, since it is not clear what parameter value this Π̃ is targeting. That is
Π̃(θ ∈ A|X1, . . . ,Xn) is meaningless as it is no longer clear what is the real pa-
rameter value the prior π(θ) is specifying beliefs on. Moreover, the posterior mean
of C(x;θ ,W ) with respect to Π̃n(dW,dθ) is not a valid estimator of C0(x) since the
posterior (11) does not target any particular (θ ,W ).

As for sampling from (9), in order to tackle with the normalizing constant∫
W (y) pθ (y)dy, we take W to be bounded by 1 by mapping the Gaussian process Z

through a logistic link,

W (x) =
eZ(x)

1+ eZ(x)
. (12)
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In this setting, we can adapt techniques laid in [11]: based on

∞

∑
k=0

(
n+ k−1

k

)[∫
pθ (y)(1−W (y))dy

]k

=

(
1∫

W (y) pθ (y)dy

)n

,

a suitable latent model which removes the normalizing constant is

p(k,s1, . . . ,sk,W |θ ,X1, . . . ,Xn) =

(
n+ k−1

k

) n

∏
i=1

W (Xi)
k

∏
l=1

(1−W (sl)) pθ (sl).

Hence, in any MCMC algorithm for now estimating the posterior, or drawing sam-
ples from it, would need to sample the variables (k,s1, . . . ,sk,W ). See [2] for details.

Finally, we investigate the asymptotic behavior of the sequence of (pseudo) pos-
teriors (10). Proposition 1 establishes posterior consistency of model (2) for fixed θ ,
that is with respect to the conditional posterior (9). The key condition is on A (σ),
the reproducing kernel Hilbert space of the covariance kernel σ of Z, see [9] for a
formal definition. Let ¯A (σ) be the closure of A (σ) with respect to the sup norm.

Proposition 1. Let W (x) be defined in (12) and pθ be continuous and bounded
away from 0 on I. Assume that p0(x) ∈ ¯A (σ). Then there is some d > 0 such that
Π
{

H(p0, pθ ,W )> ε|θ ,X1, . . . ,Xn
}
≤ e−dn, P0–a.s., for every ε > 0.

Using Proposition 1, one can prove L1–consistency at C0(x). See [2] for details.

Theorem 2. Assume that the hypotheses of Theorem 3.1 in [7] and Proposition 1
are satisfied. Πn is defined as in (10). Then Πn {

∫
I |C(x;θ ,W )−C0(x)|dx > ε}→ 0,

P0–a.s., for every ε > 0.
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