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Abstract The paper proposes a comparison between dynamic models for panel data
with continuous and discrete latent variables. We consider Limited Dependent Vari-
able models (LDV) in the first case, and Latent Markov (LM) models in the second
case. In both instances we use the maximum likelihood estimation method through
the EM algorithm. Since the likelihood of LDV models is not tractable analyti-
cally, we implement the Gauss Hermite and the Adaptive Gauss Hermite quadrature
methods for approximating the integrals involved. The comparison between the two
classes of models is carried out by means of a simulation study.
Abstract In questo lavoro proponiamo un confronto tra modelli dinamici per dati
panel con strutture latenti continue e discrete. In particolare, consideriamo modelli
con variabili dipendenti limitate (LDV) nel primo caso e modelli latenti Markoviani
(LM) nel secondo caso. Per entrambi i modelli usiamo il metodo di stima della mas-
sima verosimiglianza tramite l’algoritmo EM. La verosimiglianza dei modelli LDV
non e’ trattabile analiticamente, pertanto abbiamo implementato la quadratura di
Gauss Hermite e la quadratura di Gauss Hermite adattiva per approssimare gli in-
tegrali coinvolti in essa. Il confronto tra le due classi di modelli e’ basato su uno
studio di simulazione.
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1 Introduction

Statistical models for the analysis of panel data aim at accounting for the not observ-
able heterogeneity between individuals, by including time varying latent variables in
the model of interest. These latent variables can be treated as continuous or discrete.
In the first case the dynamics of the latent variables are typically modeled by assum-
ing that these variables follow an autoregressive process of order 1, denoted as usual
by AR(1) [9]. Within the variety of dynamic models discussed in the literature in
the case of continuous latent variables we refer, in particular, to Limited Dependent
Variable (LDV) models for discrete data, which are very common in social sciences
[13].

If the latent variables are considered discrete we can refer to Latent Markov (LM)
models that assume that the individual effects follow a first-order Markov chain [2].
Both continuous and discrete processes present advantages and disadvantages. The
former allow us to properly capture the variability in the data through an autoregres-
sive structure resulting more parsimonious than the latter. On the other hand, the
estimation procedure of models based on a continuous process presents some com-
putational difficulties related to the presence of the time-varying latent variables.
These variables have to be integrated out from the likelihood function and an ana-
lytical solution for this does not exist. In the literature different solutions to the in-
tegration problem of this class of models have been discussed. Among the methods
based on numerical integration, [10] proposed a non-linear filter algorithm for the
LDV model estimation specified in the state space models framework and approx-
imated the uni-dimensional integrals through the Gauss Hermite (GH) quadrature.
However, GH based methods guarantee accurate parameter estimates when several
quadrature points are used per each dimension and, for certain target functions, in-
stability problems arise in the phase of maximization when the function is approxi-
mated through this quadrature method. To overcome these problems, [7] proposed to
use the Adaptive Gaussian Hermite (AGH) quadrature method to approximate the
uni-dimensional integrals involved in the likelihood obtained using the non-linear
filtering algorithm discussed by [10]. They compared the performance of this ap-
proximation with the classical GH and found that AGH outperforms GH in all the
cases in which the process is highly persistent.

These computational problems are not present in LM models because of the dis-
crete nature of the latent variables. This class of models can be viewed as semi-
parametric models since a parametric form can be assumed for the response vari-
ables whereas the initial and transition probabilities of the latent states are estimated
from the data. However, these models result less parsimonious and the interpretation
of discrete latent variables can result more difficult than the continuous case.

In the literature there is a wide debate on the comparison between considering
discrete and continuous latent variables. For the item response models [6] and [1]
have shown that the shape of the distribution does not greatly affect the parameter
estimates. Because of the arbitrariness about the assumption of distribution of the
latent variables, [6] suggested to use a semi-parametric ML estimation where they
estimated the probabilities of the discrete distribution defined on a fixed grid of
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support points. [18] extended this approach by considering a fully semi-parametric
method where both support points and probabilities are estimated from the data. A
nonparametric estimation of item response models was examined by [12] and in the
more general framework of generalized linear latent variable models [11] proposed
a semi-parametric specification of the density of the latent variable. More recently,
[4] combined continuous and discrete processes by proposing a more flexible model
based on a mixture of AR(1) for the latent process.

In this paper we compare the performance of LDV and LM models by means of
a simulation study. LM models are estimated using the maximum likelihood estima-
tion via the EM algorithm [5, 3]. We propose the same estimation method for LDV
models and we implement both GH and AGH quadrature methods for approximat-
ing the nested uni-dimensional integrals involved in the likelihood function of these
models. The version of AGH that allows us to easily approximate nested integrals is
the one proposed by [16] in the Bayesian context and by [17] for multilevel models.
We also compare the results with the rectangular quadrature method proposed by
[4].

The paper is organized as follows. In Section 2 we review the specification of
the dynamic latent variable models in the case of continuous and discrete latent
variables. In particular we focus on the case of ordinal observed variables. Section 3
discusses model estimation. For LDV models GH and AGH approximation methods
are implemented. Section 4 shows some results of the simulation study and Section
5 gives some remarks.

2 Dynamic latent variable models for panel data

Panel data consist of repeated observations on the same individuals over time. They
can be analyzed by means of LDV models that assume continuous latent variables
αit , interpreted as time and unit dependent random intercepts that account for the
unobserved heterogeneity between subjects. They are assumed to follow a first or-
der stationary autoregressive process. We denote the response variable for unit i
at occasion t by yit , i = 1, . . . ,n, t = 1, . . . ,T , and, since covariates are also typi-
cally observed, we denote by xit the vector of the covariates corresponding to yit .
The proposed formulation is based on the following equations for i = 1, . . . ,n and
t = 1, . . . ,T :

yit = G(y∗it),

y∗it = x′itβββ +αit + εit ,

αit = αi,t−1ρ +ηit , ηit ∼ N(0,σ2
η),

where y∗it is a continuous unobservable variable underlying yit and G(·) is a para-
metric function, the specification of which depends on the nature of the observed
variable. Moreover, εit and ηit are error terms assumed to be mutually independent.
Different distributions may be assumed for the error terms εit . In LDV models for
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panel data the response variable yit is typically discrete so that G(·) is not the identity
function. Here we consider the case of ordinal response variables with J categories
and we define a set of thresholds τ1 ≤ . . . ≤ τJ−1 with τ0 = −∞ and τJ = +∞ such
that

G(y∗it) = j ⇔ τ j−1 < y∗it ≤ τ j j = 1, . . . ,J.

Different parameterizations can be considered for ordinal observed variables. A very
common one is given by the following Proportional Odds model for cumulative
probability functions [14]

log
(

p(yit ≤ j|αit ,xit)
′

p(yit > j|αit ,xit)

)
= τ j−αit −x′itβββ j = 1, . . . ,J−1, i= 1, . . . ,n, t = 1, . . . ,T.

(1)
The discrete latent process formulation assumes that ααα i follows a first-order ho-

mogenous Markov chain with s states denoted by u1, . . . ,us. For this model we de-
fine the initial probabilities as

πh = p(αi1 = uh), h = 1, . . . ,s

and the transition probabilities as

πh2|h1 = p(αit = uh2 |αi,t−1 = uh1), h1,h2 = 1, . . . ,s, t = 2, . . . ,T.

In LM models the initial ad transition probabilities are directly estimated from the
data. The great flexibility of this class of models can lead to a better goodness of fit
of the analyzed data but to a greater number of parameters to be estimated. In this
case in the Markov chain they are s2 −1, since we assume that the initial probabili-
ties are equal to those of the stationary distribution of the chain. On the other hand,
LDV models assume a parametric distribution for the latent variables completely
defined by two parameters, ρ and σ .

3 Model estimation

Estimation of the models illustrated above may be carried out by the maximum
likelihood method, which is based on the maximization of

L(θθθ) =
n

∏
i=1

f (yi|xi), (2)

where θθθ is the vector of all model parameters which affects the manifest joint dis-
tribution of the observed variables. For LDV models, the latter can be expressed
as

f (yi|xi) =
∫
· · ·

∫
∏T

t=1 p(yit |αit ,xit) fα(αit |αi,t−1)dαit · · ·dαi1 = (3)
=

∫
p(yi1|αi1,xi1) fα(αi1)

∫
p(yi2|αi2,xi2) fα(αi2|αi1) . . .
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. . .
∫

p(yiT |αiT ,xiT ) fα(αiT |αi,T−1)dαiT . . .dαi1.

The above expression is based on the conditional independence assumption, accord-
ing to which p(yit |yi1, . . . ,yi,t−1,αi1, . . . , . . . ,αiT ) = p(yit |αit) and on the first order
Markov assumption on the latent variables, that is fα(αit |yi1, . . . ,yi,t−1,αi1, . . . , . . . ,αi,t−1)=
fα(αit |αi,t−1). Notice that fα(αi1|αi0) = fα(αi1).

If a latent Markov model is assumed, expression (3) becomes

f (yi|xi) = ∑h1
p(yi1|uh1 ,xi1)πh1 ∑h2

p(yi2|uh2 ,xi2)πh2|h1 . . .∑hT p(yiT |uhT ,xiT )πhT |hT−1 .

The likelihood in (2) can be maximized by using the EM algorithm [5]. The
algorithm is based on the computation of the complete log-likelihood that for LDV
model is given by

LC(θθθ) = ∑
i

[
∑

t
log p(yit |αit ,xit)+ log fα(αi1)+ ∑

t>1
log fα(αit |αi,t−1)

]
,

and for LM model can be expressed as

LC(θθθ) = ∑
i

[
∑

t
∑
ht

log p(yit |uht ,xit)+∑
h1

logπh1 + ∑
t>1

∑
ht

∑
ht−1

logπht |ht−1

]
.

The algorithm is based on two steps, the E-step and the M-step. The E-step con-
sists of computing the expected value of LC(θθθ) with respect to the posterior dis-
tribution of the latent variables given the observed variables at the current values
of the parameter estimates. The M-step consists of maximizing the expected value
E(LC(θθθ)|y) with respect to the vector of parameters θθθ , obtaining the current esti-
mates of the model parameters. For LM models the algorithm is described in details
in [3, 2].

For LDV models the E-step requires the computation of the posterior distribu-
tions f (αit |yi,xi) t = 1, . . . ,T and f (αi,αi,t−1|yi,xi) t = 2, . . . ,T for every in-
dividual i. They can be obtained by applying to expression (3) suitable recursions
used by [5, 3] for LM models. But the integrals involved in formula (3) cannot be
computed analytically and hence have to be approximated. Numerical quadratures
can be used in order to solve this problem.

3.1 Gauss-Hermite quadrature

A widely used method is represented by the Gauss-Hermite (GH) quadrature that
allows to evaluate numerically all the integrals of the form
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e−z2

f (z)dz ≃
q

∑
k=1

wk f (zk), (4)

where zk are the zeros of the Hermite orthogonal polynomial Hk, wk are the corre-
spondent weights, and q is number of quadrature points [8]. The approximation is
exact if f (z) is a polynomial of degree equal to 2q−1.
In order to apply GH to expression (3) we rewrite it as follows

f (yi|xi) =
∫

p(yi1|αi1,xi1) fα(αi1)
∫

p(yi2|αi2,xi2)
fα (αi2|αi,1)

fα (αi2)
fα(αi2) . . . (5)

. . .
∫

p(yiT |αiT , ,xiT )
fα (αiT |αi,T−1)

fα (αiT )
fα(αiT )dαiT . . .dαi1,

where fα(·) is the marginal distribution of αit and it is a normal density distribu-
tion with mean 0 and variance σ2 = σ2

η/(1− ρ2). Denoting with g(αit |αi,t−1) =
fα(αit |αi,t−1)/ fα(αit) and integrating over the standardized α̃ = α

σ , we obtain

f (yi|xi) =
∫

p(yi1|σα̃i1,xi1) f (σα̃i1)
∫

p(yi2|σα̃i2,xi2)g(σα̃i2|σα̃i,1) f (σα̃i2) . . .(6)
. . .

∫
p(yiT |σα̃iT ,xiT )g(σα̃iT |σα̃i,T−1) f (σα̃iT )dσα̃iT . . .dσα̃i1 ≃

≃ ∑q
k1=1 p(yi1|σz∗k1

,xi1)w∗
k1

∑q
k2=1 p(yi2|σz∗k2

,xi2)g(σz∗k2
|σz∗k1

)w∗
k2
. . .

. . .∑q
kT=1 p(yiT |σz∗k ,xiT )g(σz∗kT

|σz∗kT−1
)w∗

kT
,

where z∗k =
√

2zk and w∗
k = (1/

√
π)wk.

3.2 Adaptive Gauss-Hermite quadrature

An improved version of the GH approximation is given by the Adaptive Gauss Her-
mite (AGH) quadrature rule introduced in the Bayesian context with the aim of ef-
ficiently computing posterior densities if they are approximately normal [15, 17]. It
essentially consists of adjusting the GH quadrature locations with the mean and the
variance of the posterior density so that the nodes are more concentrated around the
peak of the integrand, and a better approximation of the function to be integrated
is obtained compared to the classical GH. The application of the AGH quadra-
ture requires to multiply and divide each integrand in (5) by the normal density
ϕ(α̃it , µ̃it , σ̃it) as follows

f (yi|xi) =
∫ p(yi1|σα̃i1,xi1)g(σα̃i1|σα̃i,1) f (σα̃i1)

ϕ(α̃i1,µ̃i1,σ̃i1)
ϕ(α̃i1, µ̃i1, σ̃i1) . . . (7)

. . .
∫ p(yiT |σα̃iT ,xiT )g(σα̃iT |σα̃i,T−1) f (σα̃iT )

ϕ(α̃iT ,µ̃iT ,σ̃iT )
ϕ(α̃iT , µ̃iT , σ̃iT )dσα̃iT . . .dσα̃i1.
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Since we have to approximate nested sets of univariate integrals we cannot simply
compute posterior mean and variances of each random effect separately but we have
to take into account the non-null posterior correlations between subsequent random
effects. [16, 17] proposed to orthogonalize, center and scale the random effects by
means of a sequential procedure. This procedure simplify noticeably the application
of AGH. The sequential procedure consists of the following steps:
1. w1 = α̃1

2. wt = α̃t +ψt,t−1wt−1 ψt,t−1 =−Cov(α̃t ,wt−1)/var(wt−1) t = 2, . . . ,T

3. zt = (wt − µ̃t)/σ̃t t = 1, . . . ,T

where µ̃t and σ̃2
t are the mean and variance of wt . Expression (7) is then approxi-

mated as follows

p(yi|xi) ≃ ∑q
k1=1 p(yi1|σνi1k1 ,xi1)w∗∗

i1k1
∑q

k2=1 p(yi2|σνi2k2 ,xi2)g(σνi2k2 |σνi1k1)w
∗∗
i2k2

. . .

. . .∑q
kT=1 p(yiT |σνiT k,xiT )g(σνiT kT |σνi,T−1,kT−1)w

∗∗
iT kT

where νitk =(σ̃itz∗k + µ̃it)−ψt,t−1(σ̃i,t−1z∗k + µ̃i,t−1) and w∗∗
itk = σ̃itw∗

k exp(z∗2
k /2)exp(−ν2

itk/2).
The covariances ψt,t−1 as well as µ̃it and σ̃it are obtained from the posterior means,
variances and covariances of the random effects.

3.3 EM algorithm

The steps of the EM algorithm for LDV models are defined as follows:

1. Choose initial estimates for the model parameters θθθ = (τ1, . . . ,τJ−1,ρ,σ)′

2. E-step: compute approximated univariate and bivariate posterior distributions by
means of backward and forward recursions. If AGH is used, the posterior mo-
ments are computed by means of an iterative routine.

3. M-step: obtain improved estimates for the parameters by solving the non-linear
maximum likelihood equations for the parameters τ1, . . . ,τJ−1,ρ by means of a
Newton Raphson iterative scheme and explicit solutions for the parameters σ .

4. Return to step 2 and continue until convergence is attained.

4 Simulation study

LDV and LM models considered in this simulation study refer to observed ordi-
nal data. We generated data from both models. In the first case we selected T = 8
time points, sample size n = 500, values of the correlation parameter equal to
ρ = (0.50,0.95) and ση = 1. We chose five categories for the ordinal responses
with thresholds fixed equal to τ1 = −1.65,τ2 = −0.5,τ3 = 0.5,τ4 = 1.65. In the
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second case we chose T = 8 time points, sample size n = 500, number of latent
states s = 3 and transition matrix equal to

ΠΠΠ =

 0.80 0.15 0.05
0.10 0.80 0.10
0.05 0.15 0.80


We considered three categories for the ordinal responses with thresholds fixed equal
to τ1 = −1.65,τ2 = 1.65. In all the designs we chose two slopes equal to β1 =
1.12 and β2 = 2.34. They correspond to a time-constant covariate generated from a
Bernoulli distribution with parameter 0.7 and to a time-varying covariate generated
from a stationary AR(1) with autocorrelation parameter equal to 0.5. We considered
100 replications for each condition of the study. As for LDV, we used q = 51 points
with GH, q = 51 points with the rectangular quadrature (RQ) and q = 21 with AGH.
The choice of the number of quadrature points derived from the findings obtained in
previous studies where the same approximation methods were used [10, 4, 7]. As for
LM, for each condition of the study we considered number of latent states varying
s = 1, . . . ,5 and we used the BIC information criterion to choose it. The comparison
between LDV with different numerical approximations and LM is assessed in terms
of accuracy of the estimates and goodness of fit of the models.

In Table 1 the results for LDV-generated data for ρ = 0.5 are shown. As for LM,
only the results for s = 2 are reported, since BIC preferred it in all the samples.
LDV with GH seems to perform better than the other methods in terms of both bias
and standard deviations (s.d.) for ρ , ση and β ’s estimates. All the other quadrature
approximations as well as LM give similar results. In terms of goodness of fit BIC
preferred 24% of time GH, 33% of time AGH, 39% of time RQ, and only 4% of
times LM.

Table 2 shows the results for LDV-generated data in the case of ρ = 0.95. Also
in this case we considered LM with s = 2, since BIC preferred it in all the samples.
GH does not produce convergent solutions in all the generated samples because of
instability problems. This behaviour of the GH approximation was found also by [7]
for the same model estimated using a direct maximum likelihood estimation through
a non-linear filter algorithm. This is due to the fact that for ρ = 0.95, the integrand
has a very sharped peak and GH does not properly capture it. Also in this case all
the other methods perform similarly but we have to notice that AGH uses only 21
quadrature points. In terms of goodness of fit BIC preferred 58% LDV with AGH
and 42% LDV with RQ.

In Table 3 the results for LM-generated data are shown. For LDV we reported
only the results for GH and AGH and for LM we reported the results for s = 3 that
was chosen by BIC in 91% of the generated samples. We can observe that GH shows
a better behaviour in terms of bias for threshold and slope estimates. In terms of s.d.
LDV with the two approximation methods and LM perform similarly. In this case
BIC chose GH in only 4% of cases, AGH in 60% of cases and LM in 36% of cases.
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Table 1 Estimated bias and s.d. for the LDV model parameters under GH, AGH, RQ and for the
LM model parameters, LDV-generated data, T = 8, ρ = 0.50, n = 500, 100 replications

True value GH51 AGH21 RQ51 LM
Bias s.d. Bias s.d. Bias s.d. Bias s.d.

τ1 =−1.65 0.032 0.092 0.034 0.107 0.046 0.168 -0.050 0.096
τ2 =−0.50 0.022 0.082 0.025 0.083 0.012 0.099 -0.013 0.088
τ3 = 0.50 0.010 0.085 0.004 0.089 -0.011 0.093 0.022 0.085
τ4 = 1.65 -0.004 0.086 -0.009 0.117 -0.038 0.161 0.064 0.105
β1 = 1.12 -0.003 0.092 -0.012 0.108 -0.019 0.140 -0.046 0.101
β2 = 2.34 -0.021 0.055 -0.033 0.128 -0.061 0.199 -0.083 0.092
ση = 1 -0.046 0.047 0.081 0.192 0.066 0.282 - -
ρ = 0.50 0.034 0.061 0.064 0.091 -0.007 0.120 - -
Av loglik -4093.05 -4096.94 -4.095.07 -4.095.75

Table 2 Estimated bias and s.d. for the LDV model parameters under GH, AGH, RQ and for the
LM model parameters, LDV-generated data, T = 8, ρ = 0.95, n = 500, 100 replications

True value GH51 AGH21 RQ51 LM
Bias s.d. Bias s.d. Bias s.d. Bias s.d.

τ1 =−1.65 - - -0.025 0.116 -0.033 0.111 -0.037 0.117
τ2 =−0.50 - - -0.004 0.107 -0.029 0.118 -0.009 0.122
τ3 = 0.50 - - 0.016 0.099 -0.016 0.111 0.017 0.112
τ4 = 1.65 - - 0.042 0.107 -0.014 0.108 0.048 0.112
β1 = 1.12 - - 0.039 0.113 0.010 0.128 -0.040 0.137
β2 = 2.34 - - 0.046 0.072 0.016 0.058 -0.066 0.055
ση = 1 - - 0.098 0.118 0.010 0.083 - -
ρ = 0.95 - - -0.012 0.048 0.008 0.034 - -
Av loglik - -4011.70 -4032.85 -4041.69

Table 3 Estimated bias and s.d. for the LDV model parameters under GH, AGH and for the LM
model parameters, LM-generated data, T = 8, n = 500, 100 replications

True value GH51 AGH21 LM
Bias s.d. Bias s.d. Bias s.d.

τ1 =−1.65 0.047 0.135 -0.077 0.142 0.093 0.120
τ2 = 1.65 -0.007 0.137 -0.037 0.135 0.038 0.141
β1 = 1.12 -0.007 0.145 -0.045 0.120 -0.029 0.122
β2 = 2.34 -0.022 0.109 -0.065 0.141 -0.051 0.079
ση - 0.139 - 0.187 - -
ρ - 0.036 - 0.082 - -
Av loglik -2853.01 -2849.13 -2853.37

5 Remarks

The comparison between LDV and LM highlighted that in general the accuracy of
the estimates is quite similar in all the conditions of the study considered. In more
detail, for some parameters LDV with GH seems to give better results than both the
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other quadrature methods and LM when ρ = 0.5 but presents instability problems
when ρ = 0.95. AGH, RQ and LM perform similarly but AGH uses less quadrature
points than RQ. In terms of goodness of fit in most cases the model with continuous
latent variables is preferred to the model with discrete latent variables.
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