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Abstract In this paper a “special version” of the empirical process is introduced
and studied in sampling finite populations under fairly general sampling designs.
This allow to establish the asymptotic normality of estimators commonly used in
practice. As a by-product, estimates of the variance are also obtained.
Abstract In questo lavoro si introduce, per disegni campionari generali, una “ver-
sione speciale” del processo empirico, e si mostra la sua convergenza debole ad
un processo Gaussiano. Come conseguenza, si ottiene la normalità asintotica di
stimatori di uso comune.
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1 Introductory aspects

Asymptotics in survey sampling do have a long history. The main effort of the lit-
erature consists in providing a justification of confidence intervals and variance es-
timates commonly used in practice. Almost all results concern the asymptotic nor-
mality of linear statistics, and are obtained under various conditions on sampling
plans. Among several papers devoted to this subject, in [5] asymptotic properties of
L-statistics are obtained under stratified two-stage sampling; similar results are in
[3]. A completely different approach is in a fundamental paper by Hájek [4], where
asymptotic properties for the Horvitz-Thompson estimator under rejective sampling
are obtained, as well as [8], [1].

All the above mentioned papers (and many others, as well) are mainly confined
to linear statistics, the most important one being the Horvitz-Thompson estimator
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of the population mean. Asymptotic results are obtained by ad hoc, specific, tech-
niques, and it is generally difficult to extend them to non-linear estimators.

The framework of survey sampling is not far from that of nonparametric statis-
tics. The main common feature is that no special assumptions are made on the pop-
ulation distribution. The main difference is that in nonparametric statistics obser-
vations are usually assumed to be independent and identically distributed (i.i.d.),
whilst the same does not hold in survey sampling, because of the sampling design.

The main tool to study asymptotic theory in nonparametric statistics is the empir-
ical process theory (cfr., for instance, [7]), the offers the right background for a large
amount of results. Our goal here is to construct an asymptotic theory for sampling
finite populations that parallels the classical theory in nonparametric statistics. At an
elementary level, in classical nonparametric statistics the starting point consists in
observing that almost all statistics are essentially functionals of the empirical distri-
bution function. Asymptotic results are first obtained for the empirical distribution
function (this step involves empirical processes and weak convergence of stochastic
processes), and then then extended to sufficiently regular functionals (this step usu-
ally requires an appropriate form of differentiability). In the sequel we will take a
similar road for the important class of “high entropy” sampling designs.

2 Basic concepts and symbols

Let UN be a finite population of N units, labeled by integers 1, . . ., N. Let Y be the
variable of interest, and let yi be the value of Y for unit i (i = 1, . . . , N). Let further
yN = (y1, . . . , ,yN). The population distribution function (p.d.f., for short) is defined
as

FN(y) =
1
N

N

∑
i=1

I(−∞,y](yi), y ∈ R (1)

where IA(·) is the indicator function of the set A.
Now, for each unit i in UN , define a Bernoulli random variable (r.v.) Di, such

that the unit i is included in the sample if and only if (iff) Di = 1, and let DN =
(D1, . . . , DN). A (unordered, without replacement) sampling design P is the prob-
ability distribution of DN . In particular, πi = EP[Di] (πi j = EP[DiD j]) is the first
(second) order inclusion probability of unit i (pair of units i, j). The suffix P denotes
the sampling design used to select population units.

Let p1, . . ., pN be N real numbers, with p1 + · · ·+ pN = n. The sampling design
is a Poisson design with parameters p1, . . ., pN if the r.v.s Dis are independent with
πi = pi for each unit i. The rejective sampling, or normalized conditional Poisson
sampling ([4], [6]) corresponds to the probability distribution of the random vector
DN , under Poisson design, conditionally on ns = n.

The Hellinger distance between a sampling design P and the rejective design is
defined as
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dH(P, PR) = ∑
D1, ...,DN

(√
PrP(DN)−

√
PrR(DN)

)2
. (2)

Our basic assumptions are listed below.

A1. (UN ; N ≥ 1) is a sequence of finite populations of increasing size N.
A2. For each N, y1, . . . , yN are realizations of a superpopulation (Y1, . . . , YN) com-

posed by i.i.d. r.v.s Yi with common d.f. F . In the sequel, we will denote by P the
probability distribution of r.v.s Yis, and by E, V the corresponding operators of
mean and variance, respectively.

A3. For each population UN , sample units are selected according to a fixed size
sample design with inclusion probabilities π1, . . ., πN , and sample size n. Fur-
thermore, for d > 0, f > 0,

dN =
N

∑
i=1

πi(1−πi)→ ∞,
1
N

dN → d, lim
N→∞

n
N

= f as N → ∞.

A4. For each population (UN ; N ≥ 1), let PR be the rejective sampling design with
inclusion probabilities π1, . . ., πN , and let P be the actual sampling design (having
the same inclusion probabilities). Then

dH(P, PR)→ 0 as N → ∞.

A5. There exist two positive real numbers A, B such that

lim
N→∞

1
N

N

∑
i=1

1
πi

= A < ∞, lim
N→∞

N

∑
i=1

1
(iπi)2 = B < ∞.

3 Main basic results

As already said, the first, basic step in nonparametric statistics consists in construct-
ing the empirical process, namely the rescaled difference between empirical d.f and
population d.f., and in studying its limiting properties.

In the present case, in order to estimate the p.d.f. FN , we consider the Hájek
estimator

F̂H(y) =
∑N

i=1
1
πi

DiI(−∞,y](yi)

∑N
i=1

1
πi

Di
. (3)

Our main goal is to study the asymptotic “global” behaviour of the random func-
tion F̂H(·). To this purpose, define the (sequence of) random function(s)

W H
N (·) = {

√
n(F̂H(y)−FN(y)), y ∈ R}; N ≥ 1. (4)
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Clearly, (4) plays exactly the same role as the classical empirical process in non-
parametric statistics. The main results of the present section is Proposition 1.

Proposition 1. If the sampling design P satisfies assumptions A1-A5, with P-probability
1, conditionally on yN the sequence (W H

N (·); N ≥ 1), converges weakly, in the space
l∞[−∞,+∞] of the bounded functions on [−∞,+∞] equipped with the sup-norm, to
a Gaussian process W H(·) = (W H(y); y ∈ R) that can be represented as

W H(y) =
√

f (A−1)B(F(y)), y ∈ R (5)

where (B(t); 0 ≤ t ≤ 1) is a Brownian bridge.

In particular, if the sampling design is simple random sampling (without re-
placement) of size n, the Hájek estimator (3) reduces to the empirical d.f. Fn(y) =
n−1 ∑i DiI(−∞,y](yi), and f (A−1) = 1− f .

In classical nonparametric statistics, the empirical process
√

n(F̂n(y)− F(y))
converges weakly to a Gaussian process of the form B(F(y)). This result is ap-
parently similar to Proposition 1, with two differences: (i) the centering factor F
instead of FN ; (ii) the absence of the finite population correction term f (A− 1),
since in classical nonparametric statistics the observations are (realizations of) i.i.d.
r.v.s, and essentially there is no sampling design.

The asymptotic result of Proposition 1 is obtained conditionally on the popula-
tion values yN ; hence, the involved probability only depends on the sample design.
Furthermore, [A2] could be replaced by other hypothesis, non even involving a su-
perpopulation model.

4 Asymptotics for Hadamard-differentiable functionals

The estimation of the p.d.f. FN is just the initial step in studying asymptotics, be-
cause several parameters of interest are actually functionals of FN . Noticeable ex-
amples are the pth population quantile

QN(p) = F−1
N (p) = inf{y : FN(y)≥ p}, 0 < p < 1, (6)

the generalized Lorenz curve (provided all yis are positive)

GN(p) =
∫ p

0
QN(t)dt, 0 ≤ p ≤ 1 (7)

as well as several others.
The appropriate tool to study asymptotic properties of functional of FN , such as

(6)-(7) is the notion of Hadamard-differentiability. Let ϕ(·) : l∞[−∞,+∞]→ E be
a map having as domain the normed space l∞[−∞,+∞] (endowed with the sup-
norm), and taking values on an appropriate normed space E with norm ∥ · ∥E . The
map ϕ(·) is Hadamard-differentiable at F is there exists a continuous linear mapping
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ϕ ′
F : l∞[−∞,+∞]→ E such that∥∥∥∥ϕ(F + tht)−ϕ(F)

t
−ϕ ′

F(h)
∥∥∥∥

E
→ 0 as t ↓ 0, f or every ht → h. (8)

ϕ(·) is the Hadamard derivative of ϕ at F . The following result holds (cfr. [7]).

Proposition 2. If ϕ(·) is (continuously) Hadamard-differentiable at F, with Hadamard
derivative ϕ ′

F(·), then the asymptotic law of
√

n(ϕ(F̂H(y))−ϕ(FN)) coincides with
the asymptotic law of ϕ ′

F(W
H), as N increases.

Proposition 2 also extends and makes it rigorous a technique of variance estima-
tion originally proposed by Deville [2]. Roughly speaking, Proposition 2 shows that
the asymptotic distribution of

√
n(ϕ(F̂H(y))−ϕ(FN)) coincides with the asymptotic

distribution of ϕ ′
F(
√

n(F̂H −FN)). Using the symbol
d≈ to indicate the “approximate

equality of distributions”, and taking N̂ = ∑i π−1
i Di, we may then write

√
n(ϕ(F̂H(y))−ϕ(FN))

d≈ ϕ ′
F(
√

n(F̂H −FN))

=

√
n

N̂

N

∑
i=1

Di

πi
ϕ ′

F(I[yi,+∞)(·)−F(·))

d≈
√

n
N

N

∑
i=1

Di

πi
τF(yi)

where τF(yi) = ϕ ′
F(I[yi,+∞)(·)−F(·)) is the influence function of ϕ computed at yi.

Hence, taking ∆i j = πi j − πiπ j, the design-based variance of
√

n(ϕ(F̂H)− ϕ(FN))
can be asymptotically approximated by:

VP

(√
n(ϕ(F̂H(y))−ϕ(FN))

)
≈ n

N2

N

∑
i=1

N

∑
j=1

∆i jτF(yi)τF(y j)

= − n
N2

N

∑
i=1

N

∑
j=1

∆i j (τF(yi)− τF(y j))
2 . (9)

If ϕ ′
F(·) is continuous in F , then τF(yi) can be approximated, in its turn, by

τ̂F̂H
(yi) = ϕ ′

F̂H
(I[yi,+∞)(·)− F̂H(·)), so that the following estimator of the design-

based variance of
√

n(ϕ(F̂H)−ϕ(FN)) is obtained

V̂Y G =− n
N2

N

∑
i=1

N

∑
j=1

∆i j

(
τ̂F̂H

(yi)− τ̂F̂H
(y j)

)2 DiD j

πi j
. (10)

Further simplifications can be obtained by using the Hájek approximation πi j ≈
πiπ j(1− (1−πi)(1−π j)/dN , dN being defined in [A3].
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5 An example

Consider the generalized Lorenz curve (7). Under mild regularity conditions, the
map ϕ : F 7→ G(·) is Hadamard-differentiable, with Hadamard derivative

ϕ ′
F(h) =−

∫ Q(p)

0
h(y)dy, 0 ≤ p ≤ 1. (11)

Taking Q̂H(p) = inf{y : F̂H(y) ≥ y} and defining ĜH(p) exactly as in (7) with
QN replaced by Q̂H , from Proposition 2 it follows that the sequence of stochastic
processes

√
n(ĜH(p)−GN(p); 0 ≤ p ≤ 1) converges weakly to a Gaussian process

with zero mean function and covariance kernel

CG(u, v) = f (A−1)×{S(u)−G(u)(Q(u)+Q(v))+uQ(u)Q(v)

−(G(u)−uQ(u))(G(v)− vQ(v))} (12)

with S(u) = E[Y 2
1 I(−∞,Q(u)](Y1)]. Since elementary computations show that

τF(yi) = ϕ ′
F(I[yi,+∞)(·)−F(·)) = (yi −Q(p))I(−∞,Q(p)](yi)− (G(p)− pQ(p))

it is easy to conclude that, for fixed p,
√

n(ĜH(p)−GN(p)) is asymptotically nor-
mally distributed with mean 0 and variance VG(p) =CG(p, p). Furthermore, a (de-
sign) consistent estimator of VG(p) is

V̂Y G =− n
2N2

N

∑
i=1

N

∑
j=1

∆i j
DiD j

πi j

(
(yi − Q̂H(p))I(−∞, Q̂H (p)](yi)− (y j − Q̂H(p))I(−∞, Q̂H (p)](y j)

)2
.
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