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Abstract We discuss tests for informativeness of the design in analytic inference us-
ing data from a complex survey. Design informativeness occurs if a model correctly
specified for the population does not hold in the sample. We generalize existing
methods through a likelihood ratio test that compares the design-based fit of the ex-
panded model to the model-based fit. We derive the asymptotic distribution of the
test statistic, which is a linear combination of independent chi- square random vari-
ables. The coefficients in the linear combination are eigenvalues of a matrix that can
be consistently estimated from the data. We also consider a bootstrap version, and
evaluate the tests via simulation and application to real data. Empirical results show
that the new test complements existing methodology, providing good power against
interesting alternatives.
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1 Introduction

Surveys are an important source of data in a wide range of disciplines. A survey
is typically designed to estimate characteristics of the particular finite population
from which the sample is drawn. This context is referred to as descriptive inference
for surveys. For large-scale surveys, a combination of statistical efficiency and cost
considerations often results in a complex sampling design that includes unequal in-
clusion probabilities, stratification and clustering. An extensive literature exists on
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how to incorporate these design complexities into appropriate descriptive inference
methods. So-called design-based methods are the standard approach to construct
estimates and do inference in this context It is also common for analysts to use
survey data to answer scientific questions that are applicable more widely than for
one particular finite population. In such situations, the questions concern character-
istics of a statistical model describing relationships among variables, and the finite
population is viewed as representing a realization from that model. This is referred
to as analytic inference for surveys. Statisticians have long been aware of the fact
that it is not appropriate to ignore survey considerations when doing analytic infer-
ence for survey data. Both design-based and model-based methods can be applied
in this context, and there is currently still some disagreement as to which of these
approaches is most appropriate. See [5] and [8] for recent discussions of this topic.

We propose a new likelihood-based method for testing the hypothesis of design
informativeness. Testing for design informativeness is a crucial component in choos-
ing a suitable approach for performing analytic inference. In the analytic inference
context, design informativeness can be described succinctly as the fact that due to
the design complexities, the postulated model is not correct for the sample data.
If the design can be determined to be non-informative with respect to a particular
postulated model, then it is reasonable to ignore the design in subsequent model
fitting and analysis. On the other hand, if informativeness cannot be rejected, the
analysis will need to explicitly account for the design complexities, which can be
done either by staying within a design-based framework or by adjusting the model
to incorporate design effects.

A number of authors have previously considered testing for informativeness, but
overall, the literature on this existing topic is quite sparse. An important class of
tests is based on assessing the significance of the difference between weighted and
unweighted estimates of model parameters. This idea forms the basis of the proce-
dures proposed by [1] and [3] for the coefficients in linear regression. [7] extended
this to general likelihood-based problems with explicit estimators, and [10] to es-
timators that are defined as the solutions to estimating equations. The procedure
we will propose is most closely related to this type of tests but is connected more
directly with the model likelihood.

When the postulated model is a linear regression model, the test based on the
difference between weighted and unweighted estimated coefficients is equivalent to
an F-test for the significance of the parameters of an extended linear model, with
the extension composed of the interactions between the covariates of the original
model and the weights. See [4, Section 6.3.1] for a derivation of this equivalence.
Testing based on comparing the postulated model with an extended version of the
model was also used by [6] for logistic regression, even though it is not equivalent
to testing whether the difference between the weighted and unweighted estimates is
significant in this case.

Another class of tests targets the moments of the postulated model rather than
the model parameters, and tries to evaluate whether they are equal to the moments
of the model that holds for the sample data. This is generally done in the regression
context, so that the relevant moments are conditional on model covariates. [9] show



Testing for Informativeness in Analytic Inference from Complex Surveys 3

that the hypothesis of equal conditional moments for both models is equivalent to
lack of correlation between the model errors and the sampling weights, and use
classical correlation test statistics to test this hypothesis. This testing procedure is
easy to apply but is not exact, in the sense that it is generally not clear how many
moments should be compared. [9] noted that “in practice, it would normally suffice
to test the first 2-3 correlations.” A more serious problem is the difficulty of having
to interpret multiple tests simultaneously, so that the overall confidence level of the
procedure is typically unknown.

A final class of tests are based on an identity in [9], which shows that the dif-
ference between postulated model and the sample model can be assessed through a
regression of the survey weights on the model variables. [2] use a Kullback-Leibler
information statistics to perform this test, but the approach is more generally appli-
cable, as noted by [11]. This class of tests targets the informativeness directly, but
requires that a model relating the weights and the model variables be defined, so
that it is subject to its own possible model specification bias.

2 Proposed Testing Procedure

We consider here the regression context. A finite population U of size N is sampled
and the observed data are {xT

k ,yk} for k∈ s. The target of inference is the conditional
distribution yk given xk in the model that generated the population values, yk ∼
f (· | xk;θ). The model is specified up to a finite set of parameters denoted by θ ,
and we write θ 0 for the target values. The sampling design used to select s is not
known to the analyst, but sampling weights wk are assumed available. We let Ik
denote the sample membership indicator, i.e. Ik = 1 if k ∈ s and 0 otherwise. In
what follows, we will be considering both weighted and unweighted estimates of the
model parameters, and a is used as generic notation for either the unweighted case,
with a = 1 denoting {ak} ≡ 1, or the weighted case, with a = w denoting {ak} =
{wk}. The (weighted or unweighted) estimators θ̂ a maximize the log-likelihood

la(θ) = ∑
k∈U

akIk ln f (yk | xk;θ) . (1)

The following theorem gives the asymptotic distributions of the weighted and
unweighted likelihood ratio statistics:

Theorem 1. Under suitable conditions, the likelihood ratio statistics satisfy

T1 = 2
{

l1
(

θ̂ 1

)
− l1

(
θ̂ w

)}
= N

(
θ̂ 1− θ̂ w

)T
J1

(
θ̂ 1− θ̂ w

)
+op(1)

and

Tw = 2
{

lw
(

θ̂ w

)
− lw

(
θ̂ 1

)}
= N

(
θ̂ w− θ̂ 1

)T
Jw

(
θ̂ w− θ̂ 1

)
+op(1),
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where
Ja = lim

N→∞

1
N ∑

k∈U
ak Ik I (xk;θ 0)

and I (xk;θ 0) is the Fisher Information for the kth observation. In addition,

N1/2
(

θ̂ w− θ̂ 1

)
L→N

(
0,−J−1

1 + J−1
w KwJ−1

w
)

(2)

where
Ka = lim

N→∞

1
N ∑

k∈U
a2

k Ik I (xk;θ 0).

Hence,

Ta
L→

p

∑
j=1

λa jZ2
j (3)

where λ a is the vector of eigenvalues of the matrix (−J−1
1 +J−1

w KwJ−1
w )T/2 Ja (−J−1

1 +

J−1
w KwJ−1

w )1/2 and {Z j}p
j=1 are independent and identically distributed N (0,1).

The asymptotic distribution of Ta contains unknown quantities Ja and Ka, but
these can be consistently estimated using plug-in methods. Alternatively, the distri-
bution of Ta may be approximated via parametric bootstrap, which does not require
estimation of these matrices. Our parametric bootstrap consists of sampling {y∗k}k∈U

as independent random variables with y∗k ∼ f (· | xk; θ̂ w) or y∗k ∼ f (· | xk; θ̂ 1); both
are possible because the bootstrap distribution of interest is computed under the null
hypothesis.

This proposed procedure is very general and is applicable whenever a likelihood
can be written down. We study several special cases, including linear regression, in
which the expression simplify considerably. We also compare the procedure with
other approaches available in the literature, including those mentioned in the previ-
ous section, theoretically and in simulations.

3 Application

In this section the likelihood ratio test for design informativeness will be applied to
fitting a Gamma mixture model for biomass of hauls of American Plaice fish in the
southern Gulf of St. Lawrence. This application makes it possible to demonstrate
the flexibility of the approach in a non-standard setting. The dataset consists of 189
hauls collected in 2008, and in addition to biomass, it records date/time information,
haul location, and stratum identifiers. The total number of trawlable units is known
within each stratum and so sample weights are taken to be the total number of units
in a stratum divided by the number of units observed from that stratum. This yields
highly variable sampling rates between strata, and potential design informativeness.

For y = Biomass, consider the mixture model
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yk = {zk×0}{(1− zk)× xk},

where zk ∼ Bernoulli(δ ), and xk ∼ Gamma(α,τ). Biomass is represented by a ran-
dom variable that takes a value of 0 with probability δ and is positive following a
Gamma distribution with probability (1− δ ). The probability density function for
yk is

f (yk;δ ,α,τ) = δ
zk

{
(1−δ )

yα−1
k e−yk/τ

ταΓ (α)

}1−zk

.

To obtain maximum likelihood estimates, θ̂ a = (δ̂a, α̂a, τ̂a), for a = 1 or a = w,
maximize the sample-level log-likelihood function

la(δ ,α,τ) = lnδ ∑
k∈s

akzk +{ln(1−δ )−α lnτ− lnΓ (α)}
{

∑
k∈s

ak(1− zk)

}

+(α−1)∑
k∈s

ak(1− zk) lnyk−
1
τ

∑
k∈s

akyk(1− zk)

with respect to δ , α , and τ .
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Fig. 1 Weighted (lower dots) vs. unweighted (higher dots) empirical distribution functions for
biomass of American Plaice, with weighted mixture model fit (solid curve).

Figure 1 shows that the weighted data do in fact differ slightly from the un-
weighted data. The weighted and unweighted parameter estimates are (δ̂w, α̂w, τ̂w)=
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(0.070,0.514,34.342) and (δ̂1, α̂1, τ̂1) = (0.0794,0.497,32.465), respectively. It is
not immediately clear whether this difference is statistically significant, so we apply
the likelihood ratio test.

Following the procedure described in the previous section, we compute T1 =
2(l1(δ̂1, α̂1, τ̂1)− l1(δ̂w, α̂w, τ̂w)) = 1.11. In order to obtain the approximate distri-
bution of T1 under the null hypothesis of no design informativeness, we derive ex-
pressions for Ja and Ka and estimate those from the data. Finally, we obtain the
weights λ a = (0.0554,0.0554,0.0554), and the 0.05 critical value for the mixture
of χ2

1 with these weights is 0.433. Recalling that the value of the test statistic was
T1 = 1.11, we strongly reject the null hypothesis of non-informative selection.
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