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Abstract We consider a nonparametric Bayesian approach to parsimonious latent
factor modeling of high-dimensional covariance matrices. Central to our approach
is the Indian Buffet Process (IBP) prior, which allows the number of factors to be
unbounded while remaining finite with probability one. The combinatorial com-
plexity of the IBP makes posterior simulation very challenging. As an alternative,
we present a fast EM algorithm for MAP learning in Bayesian factor analysis with
spike-and-slab priors, exploiting the stick-breaking representation of IBP.

Abstract Discutiamo un approccio Bayesiano non parametrico alla modellazione
parsimoniosa di fattori latenti per matrici di covarianza di grandi dimensioni.
L’Indian Buffet Process (IBP), usato come prior, permette un numero illimitato
di fattori pur conservando probabilita’ unitaria. La complessita’ combinatoriale
dell’IBP rende la simulazione della posterior onerosa. Qui proponiamo un algo-
ritmo EM veloce per addestramento MAP in analisi fattoriale Bayesiana con prior
a spike-and-slab, usando la stick-breaking dell’IBP.
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1 Bayesian Factor Analysis Revisited

We will be focusing on scenarios when n observations are collected on G related
responses and factor analysis is deployed to find regularities in the data, that can
be attributed to a set of hidden causes (factors). The data matrix of n standardized
G dimensional responses will be denoted by Y = [y1, . . . ,yn]

′. Assuming a fixed
number K of latent factors, the generic factor model assumes

Y i |ω i,B,Σ
ind∼ NG (Bω i,Σ) , 1≤ i≤ n, (1)
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where ω i is a (K×1) vector of unobserved latent factors arising from NK(0,σ2
ω IK),

Σ = diag{σ2
j }G

j=1 is a diagonal matrix of unknown positive scalars and B is the
(G×K) matrix of factor loadings. Margining out the latent data induces depen-
dence among the responses by yielding f (yi |B,Σ) = NG(0,BB′+Σ). Model (1)
is invariant under factor rotation and therefore non-identifiable. This indeterminacy
will be less of an issue if the primary goal of the analysis is prediction or estima-
tion of the covariance matrix. Finding a unique factor rotation, that is also inter-
pretable, is commonly achieved by introducing structural identifiability constraints
coupled with some form of shrinkage on the factor loadings. However, these identi-
fiability constraints can be concerning, because they render the variables no longer
exchangeable. In Section 2, we will instead consider a nonparametric prior which
guarantees the exchangeability, while only inducing a soft identifiability constraint
against permutational invariance.

1.1 Spike and Slab Priors

The Bayesian approach to sparse factor modeling uses priors on the elements in B =

{β jk}G,K
j,k=1 that induce either zeroes or values close to zero with high-probability.

We take the latter approach, exploiting the continuous relaxation of a point-mass
mixture prior (as in Rockova and George (2014)). Denoting B = [β 1, . . . ,β G]

′, each
β j is assigned a conjugate Gaussian mixture prior

π(β j)∼ NK(0,σ2
j D j)

where D j = diag{(1− γ jk)v0 + γ jkv1}K
k=1 and v0 << v1 are set to be small and large

to distinguish the ignorable β jk values from those that describe a functional rela-
tionship between the jth response and the kth factor. Here γ j = (γ j1, . . . ,γ jK)

′ de-
notes a vector of binary allocation indicators that characterize which features are
possessed by jth response. For σ2

j we assume independent Inverse Gamma priors
IG(η/2,ηλ/2).

1.2 Finite Latent Allocation Model

To define the joint prior distribution on the finite allocation matrix Γ = (γ1, . . . ,γG)
′,

we use a partially exchangeable beta-bernoulli prior with intermediate occurrence
probabilities θ = (θ1, . . . ,θK)

′, one for each column in B. Written hierarchically, the
prior is

π(γ jk|θk)
ind∼ Bernoulli(θk), (2)

π(θk)
ind∼ B

(
α

K
,1
)
.
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It may be inappropriate to constrain the number of factors a priori. To this end, Gri-
fiths and Ghahramani (2007) proposed a stochastic process on feature allocations.
Named the Indian Buffet Process (IBP), employing this process as a prior enables
inference about the effective factor cardinality.

2 Going Infinite with Indian Buffet Process

The metaphor of the Indian Buffet Process describes customers tasting dishes in an
infinite buffet. Let γ jk be a binary indicator characterizing whether the jth customer
tastes dish k. Event γ jk = 1 occurs with probability mk/i, where mk is the number of
customers that have previously taken a serving from dish k. Having sampled from
dishes that were taken by the preceding customers, customer j then proceeds to take
a number of new dishes by drawing from a Poisson(α/ j) distribution. Modulo a
reordering of the dishes (features), the Indian buffet process generates an exchange-
able distribution over infinite binary matrices. The effective dimension (the number
of sampled dishes) however remains finite with probability one.

The Indian Buffet Process (IBP) is formally defined as a limiting distribution
over equivalence classes of finite allocation matrices, obtained by integrating out θk
in (2) and by taking the limit K→ ∞. Proceeding marginally over θk leads directly
to a Gibbs sampler. Instead, we will use the stick-breaking representation of Teh et
al. (2008) and proceed conditionally on a particular ordering of θk’s.

2.1 Stick Breaking Construction

Stick-breaking refers to the process of recursively breaking off random fractions of
the unit interval. Let ν1,ν2, . . . be an infinite sequence of random variables, where
each ν j represents the jth breaking fraction. After k steps of recursive breaking, the
length of the stick that we have left is ∏ j<k ν j. Unlike the stick-breaking construc-
tion for the Dirichlet process prior, here we recurse on the length of the remaining
piece rather than the discarded piece. Teh et al. (2008) showed an interesting con-
nection between this reversed stick breaking representation and the Indian Buffet
Process.

Let θ(1) > θ(2) > ... > θ(K) be a decreasing ordering of θ = (θ1, . . . ,θK)
′, where

each θk ∼B(α,1). Teh et al. (2008) showed that in the limit as K→ ∞, the θ(k)’s
obey the following stick-breaking law,

θ(k) =
k

∏
l=1

νl , where νl
iid∼B(α,1). (3)

The implicit ordering induces a soft identifiability constraint against permutational
invariance. Assuming that θ(k) = 0 for k > K?, (3) provides a truncated approxi-
mation to the IBP, which is at the heart of our EM approach. We will also assume
β jk = 0 for k > K?.
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3 EM for Factor Analysis with the IBP

The goal of our unsupervised learning algorithm is to find the allocation matrix
most likely (a posteriori) to have generated the data. We proceed indirectly in terms
of the truncated loading matrix B (of dimension (G×K?)) and treat the allocation
matrix Γ (of dimension (G×K?)) as additional latent data. If the hidden variables
were known, the loading matrix could be easily estimated. Similarly, both Γ and
Ω cannot be inferred unless the loading matrix is known. This chicken-and-egg
problem can be can be solved by iterating between two steps: (E-step) computing
the expectation of the latent data given the current loadings and (M-step) finding the
most likely loadings given the expected missing data. These two steps form a basis
of our Expectation-Maximization (EM) algorithm.

The EM algorithm locates posterior modes of π(B,Σ ,ν |Y ) iteratively by maxi-
mizing the expected augmented log posterior:

Q(B,ν ,Σ) = EΓ ,Ω |·

logπ

 B,Σ ,ν︸ ︷︷ ︸
unknown parameters

,

missing data︷︸︸︷
Γ ,Ω | Y︸︷︷︸

observed data


 , (4)

where EΓ ,Ω |·(·) denotes the conditional expectation given the observed data and
current parameter estimates at the mth iteration, and ν = (ν1, . . . ,νK?)′ is the vec-
tor of breaking fractions. The allocation matrix Γ is then obtained by probabilistic
thresholding of the loading matrix (Section 4). The objective function can as well be
parametrized in terms of θ ’s using the stick-breaking relationship νk = θ(k)/θ(k−1).
We note in passing that such parametrization is beneficial for a feasible M-step.

3.1 The E-step

The E-step requires computing the expected log complete posterior (4). This simpli-
fies to computing the conditional mean and covariance of the latent data in Ω and the
conditional allocation probabilities in Γ according to the closed form expressions:

〈ω i〉= M(m)B(m)′
Σ
(m)−1

(
yi−A(m)xi

)
with M(m) =

(
B(m)′

Σ
(m)−1B(m)+ IK?

)−1
,

〈γ jk〉=
N(β

(m)
jk ;0,σ (m)2

j v1)θ
(m)
k

N(β
(m)
jk ;0,σ (m)2

j v1)θ
(m)
k +N(β

(m)
jk ;0,σ (m)2

j v0)(1−θ
(m)
k )

. (5)

3.2 The M-step

Once the latent data have been updated, the M-step consists of maximizing (4)
with respect to the unknown parameters. Denote by y j the jth column in Y ,
〈Ω〉 = [〈ω1〉, . . . ,〈ωn〉]′ and D?

j = M(m)+ diag{〈γ jk〉/v1 +(1−〈γ jk〉)/v0}K?

k=1. The
updates at the mth iteration are
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β
(m)
j =

(
〈Ω〉′〈Ω〉+D?

j
)−1 〈Ω〉′y j,

σ
(m)2
j =

||y j−〈Ω〉β (m)
j ||2 + ||D

?1/2
j β

(m)
j ||2 +νλ

n+K?+ν
.

Treating the ν’s as parameters to be estimated, the ν(m) update would require max-
imizing

Q(ν)=
G

∑
i=1

K?

∑
k=1

{
〈γik〉

k

∑
j=1

logν j +(1−〈γik〉) log

(
1−

k

∏
j=1

ν j

)}
+(α−1)

K?

∑
k=1

log(νk),

(6)
which is a rather complex nonlinear function in ν . Instead, we perform the optimiza-
tion in terms of θ ’s. Plugging νk = θ(k)/θ(k−1) into (6), the new objective becomes

Q?(θ) =
G

∑
i=1

K?

∑
k=1

[〈γik〉 logθk +(1−〈γik〉) log(1−θk)]+(α−1) logθK , (7)

whose maximum θ
(m) can be found by solving a linear program subject to a series

of constraints
θk−θk−1 ≤ 0, k = 2, . . . ,K?,

0≤ θk ≤ 1, k = 1, . . . ,K?.

Had we assumed the finite beta-bernoulli prior from Section 1.2, the updates of

the occurrence probabilities would simply become θ
(m)
k =

∑
G
j=1〈γ jk〉+a−1
a+b+G−2 . Although

the ordering constraint provides more stability in estimation, it does not guarantee
rotational invariance of the factor model. Realizations of IBP which approximately
correspond to identifiable loading matrices can be obtained by considering small α

or through intermediate sparsification step described in the next section

4 EM Factor Structure Detection using Sparsification

We illustrate how well our EM algorithm fares in recovering the effective factor
cardinality and the underlying sparse pattern of covariance with a simple example.
We consider a simulated experiment with n = 100 observations from (1) with G =
200 responses and K = 5 generative factors using a structured loading matrix (Figure
1 left). Responses were generated assuming σ2

j = 1 and nonzero β jk = 4 and then
centered. We consider the order of the truncated stick breaking approximation K? =
20,α = 1,v0 = 0.005 and v1 = 1000.

In order to obtain interpretable orientations of the loading matrix, we perform an
additional sparsification step at every iteration by thresholding out loadings β jk, for
which 〈γ jk〉< 0.5. Such a step stabilizes estimation of the truly relevant associations,
while effectively removing intermediate noise coefficients.

Initializing the algorithm at β
(0)
jk = 1 and performing the sparsification at every

iteration, we obtain the estimated pattern of zeroes in the loading matrix depicted in
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Factor loadings

True Pattern of Factor Loadings

Factor loadings

Estimated Pattern of Factor Loadings

Fig. 1 True and estimated pattern of zeroes in the loading matrix presented in the left-ordered-
form. Nonzero values marked in blue.

Figure 1 (right). The estimated allocation of zeroes strongly suggests K̂ = 5 as the
effective factor cardinality. The distribution pattern of the nonzero entries indicates
a grouping structure, which approximately recovers the K = 5 clusters that actually
generated the data.

5 Discussion

We have presented a fast EM approach to Bayesian factor analysis using spike-and-
slab priors coupled with an Indian Buffet Process prior on the allocation matrix. A
sparsification variant of our EM algorithm enhances the efficient recovery of the ac-
tual factor cardinality and exposes the hidden grouping pattern among the responses.
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