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Abstract In this work we discuss an application of recent developments of Approxi-
mate Bayesian Computation (ABC) methods coupled with the quasi-likelihood the-
ory, to the problem of estimating the relation between genotype and phenotype in ge-
netic isolates with known genealogy between subjects from the common founders.
The combination of quasi-likelihoods and ABC allows automatic ABC inference
when the likelihood function is intractable. Indeed, the quasi-likelihood delivers
an approximation of the intractable likelihood that can enter either into an ABC-
MCMC algorithm as a proposal density or can be used as a surrogate of the in-
tractable likelihood function directly in the Bayes theorem. The proposed method
is applied to a Genome Wide Association Study of the reduced Mean Cell Volume
(MCV<72) on a Sardinian genetic isolate for which the genealogy relating all the
observed subjects is known.
Abstract Questo lavoro illustra l’applicazione di tecniche recenti del tipo ABC
assieme alle quasi-verosimiglianze nel problema di stima delle varianti genetiche
relazionate con un fenotipo in popolazioni chiuse, in cui è noto l’albero genealogico.
La combinazioni delle tecniche ABC con le quasi-verosimiglianze consente di
trattare problemi di inferenza bayesiana per verosimiglianze non disponibili analiti-
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camente. Infatti la quasi-verosimiglianza può essere utilizzata come distribuzione
proponente in un algoritmo ABC-MCMC oppure come surrogato della verosi-
miglianza intrattabile direttamente nel teorema di Bayes. Queste tecniche si ap-
plicano alla stima delle varianti genetiche relazionate con il diametro dei globuli
rossi nel sangue, su un campione estratto da un isolato genetico della Sardegna per
il quale è noto l’albero genealogico.

Key words: Estimatin functions, genealogy trees, likelihood-free inference, objec-
tive Bayesian inference, quasi-likelihoods.

1 Introduction: the Sardinian genetic isolate dataset and its
potentials

In this paper we address the problem of estimating DNA markers related to a phe-
notype, e.g. the presence of a certain disease. This problem is dealt with a large sets
of DNA sequences, referred to as Single-Nucleotide Polymorphisms (SNPs). Such
SNPs are usually observed in millions per individuals and thus fast and reliable
statistical methods are needed in order to answer the scientific question enquiring
which SNPs are mostly related with the disease. Usually, the data are collected on
open populations where the degree of inbreeding is unknown, and is typically negli-
gible. Nonetheless, there is some evidence in the genetic literature that the study of
isolate genetics, i.e. human samples with known and relevant inbreeding, provides
valuable information on SNPs/disease relation. Such type of samples are very rare
and so are the statistical methods to analyse them (Cabras et al., 2011). An example
of such data is the Sardinian genetic isolate of Ogliastra region situated in the center
of the Sardinian island (Italy).

The presence of highly dependent observations complicates the statistical model.
In fact, the probabilistic model for the sample that relates the phenotype to the geno-
type, must take into account also the genealogy underlying the genetic variant trans-
mission when the SNP related with the phenotype is unknown. Since the genotype
is observed for the very last generations only, then the configurations of the SNPs
for the previous generations constitute a huge number of random unobservable la-
tent variables. This makes almost impossible to write the likelihood function for the
parameters relating the configuration of the SNPs with the phenotype.

The scarcity and the difficulty of analysing such type of data for human diseases
might explain why the literature on linkage analysis and Genome Wide Associa-
tion Studies developed on separate grounds. Here we try to embed them in a com-
mon probabilistic framework. This is possible thanks to recent developments on
Approximate Bayesian Computation (ABC) that allows to draw posterior inference,
on the parameters of interest, even when the likelihood function is not available.
This rapidly growing ABC literature leads to a set of methods which do not involve
direct calculation of the likelihood, delivering thus Bayesian inference which is ap-
proximate in a sense that will be specified later. ABC methods are becoming popular
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in genetics (Siegmund et al., 2008; Foll et al., 2008), epidemiology (Blum and Tran,
2010) and in population biology (Ratmann et al., 2007) among others.

We found that ABC can be further improved by using quasi-likelihood functions.
The latter is of interest in problems where, for a parametric model, the correspond-
ing likelihood function is not available in a closed form expression and therefore
cannot be treated with the usual Bayesian techniques.

As an application, we consider a sample from the Talana village people that is
affected by reduced MCV for which it is known that there exists a genetic variant
inside the Beta-Globin gene that determines a MCV<72. The are 103 individuals
with 96 SNPs. Among these, there is only one variant inside the Beta-Globin gene
that we expect to be estimated as the most associated variant with the reduced MCV.
An extract of the available sample is represented in Figure 1. We can see that the
population is mostly isolated and few founders contributed to genetic variation of
the whole sample. Usually, such founders have not been observed, neither for their
phenotype and genotype.

2 The Stochastic model and the intractable likelihood

In this analysis we treat each SNP separately and set up a stochastic model for a sin-
gle SNP. The overall analysis is made by separate analyses for all SNPs. In particu-
lar, for individual i let Yi ∈ {0,1} represent the indicator of the phenotype, i.e. Yi = 1
if affected and Yi = 0 otherwise and let Xi ∈ {{aA,Aa},aa,AA} be the genotype, e.g.
the SNP configuration with three levels. For a genealogy made of N individuals we
shall model the corresponding pairs (Y1,X1), . . . ,(YN ,XN). At the phenotype level
we assume the usual logistic regression model (Yi|Xi,θ)∼ Bernoulli(pi), where the
linear predictor is

logit(pi) = θ1I(Xi={aA,Aa})+θ2I(Xi=aa)+θ3I(Xi=AA).

The parameters θ = (θ1,θ2,θ3) are usually interpreted as the log of the odds ratio
for the probabilities of being affected given the SNP configuration and given the af-
fection status of the parents. Concretely, let Xi1 and Xi2 be the SNP configuration for
the ancestors of individual i. Then the probabilistic model for the transmission of a
genotype variant is assumed to be governed by the usual Mendelian inheritance law

Fig. 1 Extract of the Genealogy tree from the Talana village. Ancestors (white) are not observed;
while other individuals are labelled as healthy (green) or affected (red).
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of transmission, where the ancestor individuals are assumed to be known according
to the genealogy tree (see Figure 1). Therefore, if individual i is a descedent in the
genealogy tree, then

(Xi|Xi1 ,Xi2)∼Mendel’s law,

while if i is a founder and his/her ancestors are not in the genealogy tree, then

Xi ∼ Trinomial(1/3,1/3,1/3).

As shown in Figure 1, not all configurations have been observed and thus the
likelihood for θ ∈ IR3, LN(θ), given the observed data D = (yi,xi)

n
i=1, n < N can-

not be written in closed form as one must integrate over the SNP configurations
of ancestors and founders. Nonetheless, we wish to draw posterior inference on
πN(θ |D) ∝ LN(θ)π(θ), based on the improper uninformative prior π(θ) ∝ 1. In
order to approximate πN(θ |D) we have to resort to ABC methods. We further gain
precision by the approximation of LN(θ) with the quasi-likelihood function, LQ(θ).
Hence, we propose to combine ABC and quasi-likelihood. To accomplish this, we
need to fix a relation between the observations, through a vector of summary statis-
tics s, and the parameters θ . This is explained in the next section.

3 Bayesian estimation with ABC and quasi-likelihood

The use of ABC for the above model requires a choice of a, not necessarily but
hopefully sufficient, summary statistic s = (s1,s2,s3) ∈ IR3. In this case we choose
s1 as the observed log-odds for the frequency of Y = 1|X = aa against Y = 0|X =
aa, while s2 and s3 are the log odds for X = {aA,Aa} and X = AA, respectively.
Such log-odds are always calculated for the observed individuals in the genealogy
tree. In its basic version, ABC consists in sampling parameters from the prior, then
generating summary statistics and retaining those generated values of the parameters
which lead to summary statistics similar to the observed ones. Such retained values
are supposed to be an approximation of the posterior distribution of the parameters.

For the distance ρ(s,sobs) between s and its observed value sobs, required in ABC,
we chose the Euclidean norm weighted by 1−#{xobs = xsim}/n. This weight is the
proportion of simulated SNPs in the tree that differs from the observed configura-
tions. The tolerance parameter ε > 0 has been fixed in order to obtain an acceptable
jumping probability in the ABC-MCMC algorithm (Marjoram et al., 2003), needed
because π(θ) is improper.

The theory and the use of estimating equations and that of the related quasi-
and quasi-profile likelihood functions has received a lot of attention in recent years;
(see, among others, Barndorff-Nielsen (1995); Adimari and Ventura (2002)). In ad-
dition, Ventura et al. (2010); Lin (2006); Greco et al. (2008) discuss the use of
quasi-likelihood functions in the Bayesian setting.

In our proposed method the quasi-likelihood enters as a proposal density for the
ABC-MCMC algorithm through a reparametrization of θ , namely f (θ)=Eπ(y|θ)(s |
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θ)∈ IR3 which is informative for the posterior mean of θ for a given choice of s. The
function f (θ) cannot generally be elicited and an estimated version f̂ is obtained
using a pilot-run simulation. As the pilot-run depends only on the genealogy tree
and not on the specific observed sample, it can be used routinely for analysing each
SNP separately. Once f̂ is obtained, the quasi-likelihood proposal is given by

LQ(θ) = Σ
− 1

2
R exp

(
−1

2
( f̂ (θ)− sobs)TΣ

−1
R ( f̂ (θ)− sobs)

)
, (1)

where ΣR is the estimated conditional covariance matrix for the regression function
S | θ the acceptance probability for the ABC-MCMC becomes

max

{
1,

π(θ ∗)LQ(θ
(t−1)) | J(θ (t−1)) |

π(θ (t−1))LQ(θ
∗) | J(θ ∗) |

Iρ<ε

}
.

The obtained simulation output consist of the approximate posterior distributions
of θ , one for each SNP. We summarize them marginally by looking at the log of pos-
terior odds for the hypothesis that a SNP is at risk against protective factor for the re-
duced MCV, that is the approximation of the log of Pr(θ > 0|D)/(1−Pr(θ > 0|D))
which exists as long as the posterior π(θ |D) exists. From the obtained weights of
evidence we have that the variant inside the Beta-Globin gene exhibits one of the
largest weights of evidence. This holds for all the SNPs analysed.

The same analysis has been performed by replacing LN(θ) with LQ(θ) into the
Bayes theorem. We obtained almost the same results, but with an extremely faster
computational algorithm that is feasible for very large GWAS analysis. In fact, such
algorithm requires to simulate from the multivariate normal in (1) and calculate the
inverse of f̂ . In order to speed-up the calculations, this inverse function can be also
interpolated by using the output of the pilot-run.
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