
Testing for nonlinear serial dependence in time
series with surrogate data and entropy measures
Test per la dipendenza seriale non lineare in serie
storiche tramite surrogati e misure di entropia

Simone Giannerini, Esfandiar Maasoumi and Estela Bee Dagum

Abstract In this work we propose a nonparametric test for the identification of non-
linear dependence in time series. The approach is based on a combination of a test
statistic based on an entropy dependence metric together with a suitable extension
of surrogate data methods, a class of Monte Carlo tests introduced in the field of
nonlinear dynamics. We focus on the null hypothesis of linear Gaussian processes
and we derive the asymptotic theory for the test statistics. Since the asymptotic ap-
proximations depend on unknown quantities and require long series to be feasible
we advocate the use of surrogate methods. We prove the asymptotic validity of the
inference derived from the test and show the finite sample performance through a
small simulation study.
Abstract In questo lavoro si introduce un test non parametrico per la dipendenza
seriale non lineare in serie storiche. L’approccio è basato su di una misura metrica
di entropia combinata con un estensione del metodo dei surrogati, una classe di test
Monte Carlo introdotti nell’ambito della teoria dei sistemi dinamici non lineari. In
questa sede si studia l’ipotesi nulla che il processo osservato sia lineare e gaussiano.
A tal proposito, si ricava la distribuzione asintotica della statistica test sotto H0;
l’approssimazione asintotica dipende da quantità non note e richiede serie molto
lunghe per poter essere applicata. Per tali motivi si utilizza il metodo dei surrogati
e si dimostra la validità asintotica dell’inferenza ad esso associata. La performance
del test su campioni finiti è studiata per mezzo di un piccolo studio di simulazione.
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1 Introduction

In time series analysis it is important to ascertain whether the process under scrutiny
cannot be adequately modelled by resorting to the linear gaussian paradigm. A prac-
tical difficulty that arise in such exercise is the apparent asymmetry between the
realm of linearity and that of nonlinearity. In fact, while the class of linear pro-
cesses is well defined from a mathematical point of view, the same does not hold for
nonlinear processes. Thus, even though departures from linearity can occur in many
directions, testing for nonlinearity is often a test for a specific nonlinear feature such
as initial value sensitivity, fractality, volatility, threshold effects, irreversibility and
so on. In other instances, nonlinearity is inferred from the failure of linear modelling
and the problem reduces to either a diagnostic test (usually performed on the resid-
uals of a linear model) or a specification test between models. For a recent review
on the topic see [3] and references therein.

In this paper we study a non-parametric tests based on surrogate data together
with an entropy measure of dependence. Our null hypothesis is motivated by the
formal definition of linear processes as follows

H0 : Xt =
∞

∑
j=1

φ jXt− j + εt with {εt} ∼ i.i.d. N(0,σ2
ε ), (1)

where ∑
∞
j=1 φ 2

j < ∞ and E[Xt ]
4 < ∞. In practice, H0 assumes that the data generating

process {Xt} is a zero mean linear Gaussian stationary process. The alternative hy-
pothesis H1 states that {Xt} does not admit a linear representation as in (1). Given a
time series x= (x1, . . . ,xn) and we are going to test whether x might be operationally
considered as a realization of the process of Eq. (1).

2 The test statistic

The test statistic we propose is based upon the metric entropy measure Sρ , a nor-
malized version of the Bhattacharya-Hellinger-Matusita distance:

Sρ(k) =
1
2

∫ +∞

−∞

∫ +∞

−∞

[
[ f(Xt ,Xt+k)(x1,x2)]

1/2− [ fXt (x1) fXt+k(x2)]
1/2
]2

dx1dx2 (2)

where fXt (·) and f(Xt ,Xt+k)(·, ·) denote the probability density function of Xt and of
the vector (Xt ,Xt+k) respectively. The good theoretical properties of the measure are
discussed in [5, 9, 10]. In particular, for the construction of a test statistic we use the
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relationship of Sρ with the autocorrelation coefficient in the Gaussian case. We find
the following:

Proposition 1. Let (X ,Y ) ∼ N(0,1,ρ) be a standard Normal random vector with
joint probability density function given by fX ,Y (·, ·,ρ), where ρ is the correlation
coefficient. Then, the following relation holds:

Sρ = 1−
2
(
1−ρ2

)1/4

(4−ρ2)1/2 (3)

Proof. See [4] ut

For the sake of brevity, in the following, instead of Sρ(k) we will use Sk. Now, by
using the result of Eq. (3) we can obtain an estimator for Sk under the null of a
linear Gaussian process based on the sample autocorrelation ρk. We denote such
a parametric estimator with Ŝp

k where the superscript p stands for parametric. The
consistency of the estimator Ŝp

k and asymptotic normality under H0 have been de-
rived in [4]. In order to test the null hypotheses of linearity H0 (1) we propose the
following test statistic:

T̂k =
[
Ŝu

k − Ŝp
k

]2
(4)

where Ŝu
k is the nonparametric estimator for Sk based on kernel density estimators

and numerical quadrature for the integral of Eq (2); here the have adopted the max-
imum likelihood cross validation as bandwidth selection method. In other words,
T̂k is the squared divergence between the unrestricted nonparametric estimator and
the parametric estimator of Sk under H0. The following theorem establishes strong
convergence and the asymptotic distribution of T̂k under the null.

Theorem 1. Under H0

1. T̂k −→ 0 in L2.

2.
nT̂k

σ2
a
−→ χ

2
1 in distribution.

where σ2
a is the asymptotic variance of T̂ 1/2

k .

Proof. See [4]

Theorem 1 assures that the test statistic will converge to zero if the process is lin-
ear and Gaussian. Hence, large values of T̂k will indicate departure from the hypoth-
esis of linearity. The derivation of the asymptotic approximation for the significance
level and power of the test is bound to deriving an estimator for the asymptotic vari-
ance σ2

a . The task is practically unfeasible and the exercise is of limited practical
relevance. Moreover, several contributions in literature show that very large sample
sizes are required to obtain meaningful results (see e.g. [6, 7, 15, 8]).
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In order to show the performance of the asymptotic χ2
1 approximation of the

test based on T̂k. We generate 500 series with n = 2000 from the moving average
process Xt = 0.8εt−1 +εt , where εt ∼ N(0,1) for all t. Recall that ρ1 =−0.488 and
σ2

a = σ2
p +σ2

u . Now, σ2
p is the asymptotic variance of the parametric estimator Ŝp

1
and can be computed exactly for such process (see [4]):

σ
2
p =

[
ρ1(2+ρ2

1 )

(1−ρ2
1 )

3/4(4−ρ2
1 )

3/2

]2

(1+2ρ
2
1 ) = 0.04966.

As for σ2
u , we derive an estimate for it through the Monte Carlo variance of Ŝu

1. The
histogram of nT̂1

σ̂2
a

is shown in Fig. 1 where we have superimposed a χ2
1 density (solid

red line). We are in the unrealistic scenario in which we know exactly the asymptotic
variance of the parametric estimator and have a very good estimate for that of the
non-parametric estimator; still, the approximation of the right tail of the distribution
of the test statistic is not satisfactory. In fact, if we set the nominal level α = 0.05
and use the χ2

1 approximation we get an empirical rejection rate of 0.09. For these
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Fig. 1 Histogram of nT̂1
σ̂2

a
for 500 realizations of a moving average process of order 1. The length

of the series is n = 2000. The solid red line is a χ2
1 density.

reasons, we propose a resampling scheme based on the method of surrogate data
that leads to valid inference and good finite sample performance.

3 The surrogate data approach

The method of surrogate data first appeared in the literature of nonlinear dynamics
and chaos theory (see [13]). Loosely speaking, it can be seen as a nonparamet-
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ric resampling approach aimed at building tests for nonlinearity. The key of the
method lies in generating surrogate series having the same periodogram and the
same marginal distribution as the original series. This is achieved by randomizing
the phase of the sample periodogram of the series, for more details see [13] and
[14]. In [1] it is proved that under the null hypothesis that the generating process is a
stationary Gaussian circular process such method produces exactly valid inferences.
In other words, the resulting tests have a Neyman structure. The asymptotic validity
for the null hypothesis of a stationary Gaussian process is also given (see also [2],
Chap. 4.4). For further discussions and some extensions of the method see [12].

In this paper we produce surrogate series possessing the aforementioned proper-
ties by using a constrained randomization scheme (see also [11, 12]). Rather than
focusing on the frequency domain the procedure generates surrogate time series
having the same autocorrelation structure and marginal distribution of the original
series by solving a stochastic optimization problem through simulated annealing. In
practice: i) Define one or more constraints in terms of a cost function that reaches
a global minimum when the constraints are fulfilled; ii) Minimize the cost function
among all the possible permutations of the series through simulated annealing. In
turn, the cost function is defined in terms of the distance between the sample au-
tocorrelation of the original and that of the surrogate series. In [4] we have proved
that that under the null H0 the surrogate approach combined with the test statistic Tk
leads to asymptotically valid inferences.

4 Some results

In this section we assess the performance of the tests in finite samples by means of
a small simulation study. We focus on the following models:

Model 1: AR(1) xt = 0.8xt−1 + εt
Model 2: ARt(1) xt = 0.8xt−1 +ζt
Model 3: NLMA xt = 0.8ε2

t−2 + εt

Model 4: SETAR xt =

{
−0.8xt−1 + εt if xt−1 ≤ 0

0.8xt−1 + εt if xt−1 > 0

where the innovation processes are i.i.d. εt ∼ N(0,1) and ζt ∼ Student’s t with
3 degrees of freedom. Model 1 is a linear Gaussian processes whereas Model 2
is linear with non-Gaussian innovations. Model 3 is a nonlinear moving average
process and Model 4 is a threshold autoregressive process. For each process we
have generated 500 series with n = 200. In Figures 2 and 3 we show the mean over
500 Monte Carlo replications of the test statistic T̂k (black solid line) together with
the rejection bands at level 95% and 99% (green and blue dashed lines), derived
from the quantiles of the distributions of the surrogates. The abscissa indicates the
lag k = 1, . . . ,5.

Figure 2 shows that the test manages to distinguish between linear Gaussian and
linear non-Gaussian processes. Moreover, in Figure 3 it identifies the lags at which
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Fig. 2 (Left): mean T̂k, k = 1, . . . ,5 for 500 realizations of Model 1 (Gaussian autoregressive pro-
cess, black solid line). The rejection bands at 95% and 99% level (green/light gray and blue/dark
gray dashed line, respectively) are obtained from the mean quantiles of the surrogates distribution.
(Right) the same but for Model 2 (linear, non-Gaussian process).

the different kinds of nonlinearity implied by models 3 and 4 are supposed to mani-
fest. Contrarily to the majority of existing proposal, the test does not need assump-
tions on the nature of the data generating process. Also, it manages to identifies
the lags at which a nonlinear effect is expected. For a more detailed analysis on
power, size, computational complexity, etc. see [4]. Further investigations will in-
clude studying the impact of different bandwidth selection methods. The test has
been implemented in the R package tseriesEntropy which is forthcoming on
CRAN (see www2.stat.unibo.it/giannerini/software.html).
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Fig. 3 (Left): mean T̂k, k = 1, . . . ,5 for 500 realizations of Model 3 (nonlinear moving average
process, black solid line). The rejection bands at 95% and 99% level (green/light gray and blue/dark
gray dashed line, respectively) are obtained from the mean quantiles of the surrogates distribution.
(Right) the same but for Model 4 (threshold autoregressive process).
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