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Abstract Thiswork proposes an unsupervised classification algaritr curves. It
extends the density based multivariate cluster approatietiunctional framework.
In particular, the modes of the small-ball probability aeed as starting points to
build the clusters. A simulation study is proposed.

Abstract Questo lavoro propone un algoritmo di classificazione peveUESSO
generalizza al caso funzionale il metodo di classificazioagato sulla densita del
caso multivariato. In particolare, per costruire i clustengono usati come punti di
partenza le mode della cosiddetta probabilita delle ‘@iedolle”. L'efficacia del
metodo & valutato tramite simulazioni.

Key words: density based clustering; small-ball probability; KarearLoeve de-
composition.

I ntroduction

Cluster analysis, or unsupervised classification, is afsetobniques to segment a
collection of data into subsets. When data are curvesjmtional data(see e.g. [3]
and [7] for monographs on this topic), the classical muitai@ approaches can
not be directly used, due to problems related to the dimea$ity of the space
to which the data belong. Hence, a variety of specific clirggenethods have been
introduced in such framework: see for instance [5] and ezfees therein for a recent
survey on this topic.

Among the multivariate clustering approaches, an impoctkass is those of the
so-called “density oriented” methods. The main idea datek ho Hartigan (see
[4]), where clusters are identified as the connected compermé the level set (at a
given threshold) of the (multivariate) distributiorf of the data; i.e. the connected
components of f > c}. Differently from the multivariate case, working with func
tional data, a definition of the density distribution (in ttiassical sense) is not avail-
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able. Thus, to implement an equivalent of the Hartigan’seagh in the functional
context, one can refer to surrogate densities, as the oneedefi [2] and based on
the Karhunen-Loeve truncated expansion (namely, thealeecFunctional Princi-
pal Component Analysis). Following this principle, in [6freodel based clustering
approach has been introduced: in particular, assuminghkatnderlying distribu-
tion of the functional principal scores is a gaussian mixttine authors use a maxi-
mum likelihood and expectation maximization approach emtdy the distribution
parameters and hence the mixture. Clearly, the distribatiassumption in [6] can
appear restrictive: in this work we propose a “distributicee” approach, based on
the non-parametric estimation of the joint density of a fixemnber of principal
component scores. The main idea rests in finding the localmeaaf such density
(i.e., the modes) and in defining each cluster as the set efraditsons included in
the largest level set that contains only one maximum.

The paper is structured as follows. In Section 1, we intredine theoretical
framework and the clustering method, while, in Section 2, pinoposed method
abilities are illustrated through an application to sintedbdata.

1 Theclustering approach

Let (Q,.#,P) be a probability space arﬁf[%yl] be the Hilbert space of square inte-

grable real functions of, 1] endowed with the inner produg, h) = folg (t)h(t)dt
and the induced noriifg||” = (g,g). On Q, define theﬁf[gil} valued Random Curve
(RC) X. Denote byX* = {E[X (t)],t € [0,1]} andZ[] = E[(X — XH,.) (X — XH)]
its mean function and covariance operator respectivelyisi@er a sample of
curvesX;, being i.i.dA. as the RKX. Thus the empirical versions &f* and X are:
Xn(t) = £3iXi(t), Za[] = £3i(X —Xn, ) (% —Xn).

Suppose thaf2 is partitioned inK (unknown) groupx (k= 1,...,K) each
one with a RC unimodal specific distributid(X € - | Q). Our aim is to deter-
mine the groups and to classify each obseXgoy means of a local version of the
Hartigan’s clustering idea generalized in the functionatistical context. Since it
is not possible to define a probability density (in the serfdbe Radon-Nikodym
derivative with respect to some underlying measure) focfional data, we follow
a similar thinking as in [2], where an approximation of theadirball probability
p(X0,€) = P(||[X —xo|| < €) (for small values ok) is provided.

In this view, a crucial tool is the Karhunen-Loéve expandisee e.g. [1]): de-
noting by{/\j N3 }T’:l the decreasing to zero sequence of non—negative eigesvalue
and their associated orthonormal eigenfunctions of thegance operatok, the
RC X may be represented by

X(t):X“(t)Jriejfj(t), 0<t <], (1)
=1
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wheref; = (X — X, &;) are the so-called principal components (PCsX shitisfy-
ing

E[GJ]ZO, Var(ej):)\j, E[GJ‘GJ—/} =0, 17&]/
Proposition 1, whose proof is based on similar argumentseofiba 13.6 in [3],

provides an asymptotic representation of the small-balbability in terms of the
density of the first PCs.

Proposition 1. Let r be a finite positive integer. Define the r-dimensionaldam
vectorW = (W ..., W,)', with W = (X — xo,EJ-)Z, and assume that

(i) it has density f continuous and strictly positive at = (wy, ..., w)',

(ii) sup-1 {EWj]/Aj} =M < o, with M a positive constant.

Then there exists arylarge enough such that for any¥ ro whenevek tends to
zero, it holds: plo, &) ~ fr (W) e i/2/I (141/2).

Thanks to the previous result, we can define the followingipesvised classifica-
tion algorithm:

1. Obtain an estimate of the covariance operator and of eigereits;

2. Fix r, computef, , (an estimation of the joint distribution density), and look
for its local maximany (k= 1,...,K);

3. Finding Prototypesfor eachk in {1,.. .,}2}, the k-th “prototypes” group is
formed by thoseX; whose estimated PCs belong to the largest level s@.(,p1
that contains only the maximumy.

4. Connect the unclassifieq with the K prototypes groups by means of a k-NN.

Attention must be payed choosingit should be small enough to avoid the well-
known “curse of dimensionality” in estimatin§ but it should be large enough
to guarantee a good Karhunen-Loeve approximation. Fofoimeer task, a kernel
density approach require a tuning procedure for the barttiwgidce the estimated
number of clusters depends on the chosen bandwidth. Ndtenkar the assump-
tion that PCs are independent, the approximatiop(g, €) depends on the product
of the marginal densities of PCs (see e.g. [2]) and, evenisictse, the bandwidth
choice still needs attention.

2 A simulation example

Simulation setting -In order to generate the sample mixture process, we use the
functional basis expansion:

L
x®(t) = Z)\//\_ﬂi(j()@(t), te[0,1],i=1,....N andk=1,...,K,
|=

whereK = 3 is the number of generated groups for each of whieh100 curves are
simulated. The orthonormal basis functidigg(t)} play the role of eigenfunctions
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with the corresponding eigenvalugs }, | = 1,...,L. Here, we set = 150,A; =
0.7"" and we choose the Fourier basis

_ [V/2sin2mmt— ), | =2m—1;
ot = { V2cog2mt— m), | = 2m.

Foreactk e {1,2,3} and for afixed € {1,...,N}, in order to have uncorrelated but

dependentrandom coefficiemé'l‘))f-zl, they are generated as a multivariate shifted
t-Student with 10 degrees of freedom, with location paranset

® (gazgv"'a%77%>
u™ = *IJ()
u® 4 4@

1,
2,
3

Y

~x ~
I

and identity covariance matrix.

Numerical Result \We estimate the empirical mean, the covariance operatdtand
eigenelements. Figure 1 shows 30 curves from the saflé® and the empir-
ical mean curves of the three distributions of the used mext8ince the first two
PCs explain the 93,39% of the variability, we implement tigoathm above with

r = 2. Figure 2 shows the contour plot &f, the estimated mode®, and the “pro-
totypes regions” (dashed and bolded contour lines) agsakia these modes. After
the k-NN procedure, we obtain three groups containing 192ar81 89 processes
respectively, with a missclassification error equal to 863Figure 3 depicts such
obtained clusters of curves on the sample.

Fig. 1 On the left, 30 curves from the samr{lﬁi}?ﬁ’. On the right, the empirical mean curves of
the three distributions of the used mixture.
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Fig. 3 Computed clusters.
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