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Abstract It is well known that GM estimators for linear models are consistent and
lead to a small loss of efficiency with respect to LS estimator. When they are ex-
tended to threshold models, which are piecewise linear models, the consistency of
GM estimators is guaranteed only under certain choices of the objective function. In
this paper we suggest the use of robust SETAR (Self Exciting Threshold AutoRe-
gressive) processes to model and forecast electricity prices observed on deregulated
markets. The main advantages of estimating robust SETAR models is the possibility
to capture two very well-known stylized facts of electricity prices: nonlinearity pro-
duced by changes of regimes and the presence of sudden spikes due to inelasticity
of demand.
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1 Introduction

A very well known stylized fact of electricity prices is the presence of isolated jumps
as a consequence of sudden grid congestions which reflects immediately on prices
because of lack of flexibility of the supply and demand curves. This feature must be
considered very carefully and robust techniques must be applied to avoid that few
jumps could dramatically affect parameter estimates. Although many papers have
applied quite sophisticated time series models to prices and demand time series of
electricity and gas only few have considered the strong influence of jumps on es-
timates and the need to move to robust estimators (Janczura et al.; 2013). Among
robust techniques for electricity prices, robust SETAR models have never been esti-
mated. The reasons could be resumed by two main points:

1) properties of robust SETAR estimators have not been completely studied and
there isn’t a clear accordance on the best estimator, at least with reference to the best
weighting function;

2) robust estimators are not implemented within the most popular statistical soft-
ware platforms such as matlab and R.

Grossi and Nan (2013) have addressed the two points through a massive Monte
Carlo experiment which compares the performances of classical SETAR estimator
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and robust estimators using different weighting functions. All the estimators (classi-
cal and robust) have been implemented in R language resulting in a set of functions
which hopefully will become a library soon.

In this paper, using the results contained in Grossi and Nan (2013), classical and
robust estimators are applied to estimate parameters of SETAR models on Italian
electricity price data (PUN, prezzo unico nazionale). The model is enriched by the
introduction of exogenous regressors which should improve the forecasting perfor-
mances. Crucial variables in predicting electricity prices are dummies for the intra-
day seasonality and demanded volumes (Gianfreda and Grossi; 2012). Comparisons
will be made among different robust estimators and between pure SETAR models
and nonlinear specifications with exogenous regressors.

The paper is organized as follows. In the next section, the general SETAR model
is introduced and the main weighting functions are discussed to move to robust
estimators. Section three contains summary and comments of the forecasting results.
Conclusion and final remarks are reported in section four.

2 Robust SETAR models with exogenous regressors

Given a time series yt , a general two-regime Self-Exciting Threshold AutoRegres-
sive model SETAR(p,d) with exogenous regressors is specified as

yt = (xtβ1 + ztλ1)I(yt−d ≤ γ)+(xtβ2 + ztλ2)I(yt−d > γ)+ εt (1)

for t = 1, ...,N, where I(·) is an indicator function, yt−d is the threshold variable
with d ≥ 1 and γ is the threshold value. The relation between yt−d and γ states
if yt is observed in regime 1 or 2. βj is the vector of auto-regressive parameters
for regime j = 1,2 and xt is the t-th row of the (N × p) matrix X comprising p
lagged variables of yt (and possibly a constant). λj is the vector corresponding to
exogenous regressors contained in the (N × r) matrix Z whose t-th row is zt. Errors
εt are assumed to follow an iid(0,σε) distribution.

In general the value of the threshold γ is unknown, so that the parameters to
estimate become θ = (β ′

1,β ′
2,λ ′

1,λ ′
2), γ and σε . Parameters can be estimated by

sequential conditional least squares: for a fixed threshold γ the model is linear, θ can
be estimated by OLS and σ̂ε = ∑N

t=1 r2
t /N, with rt = yt −x∗t θ̂ , where x∗t = (xt ,zt).

The least square estimate of γ is obtained by minimizing the residual sum of squares
γ = argminγ∈Γ ∑N

t=1 r2
t over a set Γ of allowable threshold values so that each regime

contains at least a given fraction (ranging from 0.05 to 0.3) of all observations.
In the case of robust two-regime SETAR model, for a fixed threshold γ the GM

estimate of the autoregressive parameters can be obtained by applying the iterative
weighted least squares:

θ̂ (n+1)
j =

(
X∗′

jW
(n)X∗

j

)−1
X∗′

jW
(n)y j (2)
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where θ̂ (n+1)
j is the GM estimate for the parameter vector in regime j = 1,2 after

the n-th iteration from an initial estimate θ̂ (0)
j , and W(n) is a weight diagonal matrix,

whose elements depend on a weighting function w(θ̂ (n)
j , σ̂ (n)

ε, j ) bounded between 0
and 1. The threshold γ can be estimate by minimizing an objective function (see 2.1)
over the set Γ of allowable threshold values.

2.1 The weighting methods

The first method is described in Chan and Cheung (1994). Weights are calculated as

w(θ̂ j, σ̂ε, j) = ψ
(

yt −my, j

Cyσ̂y, j

)
ψ

(
yt −x∗t θ̂ j

Cε σ̂ε, j

)

where ψ is the Tukey bisquare weighting function and my, j is a robust estimate of
the location parameter (sample median) in the j-th regime. σ̂y, j and σ̂ε, j are robust
estimates of the scale parameters σy and σε respectively, obtained by the median
absolute deviation multiplied by 1.483. Cy and Cε are tuning constants fixed at 6.0
and 3.9 respectively.

The objective function to minimize for the search of the threshold depends on
Tukey bisquare weights. We use the same function described in Chan and Cheung
(1994).

For the second method, we follow Franses and van Dijk (2000). The GM
weights are presented in Schweppe’s form w(θ̂ j, σ̂ε, j) = ψ(rt)/rt with standard-
ized residuals rt = (yt − x∗t θ̂ j)/(σ̂ε, jw(x∗t)) and w(x∗t) = ψ(d(x∗t)

α)/d(x∗t)
α .

d(x∗t) = |x∗t −my, j|/σ̂y, j is the Mahalanobis distance and α is a constant usually
set equal to 2 to obtain robustness of standard errors. The chosen weighting func-
tion is the polynomial ψ function. The threshold γ is estimated by minimizing the
objective function ∑N

t=1 w(θ̂ , σ̂ε)(yt − x∗t θ̂)2 over the set Γ of allowable threshold
values.

The third method is based on the same methodologies of the second but with ψ
being the Huber weighting function.

3 Application: Italian electricity price

In this section, we apply LS and three robust weighting functions, presented in pre-
vious section, to estimate parameters of SETAR models on Italian electricity price
data (PUN, prezzo unico nazionale). Moreover, a comparison of prediction accuracy
among the methods is conducted.

The time series of prices used in the present work covers the period from January
1st, 2010 to December 31th, 2012 (26,304 data points, for N = 1,096 days): year
2012 has been left for out-of-sample forecasting. The data have an hourly frequency,
therefore each day consists of 24 load periods with 00:00–01:00am defined as period
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1. Spot price is denoted as Pt j, where t specifies the day and j the load period (t =
1,2, ...,N; j = 1,2, ...,24).

In this study, following a widespread practice in literature, each hourly time series
is modeled separately.

Differences in load periods can cause significant variations in price time series.
A first inspection, based on graphs, spectra and ACFs (Figures are not reported for
lack of space but can be obtained from the authors) for different hours, shows that
the series have long-run behaviour and annual dynamics, which change according
to the load period. A common characteristic of price time series is the weekly peri-
odic component (of period 7), suggested by the spectra that show three peaks at the
frequencies 1/7, 2/7 and 3/7, and a very persistent autocorrelation function.

We assume that the dynamics of log prices can be represented by a nonstationary
level component Lt j, accounting for level changes and/or long-term behaviour, and
a residual stationary component pt j, formally, logPt j = Lt j + pt j.

To estimate Lt j we used the wavelets approach (Percival and Walden; 2000).
Wavelets have been used in many studies, including Janczura and Weron (2010)
and Trück et al. (2007). We considered the Daubechies least asymmetric wavelet
family, LA(8), and the coefficients were estimated via the maximal overlap discrete
wavelet transform (MODWT) method (for details, see Percival and Walden; 2000).
Figure 1 shows logPt j for hour 21, with the estimated nonstationary level component
superimposed.

Fig. 1 logPt j for hour 21 (9pm), with the estimated nonstationary level component superimposed.
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We applied two different approaches. First after removing the long-term com-
ponent, we estimated on the stationary time series pt j the SETAR(p,d) model with
exogenous regressors, as reported in eq. (1). Secondly, we use the estimated long-
term component as a regressor in a model where logPt j is the dependent variable.
According to the empirical ACFs, a SETAR(7,1) model has been estimated over all
the price series to highlight differences in the estimation given by different dynam-
ics characterizing each load period. Matrix Z of exogenous regressors could contain
day-of-the-week dummies, Dk, with k = 1, ...,6 and the day-ahead predicted demand
of electricity made available by GME (Gestore Mercato Elettrico). Next step of the
analysis will be to compare the forecasting performances of the robust methods with
the forecasting performance of the LS estimator.
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For comparing our robust/non robust SETAR models, we reproduced 366 one
day-ahead forecasts p̂t+1 for each model estimated on a rolling window of 2 years.
Comparisons are based on the predictions of the original spot prices that are given
by P̂t+1 = exp(L̂t+1 + p̂t+1), where L̂t+1 and p̂t+1 are predictions of the compo-
nents, which are based only on the information available in t. In particular, we set
L̂t+1 = L̂t , that is, we used the estimated value in t as a forecast for t + 1. Besides
its simplicity, the motivation to use this equation comes from the fact that the long-
term component, by definition, should be basically the same for two contiguous
days. Forecasts have been compared in terms of MSE (Mean Square Error) and
MAE (Mean Absolute Error), and of the Diebold and Mariano test, that are based
on the forecasting errors et j = Pt j − P̂t j, (t = 1,2, ...,M; j = 1,2, ...,24) for each
method. We used the one-tailed Diebold and Mariano test (DM), whose null hy-
pothesis is that the prediction accuracy of procedure (say) A is equal or lower than
that of procedure B. The test has been performed both with MSE and MAE.

Table 1 Hour 21, model SETAR(7,1) without exogenous regressors. MSE and MAE of forecasts
obtained from the four models on the four estimation periods and on the whole. In parenthesis the
models whose forecasts are statistically worse than predictions of the model in the column (1-tailed
Diebold and Mariano test at 5% significance level, MSE and MAE loss functions.)

MSE MAE

Period LS POL HUB TUK LS POL HUB TUK

Jan-Mar 200.7 214.58 206.83 195.80 10.06 9.93 9.94 9.80
Apr-Jul 159.12 148.20 148.71 153.63 9.61 9.49 9.41 9.55

Aug-Sept 688.24 696.87 686.51 675.47 14.57 13.49 13.81 13.66
(LS,HUB) (LS) (LS)

Oct-Dec 67.29 65.18 64.35 65.26 6.04 5.71 5.72 5.72
(LS) (LS) (LS)

Year 279.38 281.75 277.14 273.07 10.07 9.65 9.72 9.68
(LS) (LS) (LS)

Table 2 Hour 21. Ratios of MSE and MAE of forecasts obtained with models Exo1 and Exo2 to
MSE and MAE of forecasts obtained with model SETAR(7,1) without exogenous regressors (four
estimation periods and whole year).

Exo1 Exo2

MSE MAE MSE MAE

Period LS POL LS POL LS POL LS POL

Jan-Mar 1.049 0.975 0.975 0.968 0.930 0.910 0.910 0.954

Apr-Jun 1.002 1.051 1.029 1.007 1.038 1.071 0.997 1.031

Jul-Sep 1.041 0.992 0.947 0.956 1.069 0.981 1.062 1.048

Oct-Dec 0.914 0.885 0.960 0.977 1.024 1.012 0.973 1.015

Year 1.029 0.990 0.976 0.974 1.037 0.981 0.995 1.015

Table 1 shows MSE and MAE values on the whole year 2012 and on the four sea-
sons. In parenthesis we reported the models whose forecasts are statistically worse
than predictions of the model in the column considering the 1-tailed Diebold and
Mariano test at 5% significance level and MSE and MAE loss functions.
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Table 2 shows a forecasting assessment of SETAR models with different regressor
sets: in case “Exo1” the dependent variable p̂t j = logPt j − L̂t j is regressed on the
logarithm of the predicted demand adjusted from its level component to obtain a
stationary series. The level component has been estimated with the same approach
used for logPt j. In case “Exo2” variable logPt j is regressed on the logarithm of the
predicted demand and L̂t j. Values reported in the table are ratios of MSE (MAE)
of the SETAR with exogenous regressors and pure SETAR. As can be seen, robust
models with regressors show better forecasting performance than the pure SETAR
model, but further analysis is needed to achieve stable and more general conclu-
sions.

4 Conclusions

In this paper the the forecasting performances of robust estimators applied to elec-
tricity prices have been studied. Dummy variables have been included in the model
in order to account for the presence of seasonality in the data and day-ahead pre-
dicted demand has been considered to test its relevance in predicting day-ahead
prices. Summarizing the main results we could say that robust estimators over-
perform the classical Least Squares estimator, with a slight preference of Polyno-
mial on Huber’s weights. The use of regressors seems to increase the forecasting
power of models, but deeper analysis is needed to argue the significance of the im-
provement of predictions.
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