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Abstract In this paper a use of Chain Graph models is applied to a multivariate time
series of EU index returns, in order to construct graphs with minimum BIC among
a particular class of graphs called decomposable, which have the desirable property
of a closed form estimation .
Then based on the previous identified relationships among present and past values
of the multivariate time series, thanks to the chain graph modelling, a VAR(1)−
MArch(1) model is constructed by restricting to zero the parameters which are not
indicated by the graphs. In this way a great reduction of parameters is put in place,
using the opportune multidimensional modelling only if it is necessary.

In questo articolo i modelli grafici a catena sono usati al fine di costruire grafi di
minimo BIC scelti tra i grafi decomponibili per i quali esiste una forma esplicita per
la stima. Essi sono applicati ai ritorni multivariati degli indici EU. Sulla base delle
relazioni identificate in precedenza tra il passato e il presente delle serie grazie i
modelli grafici ai catena, si construisce un modello VAR(1)−MArch(1) imponendo
che i parametri non indicati dai grafi siano nulli. In tal modo si ottiene una notevole
riduzione dei parametri, usando solo quelli necessari.
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1 Introduction

The multiple financial data, as the stock Index returns, are treated in literature
with heteroskedastic models (MARCH) , [1], and vector autoregressive models
(VAR) which rests on the predictability of the average return on stocks, [2]. The

Andrea Pierini
University of Roma Tre, Department of Economics
Via Silvio D’Amico, 00145 Roma, e-mail: andrea.pierini@uniroma3.it

1



2 Andrea Pierini

VAR−MARCH type models suffer of computational burden as the number of pa-
rameters to be estimated are large with respect to univariate models. This paper
suggests the use of Chain Graphs to identify only the significant parameters to be
estimated for the VAR−MARCH models whenever a subset of the variables are
considered connected. The Chain Graphs are able to exploit the time ordering of
the variables, that is some variables are prior in time to others. So the variables are
divided into blocks and the modelling respects this ordering between this blocks
without assuming any ordering within the blocks (time contemporaneity). Firstly a
chain graph is built based on the returns and its immediate past.In case of connected
variables, Restricted VAR(1) models are estimated taking into account only the con-
nections identified before. As the residuals exhibit heteroskedasticity, MARCH(1)
models are then applied to them in order to take this particular aspect into due con-
sideration. A second chain graph is built based on the residuals and its immediate
past.In case of connected residuals, Restricted MARCH(1) models are estimated us-
ing only the connections previously identified. For the subset of variables which are
not connected at all, univariate AR(1)−Arch(1) are estimated. In this way a great
reduction of calculation is obtained and a more efficient estimation is reached with
respect to multidimensional full models.The orders p,P of VAR(p),Arch(P) can
be augmented leaving the approach unchanged. Moreover the application of mul-
tidimensional models for the residuals in the case of detected connection, can be
prohibitive due to the dimension of the problem if it is done without simplification.
The time series considered regard the European Stock Indexes monthly figures from
1 January 1995 to 31 December 2012 taken by the Eurostat database.

2 Model Summary

A multivariate time series of the log return for the stock index i at time t is ri,t
i = 1, ...,k and t = 1, ...,T , that’s to say ri,t = log(pi,t/pi,t−1) , pi,t is the index value
at time t. We can then define the time series of the past rlag1

i,t = ri,t−1, i = 1, ...,k
and t = 1, ...,T where ri,0 = NA . A graph is defined as a couple G = (V,E) where
V is a set of vertices or nodes and E is a set of edges, [3]. Two vertices α and
β of G are said adjacent, α ∼ β , if there is an edge between them. A cycle is
a sequence of nodes v1,v2..,vn−1,v1 of length n where vi ∼ vi+1. If a cycle has
adjacent elements vi ∼ v j and j 6∈ {i− 1, i+ 1} then it is said to have a chord. If
it has no cords it is said chordless. A graph with no cordless cycles of length ≥
4 is called triangulated. A generalization of DAGs and undirected graphs are the
chain graphs. Chain Graphs are graphs that have undirected edges or directed edges
associated with their pair of nodes, subject to the constraint that no cycle containing
directed edge(s) is permissible [5]. It can be seen that such graphs have a block
representation which separates vertices into blocks such that inter-block edges are
arrows, intra-block edges are undirected and the blocks are completely ordered. Let
A,B,C be subset of V and f a joint density function of (Xv)v∈V then A⊥B|C if
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f (xA,xB|xC) = f (xA|xC) f (xB|xC) for each possible value xA of XA,xB of XB,xC of
XC. In the hypothesis of multivariate gaussian variables , f = N(µ,Σ),K = Σ−1,
if V represents the set of this variables, it is possible to define a dependence graph
GK = (V,EK) with ku,v = 0 whenever there is no edge between a pair of vertices
u,v ∈ V .So if two vertices u,v ∈ V are not adjacent, that’s to say there’s no edge,
it holds that u⊥v|V\{u,v}, u and v are conditionally independent given the others .
Firstly V contains the set of variables Y given by ri, i = 1, ...,k followed by rlag1

i , i =
1, ...,k with ri = (r1,1, ...,r1,T ), rlag1

i = (rlag1
1,1 , ...,rlag1

1,T ), f = N(µ,Σ). The method
used to select a chain graph, that can deal with high dimension, is to search among
the decomposable graph. Decomposable models are graphs that are triangulated. For
this type of graphs a closed-form for the maximum likelihood estimates are available
allowing computational simplification. The starting graph is the minimal AIC or
BIC forest. A forest is an acyclic undirected graph, that is, an undirected graph with
no cycle. Then search the edge giving the maximal AIC or BIC reduction is added
until further reduction are not possible. Here the criterion is −2logL+ kdim(G),
where dim(G) is the number of edges of G, L is the likelihood, k = 2 (AIC), k =
log(n) (BIC). Then it is possible to split the set of variables Ωt−1 = {ri, i = 1, ...,k}
in two parts. A subset of m < k variables C = {ri, i = i1, ..., im} which are connected
to some element of Ωt−1 = {rlag1

i , i = 1, ...,k}, with the exception of their own past.
A subset of k−m variables C = {r j, j = j1, ..., jk−m} which are not connected to
any element of Ωt−1 = {rlag1

i , i = 1, ...,k}, with the exception of their own past. For
the variables in C we impose the link with their own past, to treat them all together
with the variables in C in a multiple restricted regression and compare with the full
counterpart. That is called an adjustment.
As the concurrent correlations cannot be used in the forecast [4], only the past to
present information is adjusted and used. Moreover as for each variable its equation
in the model RVAR is a multiple normal regression the following result, which links
regression and graph theory, is used:the i-th regression coefficient is 0 if only if
the dependent variable is conditional independent from the i-th regression variable
given the remaining variables,[5]. So The following model is estimated: r1,t

...
rm,t

=

φ0,1
...

φ0,1

+

 φ1,1 · · · φ1,m
...

. . .
...

φm,1 · · · φm,m

 ·
 r1,t−1

...
rm,t−1

+

 a1,t
...

am,t

 (1)

where a j,t are gaussian errors, φi, j are parameters. The elements φi, j are restricted
to 0 whenever no connection was founded between pair of variables and the past
with the chain graph approach. This estimate has smaller asymptotic variance than
the unrestricted estimator. As ARCH tests on the residuals indicate that data exhibit
volatility cluster, that is, variance may be high for certain time periods and low for
other periods, and variance jump are rare, for âi, a MAarch(1) model is needed:
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1,t
...

a2
m,t

=

ψ0,1
...

ψ0,1

+

 ψ1,1 · · · ψ1,m
...

. . .
...

ψm,1 · · · ψm,m

 ·
 a2

1,t−1
...

a2
m,t−1

+

 b1,t
...

bm,t

 (2)

where ψi, j are parameters, b j,t is consider like a error. The elements ψi, j are re-
stricted to 0 whenever no connection was founded between pair of squared residu-
als and their past using a second chain graph approach as before. This estimate has
smaller asymptotic variance than the unrestricted estimator.

3 Results

The time series considered regard the European Stock Indexes monthly figures from
1 January 1995 to 31 December 2012 taken by the Eurostat database. The following
figure represents the Chain Graph for the 31 Indexes and their past, fig. 1 RVAR(1)
part, and the successive Chain Graph for their squared RVAR residuals and their
past, fig. 2 MArch(1) part, using a forward search among the decomposable graph
minimizing the BIC criteria. Please note that for the figure 1,2 the left side is the
present slide of the set of variables considered, whereas the right side is the past
slide of the set of variables considered (lag1 is attached at the end of their names). So
the edges between should be considered as directed from present to past. Moreover
All the models are stable. It can be seen from the figures the parameters saving: 960
parameters are needed with respect to a full VAR, whereas 39 parameters are needed
with respect to a Restricted VAR. Moreover 954 parameters are needed with respect
to a full MArch, whereas 44 parameters are needed with respect to a Restricted
MArch. The AIC for the full VAR is −21237.63 where for the Restricted VAR is
−21428.61. So there is a slightly improvement by using the restricted model. The
AIC for the full MArch is−41513.95 where for the Restricted March is−41231.29.
So there is a slightly worsening by using the restricted model. It can be seen that the
Full VAR back forecasts are near the Restricted VAR back forecasts and with some
exceptions near to the actual values. In terms of mean squared error, [4],

MSE =
∑i∈{1,...,m}∑t∈{1,...,T}(δ̂i,t −δi,t)

2

m ·T
(3)

it results MSE f ull,r = 0.007975 , MSErest,r = 0.009584 with δi,t = ri,t . So there is
a slightly worsening by using the restricted model. However the parameters saving
and the AIC improvement suggest to restrict the models. The equation (3) with with
δi,t = σi,t gives MSE f ull,σ = 0.01045866 , MSErest,σ = 0.009379994. The rolling
σt are considered as the actual values. Now there is a slightly worsening by using
the full model. The multivariate portmanteau test applied to standardized squared
residuals â2

t /σ̂2
t to check for adequacy of the Full VAR and the Restrected VAR

with respect to the ARCH effect up to lag 3 gives statistics 2957.6964 and 3408.745
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with 2883 df and p-values of 0.1625 and 0. In tab. 1 it can be seen from the p-values
< 0.05 that the majority of the RVAR parameters are significant.

4 Concluding remarks

The great reduction in parameters seems not to affect the predictive power of the
model VAR and MArch models as the MSEs are similar. Even if conditional normal
distributions are chosen for at , their unconditional distributions result non normal in
both cases thanks to the MArch. Moreover, at the one hand the full model manage
to take care of the ARCH effects whereas the restricted doesn’t. At the other hand
the AIC is better for the restricted model. So it seems that for large problem and
forecast use the restricted model has to be chosen.

Fig. 1 Chain Graph for RVAR(1)

Fig. 2 Chain Graph for MARCH(1)
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Variablet Variablest−1 Estimate Std.Error tvalue Pr(> |t|)
BEBEL20t BEBEL20t−1 0.3160 0.0649 4.8636 0

BGSOFIXBt BGSOFIXt−1 0.0566 0.0684 0.8285 0.4082
CZPX50t CZPX50t−1 0.3632 0.0632 5.7382 0
DKKFXt DKKFXt−1 0.08409 0.1012 0.8303 0.4072
DKKFXt ATATXt−1 0.0362 0.0896 0.4043 0.6863
DKKFXt ISOMXICEGIt−1 0.01848 0.0376 0.4910 0.6238
DKKFXt USDJINDt−1 0.2767 0.1330 2.0807 0.0386

DEDAX30t DEDAX30t−1 0.3163 0.0649 4.8676 0
EETALSEt EETALSEt−1 0.1328 0.0678 1.9583 0.0514

ELASEGENLt ELASEGENLt−1 0.3787 0.0633 5.9744 0
FRCAC40t FRCAC40t−1 0.2897 0.0655 4.4177 0

IEISEQt IEISEQt−1 0.3422 0.0643 5.3165 0
ITFTSEMIBt ITFTSEMIBt−1 0.1801 0.0668 2.6968 0.007

CYCSEGENLt CYCSEGENLt−1 0.2800 0.0657 4.2582 0
LVRSEIt LVRSEIt−1 0.0297 0.0684 0.4341 0.6646

LTVILSEIt DEDAX30t−1 0.0547 0.1843 0.2967 0.7669
LTVILSEIt LVRSEIt−1 0.1071 0.1278 0.8380 0.4029
LTVILSEIt LTVILSEIt−1 0.0811 0.0692 1.1714 0.2427
LULUXXt LULUXXt−1 0.0349 0.0684 0.5100 0.6105
HUBUXt HUBUXt−1 0.3516 0.0636 5.5233 0

MTMSEALLt MTMSEALLt−1 0.1385 0.0678 2.0417 0.0424
NLAEXt NLAEXt−1 0.2933 0.0655 4.4785 0
ATATXt ATATXt−1 0.4182 0.0622 6.7223 0
PLWIGt PLWIGt−1 0.3036 0.0647 4.6907 0

PTPSI20t PTPSI20t−1 0.3671 0.0637 5.7615 0
ROBETCt ROBETCt−1 0.0176 0.0684 0.2577 0.7968
SKSAXt LVRSEIt−1 0.0769 0.0440 1.7458 0
SKSAXt SKSAXt−1 0.3386 0.064 5.2617 0
SKSAXt USDJINDt−1 -0.0697 0.0925 -0.7533 0

SEOMX30t SEOMX30t−1 0.3464 0.064 5.3903 0
FIHEXt FIHEXt−1 0.3822 0.0632 6.0420 0

TRNATL100t TRNATL100t−1 0.3471 0.0642 5.4013 0
CHSMIt CHSMIt−1 0.2877 0.0656 4.3856 0

ISICEX15t ISICEX15t−1 0.1532 0.0677 2.2636 0.0246
ISOMXICEGIt ISOMXICEGIt−1 0.4425 0.0614 7.2024 0

NOOSEAXt NOOSEAXt−1 0.0335 0.0684 0.4896 0.6249
JPNIKKEI225t JPNIKKEI225t−1 0.2553 0.066 3.8622 0.0001

USDJINDt USDJINDt−1 0.2276 0.066 3.4083 0.0007

Tab. 1: φ̂i, j RVAR estimation
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