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trattamento di dati mancanti non casualmente
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Abstract A structural equation model is proposed to deal with dichotomously-
scored items in the presence of missing not at random responses. Two types of
latent variables are introduced: one refers to the abilities measured by the question-
naire and the other describes the propensity to answer. A semi-parametric approach
is adopted, where both types of latent variable are discretely distributed. In such a
way, the proposed structural equation model reduces to a multidimensional latent
class item response theory model. Individual covariates may also be included in
order to explain the probabilities of belonging to each latent class. For this aim, a
multinomial logistic parametrization is introduced. A simulation study is then per-
formed to evaluate the finite-sample properties of the parameter estimates.
Abstract Per spiegare la presenza di risposte mancanti non casualmente a do-
mande di tipo binario si propone un modello ad equazioni strutturali, caratteriz-
zato da due tipi di variabili latenti: un primo tipo corrisponde alle abilità misurate
dalle domande del questionario, mentre l’altro tipo viene introdotto per descrivere
la propensione dell’individuo a non rispondere. Si assume che entrambi i tipi di
variabile latente abbiano una distribuzione discreta, cosı̀ da adottare un approc-
cio semi-parametrico. In tal modo, il modello proposto si riduce ad un modello per
item di risposta di tipo multidimensionale e a classi latenti. Inoltre, si prevede la
possibilità di far dipendere le probabilità di appartenenza alle classi latenti da co-
variate individuali, tramite una parametrizzazione logistica multinomiale. Il metodo
proposto viene valutato attraverso uno studio di simulazione.

Key words: Finite mixture models, Item response theory, Latent class models,
Semiparametric inference

Silvia Bacci
Department of Economics, Via A. Pascoli 20, 06123 Perugia (IT), e-mail: silvia.bacci@
stat.unipg.it

Francesco Bartolucci
Department of Economics, Via A. Pascoli 20, 06123 Perugia (IT) e-mail: bart@stat.unipg.
it

1

silvia.bacci@stat.unipg.it
silvia.bacci@stat.unipg.it
bart@stat.unipg.it
bart@stat.unipg.it


2 Silvia Bacci and Francesco Bartolucci

1 Introduction

A relevant problem in applications of Item Response Theory (IRT) models is related
to non-ignorable missing responses (or missing not at random, MNAR; Little and
Rubin, 2002) to certain items. A typical case of MNAR responses is observed with
educational tests where, in order to avoid guessing, a wrong item response is penal-
ized to a greater extent in comparison with a missing response. In such a context,
it is natural to suppose that the choice of not answering to a given item is related
to the ability (or abilities) measured by the test. To avoid wrong inferential conclu-
sions and loss of relevant information for the assessment of the latent trait level, the
missingness mechanism must be modeled in a suitable way.

In the statistical literature, different approaches exist to model a non-ignorable
missing mechanism. Here we rely on the interesting contribution by Holman and
Glas (1995), who, elaborating an original idea of Lord (1983), suggested to treat the
problem of MNAR responses by assuming that the observed item responses depend
on the latent ability (or abilities) intended to be measured by the test and another
latent variable which represents the propensity to answer by the individuals. The
result consists in a multidimensional IRT model (Reckase, 2010), which assumes
the normality of the latent traits. Along the same guidelines, Bertoli-Barsotti and
Punzo (2013) proposed a non-parametric approach based on the Rasch’s paradigm
(Rasch, 1960).

In this contribution, we introduce a Structural Equation Model (SEM, Duncan,
1975) characterized by: (i) at least two latent traits, similarly to what above dis-
cussed, (ii) discreteness of these latent traits, so that homogenous unobservable
classes of individuals are detected, and (iii) presence of individual covariates which
explain the probability of belonging to a given latent class. In such a way, a semi-
parametric alternative to the proposals of Holman and Glas (1995) and Bertoli-
Barsotti and Punzo (2013) is formulated in the setting of finite mixture SEMs (Dolan
and van der Maas, 1998), which reduces to a multidimensional latent class IRT
model (Bartolucci, 2007; Bartolucci et al., 2014).

The proposed model may be estimated through the discrete marginal maximum
likelihood method, based on an Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977). In order to assess the finite-sample properties of the parameter
estimates obtained from the estimation process, we performed a simulation study
under different scenarios corresponding to different structures of missing data.

In the following we first describe the model assumptions (Section 2) and then the
results of the simulation study (Section 3).

2 The model

For a random subject drawn from the population of interest, let Yj denote the re-
sponse provided by the subject to binary item j, with j = 1, . . . ,m. In order to model
the response process, we have to consider that the subject may answer correctly
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(Yj = 1) or incorrectly (Yj = 0) or he/she may skip the question, so that Yj can be
observed or not. Therefore, for j = 1, . . . ,m, we also introduce the binary indicator
R j equal to 1 if the individual provides a response to item j and to 0 otherwise (i.e.,
Yj is missing). Moreover, we consider a set of c exogenous individual covariates
denoted by X1, . . . ,Xc.

In order to explain the association between the exogenous variables X1, . . . ,Xc
and the endogenous variables Y1, . . . ,Ym, we introduce s+ 1 latent variables. The
first s latent variables, denoted by U1, . . . ,Us, represent the latent traits that are mea-
sured by the test items. The remaining latent variable, denoted by V , is interpreted as
the propensity to answer. The latent variables U1, . . . ,Us and V are assumed condi-
tionally independent given the covariates X1, . . . ,Xc. For an illustration of the model
see Figure 1.

Considering Yj and R j as deriving from a discretization of continuous variables
denoted by Y ∗j and R∗j , we formulate the following equations entering the measure-
ment component of the proposed SEM:

Yj = I{Y ∗j ≥ 0}, (1)
R j = I{R∗j ≥ 0}, (2)

Y ∗j = α j

s

∑
d=1

zd jUd−β j + ε1 j, (3)

R∗j = γ1 j

s

∑
d=1

zd jUd + γ2 jV −δ j + ε2 j, (4)

for j = 1, . . . ,m, where I{·} is the indicator function equal to 1 if its argument is true
and to 0 otherwise and ε1 j and ε2 j are independent error terms. Moreover, zd j is a
dummy assuming value 1 if item j measures latent trait of type d and 0 otherwise.

Fig. 1 Proposed SEM for
only one covariate (c = 1),
four items (m = 4), and two
dimensions (s = 2), with the
first two items measuring
the first dimension and the
other two items measuring the
second dimension.
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Parameters β j and δ j are interpreted as difficulty parameters because higher values
of them correspond to smaller values of Y ∗j and R∗j . The slope α j measures the effect
of the latent variable Ud j , where d j is the dimension measured by item j, on Y ∗j and,
similarly, γ1 j and γ2 j measure the effect on R∗j of Ud j and V , respectively.

According to the proposed model, the observed response to a given item j de-
pends only on the ability Ud j measured by the test, whereas the event of answering
to item j depends both on Ud j and on the propensity to respond V . The idea be-
hind this assumption is that better students are more willing to respond due to their
confidence on the correctness of the response.

We also observe that equations (1)-(4) rule out a direct effect of the covariates
X1, . . . ,Xc on the response variables. Indeed, covariates enter in the conditional dis-
tributions of U1, . . . ,Us and V , as it is clarified in the following.

We assume that the vector of latent variables (U1, . . . ,Us)
′ and V are indepen-

dent, given the covariates X1, . . . ,Xc, and have a discrete distribution, with k1 sup-
port points (u1h1 , . . . ,ush1)

′, h1 = 1, . . . ,k1, and k2 support points vh2 , h2 = 1, . . . ,k2,
respectively. The corresponding weights are denoted by

λh1(x) = p(U1 = u1h1 , . . . ,Us = ush1 |X1 = x1, . . . ,Xc = xc), h1 = 1, . . . ,k1,

πh2(x) = p(V = vh2 |X1 = x1, . . . ,Xc = xc), h2 = 1, . . . ,k2,

which depend on the observed individual covariates x = (x1, . . . ,xc)
′. In particular,

we assume the following multinomial logistic parametrization:

log
λh1+1(x)

λ1(x)
= φ0h1 +x′φφφ 1h1

, h1 = 1, . . . ,k1−1,

where φ0h1 and φφφ 1h1
are regression parameters to be estimated. A similar parametriza-

tion is assumed for the conditional probabilities πh2(x), h2 = 1, . . . ,k2−1.
Regarding the error terms ε1 j and ε2 j, we assume that they are independent and

have a standard logistic distribution. This is a convenient assumption implying that
the distribution of Yj and R j given the corresponding latent variables satisfies a lo-
gistic model. In particular, for j = 1, . . . ,m and with

ph1 j = p(Yj = 1|U1 = u1h1 , . . . ,Us = ush1), h1 = 1, . . . ,k1

qh1h2 j = p(R j = 1|U1 = u1h1 , . . . ,Us = ush1 ,V = vh2), h1 = 1, . . . ,k1, h2 = 1, . . . ,k2,

we have the following 2PL parametrization (Birnbaum, 1968):

log
ph1 j

1− ph1 j
= α j

s

∑
d=1

zd judh1 −β j,

log
qh1h2 j

1−qh1h2 j
= γ1 j

s

∑
d=1

zd judh1 + γ2 jvh2 −δ j.

The above assumptions imply that the proposed SEM reduces to a multidimen-
sional latent class IRT model similar to the model proposed by Bartolucci (2007)
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for the augmented set of response variables Y1, . . . ,Ym,R1, . . . ,Rm. In particular, this
model is characterized by the following features: (i) certain response variable Yj
may be missing at random (given also R1, . . . ,Rm), whereas the variables R j are al-
ways observed; (ii) every Yj depends on a specific latent variable Ud j through a 2PL
parametrization, whereas R j depends on both Ud j and another latent variable V ; (iii)
the latent variables U1, . . . ,Us and V have a discrete distribution depending on the
individual covariates X1, . . . ,Xc through a multinomial logistic model.

The parameters of the proposed model may be estimated through the discrete
marginal maximum likelihood approach, making use of the EM algorithm (Demp-
ster et al., 1977) and suitable iterative algorithms of Newton-Raphson type nested
in the EM algorithm; for details, see Bartolucci and Forcina (2006) and Bartolucci
(2007).

3 Simulation study

We implemented a Monte Carlo simulation experiment in the R software in order
to evaluate empirically the adequacy of the proposed approach in obtaining reliable
estimates of the model parameters and in showing the presence of a non-ignorable
missing mechanism for the item responses.

The simulation study is based on a model with two latent abilities, U1 and U2,
which drive the observed responses, and another latent construct, V , which corre-
sponds to the tendency to respond. The distribution of these latent variables is based
on k1 = k2 = 3 latent classes with probabilities affected by two individual covariates,
X1 and X2, generated from independent standard normal distributions. For the sam-
ple size we considered n = 1000,2000 and for the number of items m = 20,40. The
items are equally distributed between U1 and U2. Moreover, three types of scenario
are assumed: (i) complete cases (with no missing responses), (ii) presence of miss-
ing responses depending on V , and (iii) presence of missing responses depending
on V and on U1 and U2. In this way, we considered a total of 12 different scenar-
ios, under each of which 1000 samples were simulated. All the proposed scenarios
assume fixed values of the population parameters, chosen in a suitable way.

A bidimensional model with k1 = k2 = 3 latent classes and a 2PL parametrization
was estimated for every simulated sample generated under each of the 12 scenarios.
To evaluate the goodness of the proposed model, we considered the values of the
bias and of the root-mean-square-error (RMSE) for each population parameter, that
is, for the support points, the regression coefficients, and the item parameters.

We observed generally satisfactorily values of both bias and RMSE. We also ob-
served that bias was approximately constant, regardless of the type of scenario. On
the other hand, some differences emerged relatively to RMSE. As may be expected,
the RMSE decreases when the number of items m and the sample size n increased.
RMSE values also depends on the changes in the missingness structure, according
to a different trend for each population parameter.
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Finally, the discriminant parameters γ1 j are well estimated both when the miss-
ingness process depended only on the latent trait V and when it depended also on
the abilities Ud , d = 1,2. These results imply that the proposed model can be used
to obtain evidence about the effect of the latent abilities on the missing responses
and to properly conclude about the ignorability of the missingness process. In prac-
tice, discriminant parameter estimates γ̂1 j not significantly different from zero for
all items denote that the presence of missing responses does not depend on the abil-
ities, whereas values of γ̂1 j significantly different from 0 (for at least some items)
denote that the missing data provides information about the abilities.
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