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Abstract We propose a flexible regression model for multivariate mixed responses.
Discrete, outcome-specific, latent effects are used to account for potential depen-
dence between outcomes. For this purpose, we define a multidimensional approach,
where possibly different numbers of locations are used for each margin, and joined
by a full association structure. This structure may be further simplified by using a
Parafac-based approach.
Abstract In questo lavoro, si descrive un modello di regressione flessibile per
risposte multivariate di tipo misto. Sono utilizzati effetti latenti discreti, outcome-
specifici, al fine di considerare potenziali strutture di dipendenza tra gli outcome.
Per questo motivo, si definisce un approccio multidimensionale, nel quale un nu-
mero differente di locazioni puó essere utilizzato per ciascun margine ed unito me-
diante una struttura di associazione completa. Tale struttura puó successivamente
essere semplificata utilizzando un modello di tipo Parafac.
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1 Introduction

Multivariate discrete responses have raised great interest in the last few years. In
particular, random effect models for mixed responses have received much attention,
see, among others, [6], [3], [11], [2]. Among others, finite mixture models provide a
simple way to implement semiparametric version of more computationally intensive
methods based on Gaussian quadrature techniques. However, see eg [2], the finite
mixture approach is based on the assumption of unidimensionality of the adopted
latent structure, with the same components describing heterogeneity within (and de-

Paolo Giordani
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pendence between) margins. therefore, no dependence is possible if heterogeneity is
not present. So, it could be questioned whether this latent structure represents uni-
variate heterogeneity, multivariate dependence or both. According to the approach
in [2], we propose a general representation for the multivariate distribution of the
random effects, where outcome specific heterogeneity is separated from the depen-
dence between outcomes. The paper is structured as follows: in Section 2 we review
the standard finite mixture approach to modeling multivariate responses. In Section
3 we show how this approach can be extended to more general structures of de-
pendence when p responses of mixed type are observed. Section 4 describes how
to apply the Parafac model to reduce the number of free parameters in the adopted
model. Concluding remarks are given in Section 5.

2 Standard finite mixture approach

Let us assume we have observed responses yi j, on i = 1, . . . ,n units and j = 1, . . . , p
outcomes, together with a set of (possibly outcome-specific) covariates xi j, where
we assume that xi j1 ≡ 1. To model association between outcomes, we assume they
share some common, unobservable, features. Let ui j, i = 1, . . . ,n, j = 1, . . . , p,
denote the set of individual- and outcome-specific random effects; they account
for heterogeneity across units in univariate profiles and dependence between unit-
specific multivariate sequences. As it is standard in latent effect models, the ob-
served responses yi j are assumed to be conditionally independent (given the covari-
ates and the random effects) random variables. Usually, the conditional density of
the responses is a member of the exponential family

Yi j | ui j,xi j ∼ EF(θi j)

and canonical parameters θi j are defined by the regression model:

θi j = xTi jβ j +ui j, i = 1, . . .n, j = 1, . . . , p. (1)

As it is clear, responses of different types from the exponential family can be mod-
eled using this approach. Here, β j is an outcome-specific vector of fixed regression
parameters, while the random effect vector ui = (ui1, . . . ,uip) has a multivariate den-
sity g(·), with E(ui) = 0. By assuming conditional independence, the likelihood
function is defined as follows:

L(·) =
n

∏
i=1


∫
U

[
p

∏
j=1

f (yi j | xi j,ui j)

]
g(ui)dui

 . (2)

For Gaussian random effects, the marginal likelihood can not, at least in the gen-
eral case, be written in closed form; to obtain ML estimates, we may use numerical
integration techniques such as standard or adaptive Gaussian Quadrature, see [11]
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for a discussion. We may also rely on Monte Carlo or simulation-based techniques,
see [6], [10]. However, marginal maximization using Gaussian quadrature or Monte
Carlo approximations can be computationally very intensive; a potential alterna-
tive is based on leaving the random effect distribution unspecified and estimating
it through a discrete distribution on K ≤ n support points. Let this distribution put
masses πg on locations ug = (ug1, . . . ,ugp), g = 1, . . . ,K, where ug j represents the
g-th location in the j-th profile, g = 1, . . . ,K, j = 1, . . . , p. The resulting likelihood
function is:

L(·) =
n

∏
i=1

{
K

∑
g=1

πg

[
p

∏
j=1

f (yi j | xi j,ug j)

]}
, (3)

where πg = Pr(ug). Let us define the component indicators zi = (zi1, . . . ,ziK), i =
1, . . . ,n, with zig = 1 if the i-th unit comes from the g-th component. We may think at
these component indicators as having a multinomial distribution with probabilities
given by πg, g = 1, . . . ,K. The complete data likelihood is:

Lc(·) =
n

∏
i=1

K

∏
g=1

[ figπg]
zig , (4)

where fig = ∏
p
j=1 fi jg = ∏

p
j=1 f (yi j | xi j,ug j), i = 1, . . . ,n, g = 1, . . . ,K. Since we do

not observe the component indicators, the EM algorithm arises quite naturally.

3 A flexible approach

While the finite mixture approach is computationally efficient when compared to
parametric ML approaches, it is based on a unidimensional latent variable, describ-
ing the unknown component the unit has been drawn from. This may lead to prob-
lems when the task is testing for dependence between the outcome-specific random
effects, or when several outcomes are considered. As to the first point, it can be eas-
ily noticed by looking at eq. (3) that the model under independence does not occur
as a special case of the dependence model. In fact, the marginal distributions un-
der independence are estimated via univariate random effect models that are based
on a number of components that may differ when compared across outcomes and
with the dependence model. As to the second point, we should bear in mind that the
log-likelihood for each outcome may refer to a different density and, therefore, be
associated to a different weight in building up the global log-likelihood. Therefore,
the estimated number of components may be driven by a subset of the analyzed out-
comes only. For all these reasons, we propose to adopt a different parameterization
for the prior probabilities; by using this approach, the dependence model properly
nests the independence one and a different number of components may be used for
each outcome. Let us adopt the following marginal representation for the outcome
specific random effects:
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Pj =
{

u( j)
g j ,πg j , j

}
g j=1,...,K j

,

where πg j = Pr(ui j = u( j)
g j ), g j = 1, . . . ,K j, j = 1, . . . , p, and

πg j = ∑
g1,...,g j−1,g j+1,...,gp

πg1,...,gp .

Note that we use ∑
g1,...,gp

πg1,...,gp as a shorthand for ∑
K1
g1=1 · · ·∑

Kp
gp=1 πg1,...,gp . The

mass πg1,...,gp is associated to each p-uple of random effects, say (u(1)g1 , . . . ,u
(p)
gp ),

g j = 1, . . . ,K j, j = 1, . . . , p, and the number of components K j may differ across
outcomes. While marginals control for heterogeneity in the univariate profiles,
joint probabilities describe the association between the latent effects in the p pro-
files. This approach can be considered as a standard finite mixture approach with
K = ∏ j K j components, where each of the K j locations in the j-th profile appears
in a p-ple with each of the ∏l 6= j Kl locations in the remaining p−1 profiles. Obvi-
ously, when p= 1 the proposed model reduces to a standard univariate finite mixture
model. The following constraints hold:

K j

∑
g j=1

πg j = ∑
g1,...,gs

πg1,...,gp = 1.

Thus, ∏ j K j−1 mass parameters have to be estimated. This means that, from a com-
putational point of view, this approach is approximately as complex as those based
on Gaussian quadrature; however, we may point out, at least, two differences. First,
the number of locations is outcome-specific and this may help save computational
times, as we may avoid to consider a high number of locations for profiles with
low heterogeneity. Second, the locations and prior probabilities are not constrained
to represent the discretization of a standard Gaussian distribution. Therefore, for a
given heterogeneity, the number of locations may be lower than the number of Gaus-
sian quadrature abscissas (usually at least 7 for each profile). The log-likelihood
function is:

`(·) =
n

∑
i=1

log

{
∑

g1,...,gp

πg1,...,gp ∏
j

[
f
(

yi j | xi j,u
( j)
g j

)]}

=
n

∑
i=1

log

{
∑

g1,...,gp

πg1,...,gp f
(

yi | xi1, . . . ,xis,u
(1)
g1 , . . . ,u

(p)
gp

)}
= ∑

g1,...,gp

πg1,...,gp fi,g1,...,gp .

Once the choice for K j, j = 1, . . . , p has been made, for example through penal-
ized likelihood criteria, eg BIC, [12], CAIC, [5], or ICL, [4], the EM algorithm is
quite simple to be implemented, by adding factor variables with K j levels in each
model. We choose to use the AIC [1] to compare models with different number of
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components, since it produces a more refined estimate of the mixing distribution, as
shown by [9].

4 Flexibility through the Parafac model

To reduce the number of free parameters in the πg1,...,gp ’s, the so-called Parafac
model [7] can be used. The Parafac represents the most natural extension of standard
Principal Component Analysis to arrays with an arbitrary number of ways (‘unit by
variable’ matrices can be seen as arrays with two ways and two modes, i.e. units and
variables). Let the probabilities πg1,...,gp ’s be the elements of a p-way array denoted
by Π . The idea is to summarize such probabilities by a limited number of latent
components that approximate the original probabilities at best.
Let A( j) be the component matrix for the j-th way, j = 1, . . . , p, with generic column
a( j)

s , s = 1, . . . ,q. The Parafac model for a p-way p-mode array can be formalized as

X =
q

∑
s=1

a(1)s ◦ . . .◦a( j)
s ◦ . . .◦a(p)

s +E, (5)

where X is the generic p-way p-mode data array of order (K1× . . .×Kg× . . .×Kp)
with generic element xg1,...,g j ,...,gp , E is the error array and ◦ denotes the outer prod-
uct. The model in (5) is a particular case of the more general one proposed in [8].
The optimal component matrices are estimated in the least-squares sense by min-
imizing the squared sum of the error terms; for this purpose, an Alternating Least
Squares (ALS) algorithm can be adopted. In ALS algorithms, each parameter ma-
trix is updated while keeping the remaining parameter matrices fixed; in the Parafac
case, all the updates can be obtained by solving standard regression problems. Start-
ing from the findings for the three-way case [13], the number of free parameters of
(5) is (K1+ . . .+Kp)q−(p−1)q. Such a number depends on the sum of the number
of elements of the component matrices for all the modes. The last term corrects for
the scaling freedom, where scaling the component matrices of p−1 modes fixes the
scaling of the last one. In fact, it is worth recalling that, under mild assumptions,
the Parafac solution is unique up to rescaling and joint permutation of the columns
of the component matrices. Also note that the number of free parameters is lower
when the number of entities of one mode is higher than those of the other modes.
For instance, in the three-way case, if K1 > K2K3, then the data array can be re-
duced to an array of order (K2K3×K2×K3) and the number of free parameters can
be computed replacing K1 by K2K3.
In the present context, we have p random effects and the Parafac model reported
in (5) is used to approximate the p-way probability array Π . It is easy to see that
the use of Parafac to summarize Π reduces the number of free parameters from
∏ j K j−1 to (∑ j K j)q− (p−1)q. The AIC can be considered for choosing the best
value of q, the number of prototypes used to approximate Π .
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5 Final remarks

A flexible regression model for multivariate mixed responses has been proposed.
The goal is to introduce a general representation for the multivariate distribution
of the random effects. To tune the complexity of such a general representation, we
propose to use a Parafac model. Some results will be presented at the meeting.
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