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Abstract Structural learning of Bayesian network is usually fulfilled by the expert
knowledge, whenever available, or by some efficient algorithmic procedures. De-
spite the vast literature on structural learning, still little has been done specifically
aimed at the multivariate time series modeling. We suggest atesting procedure able
to learn the DAG structure whose vertex set only consists of the components of a
stationary vector autoregressive VAR(p) model. The proposal procedure follows a
constraint-based approach by using a test between blocks ofvariables. The class of
tests proposed is based on multivariate ranks of distances and it is asymptotically
distribution-free under very mild assumptions on the noise.
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1 Introduction

Bayesian networks (BNs - Cowell et al. 1999) are graphical model able to model
phenomena characterized by uncertainty. They are probabilistic models for repre-
senting the joint distribution of a set of variables by meansof directed acyclic graphs
(DAGs). A graph G is an object composed by a set of nodes, denoted by V and rep-
resenting variables, and a set of (eventually directed) edges, denoted by E interlace
pairs of nodes. A directed graph is said to be acyclic if it is not possible, following
arrows direction, to define a path where the starting and the ending node coincide.
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In a BN each node is associated with a (marginal or conditional) probability dis-
tribution function. When the dependence structure betweenvariables is known, the
DAG can be drawn on the basis of expert knowledge and the probability tables can
be manually filled in. In many applications the dependence structure is unknown or
partially known, and the network need to be automatically learnt from the data. The
latter is the situation largely studied and discussed in theliterature (Buntine 1994,
Buntine 1996) and it is known as structural learning. The main approaches to struc-
tural learning are thescoring and searchingand theconstraint-based. The first one
is based on searching, in a specific space, the model that has the best score, given a
chosen metric (Cooper and Herskovits 1992; Heckerman 1995); the second focuses
on the conditional independence relations revealed from the data and the network
is drawn according to the test results (Spirtes et al. 2000).The paper discusses the
opportunity to check conditional independence between blocks of variables to de-
termine entire paths of the network by accounting for the temporal dimension. The
paper is organized as follows. Section 2 briefly discusses the state of art of modeling
temporal setting with graphical models and Bayesian networks. Section 3 concludes
with the class of conditional test for checking independences.

2 Graphical modeling in temporal setting

The increasing interest in graphical models has been developed also in the time
series modeling. Brillinger (1996) introduced the idea of using graphical mod-
els in time series analysis. The first attempt for modeling time series in graphi-
cal models framework has led to the chain graphs (Lynggaard and Walther, 1993).
Some applications of the tool can be found in Reale and Tunnicliffe Wilson (2001),
Dahlhaus and Eichler (2003). In these papers, the analysis is restricted on linear in-
terdependencies among the variables. More recently, nonlinear parametric and non-
parametric models have been discussed (e.g., Tong, 1993; Fan and Yao, 2003). A
widespread approach is to consider the variables at different time slices and to rep-
resent them by separate nodes, with the consequence of graphs with many nodes.
More recently, Eichler (1999) proposed an alternative approach for modeling mul-
tivariate stationary time series by using the concept of Granger causality expressed
in terms of conditional independencies. The pictorial representation of the model is
based on mixed graphs where: (1) each variable, i.e. each time series, is displayed
by a single vertex; (2) Granger-causal relationships between pairs of variables is
displayed by directed edges; (3) simultaneous dependence structure is represented
by undirected edge.

The literature also focused on various approaches to incorporate the temporal
dimension into BNs. The extension of BNs used to model time series is called dy-
namic Bayesian networks (DBNs - Webber and Jouffe, 2006; Dean and Kanazawa,
1989). In a DBN, state at timet is represented by a set of variables and depends on
the states at previous time steps. A DBN is defined by one BN forevery time slice.
The time slices are repeated T-times. DBNs enable us to visualize intra-slice connec-
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tions and inter-slice connections that incorporate conditional probabilities between
variables from different time slices. This approach is a little benefit in the analysis
of multivariate long time series.

In this research we focus on the relevant theoretical and computational problems
related to the Bayesian Network structural learning in the multivariate time series
setting. We adopt a constraint based approach to learn a BN where each node is a
time series and arrows depict dependencies in a temporal dimension. The dependen-
cies are checked with class of tests of conditional independence able to identify the
temporal structure of the system. The problem is tackled in aVector Autoregression
framework where the temporal dimension is exploited in order to identify the direc-
tion of the edges in the BNs. This approach is quite new in the literature and would
avoid undirected edges.

3 Block-wise conditional independence in time

Let Xt =
(

(X(1)
t )T ,(X(2)

t )T
)T

be ak× 1 vector of stochastic processes withX(1)
t

taking values inRk1 andX(2)
t in R

k2 (k1+k2 = k), the Vector AutoRegressive model
of orderp, (denoted by VAR(p)) is

Xt =
p

∑
i=1

AiXt−i +εεεt t = 1, . . . ,N (1)

whereAi , i = 1, . . . , p arek×k matrices andεεε t =
(

(εεε(1)t )T ,(εεε (2)
t )T

)T
is ak×1 vector

of noise.
Clearly, in a VAR model contemporaneous relationships among variables are not

accounted for and are “hidden” in the contemporaneous correlation structure of the
error terms. The structural VAR analysis is based on the attempt to give a sensible
solution to this problem, based on the imposition of a set of restrictions. In this
paper we address more deeply the problem of testing restrictions on the correlation
structure of the noise.

Consider the following partition in sub-matrices of both the autocorrelation ma-
trices, fori = 1, . . . , p and the invertible and symmetrick× k matrixA0

Ai =

(

A(11)
i A(12)

i

A(21)
i A(22)

i

)

A0 =

(

A(11)
0 A(12)

0

(A(12)
0 )T A(22)

0 ,

)

which represents a perturbation of a block spherical noiseηηηt =
(

(ηηη (1)
t )T ,(ηηη(2)

t )T
)T

,

i.e.εεε t :=A0ηηηt , whereA(11)
0 andA(22)

0 are nonsingular symmetrick1×k1 andk2×k2

matrices, respectively, andA(12)
0 is ak1× k2 matrix. Without loss of generality we

assume that[A0]11 = 1.
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From the definition of instantaneous conditional independence, which in the
Gaussian case is equivalent to conditional non correlation, testing for contempo-
raneous non correlation betweenX(1) andX(2) is testing the null hypothesis

H0 : A(12)
0 = 0. (2)

Two necessary requirements are stationarity of the stochastic processXt in model

(1) and finite second-order moments. Moreover, we considerηηηt =
(

(ηηη(1)
t )T ,(ηηη(2)

t )T
)T

a marginally spherical noise, i.e. with density

f (z; f1, f2) := ck, f1, f2 f1(‖z(1)‖) f2(‖z(2)‖)

whereck, f1, f2 ∈ R, z(1) ∈ R
k1, z(2) ∈ R

k2 and f1 : R+
0 → R

+, f2 : R+
0 → R

+ are a.e.

strictly positive are the marginalradial densitiesof ηηη(1)
t andηηη(2)

t , respectively, and
are assumed to have finiteradial Fisher information for location and scale.

Under the null hypothesis of non correlation,εεε t :=A0ηηηt is a marginally elliptical
error term.

In synthesis, we require in (A1) the stationarity of the VAR(p) model consid-
ered in (1), and we assume (A2) that under the null the innovations are marginally
elliptical.

Let
θθθ I := (vecT A1, . . . ,vecT Ap)

T , θθθ II := ((vech∗0 A0)
T)T

andϑϑϑ := (θθθ T
I ,θθθ T

II )
T be respectively thepk2, thek(k+1)/2−1 and thepk2+k(k+

1)/2− 1-dimensional vectors of unknown parameters corresponding to the model
in (1), where the vech∗0 operator is such that, for anyk× k matrixA,

vech∗0 A := (vechT0 A(11),vecT A(21),vechT A(22))T

with the usual definitions of vec, vech and vech0 (the last operator corresponds to
the vech operator, having dropped the top-left entry of the matrix A).

Vector θθθ I represents a vector of nuisance parameters in the testing problem.
Whenθθθ I is left unspecified, the multivariate signs and ranks-basedtest statistics

proposed in this paper is computed using any arbitrary estimatorsθ̂θθ I = θ̂θθ I
(n)

sat-
isfying assumptions previously specified. Then the test still allows to achieve local
asymptotic optimality in the Le Cam sense, under adequate choices of the score
functions.

Let Ut := ((U(1)
t )T ,(U(2)

t )T))T , whereU(1)
t := z(1)t /d(1)

t and U(2)
t := z(2)t /d(2)

t

are the unit-norm vectors which underP(N)
ϑϑϑ ; f1, f2

are i.i.d. and uniformly distributed

over thek1 and k2-dimensional unit sphere. LetR( j)
t be the rank ofd( j)

t among

(d( j)
1 , . . . ,d( j)

N ), j = 1,2, then define the sign and rank-based test statistics

W
∼

(N)

f1, f2
(ϑϑϑ) := T

∼
(N)T

f1, f2
(ϑϑϑ)C

∼
−1

f1, f2
T
∼
(N)

f1, f2
(ϑϑϑ) (3)
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with

TTT
∼
(N)

f1, f2
(ϑϑϑ) :=

1√
N

N

∑
t=1

B
∼t, f1, f2

vecU(1)
t U(2)T

t (4)

B
∼t, f1, f2

:= J(1)1

(

R(1)
t

N+1

)

J(2)0

(

R(2)
t

N+1

)

(Ik2 ⊗A(11)
0 )−1

+ J(2)1

(

R(2)
t

N+1

)

J(1)0

(

R(1)
t

N+1

)

(A(22)
0 ⊗ Ik1)

−1,

and

C
∼ f1, f2

:=
1

k1k2
Ef1, f2[B∼t, f1, f2

B
∼

T

t, f1, f2
],

where the score functions defined asJ(1)1 (u) := ϕ f1 ◦ F̃−1
1 (u), J(2)1 (u) := ϕ f2 ◦

F̃−1
2 (u), J(1)0 (u) := F̃−1

1 (u) andJ(2)0 (u) := F̃−1
2 (u), satisfy assumptions on the score

function previously mentioned. FunctionsF̃1(·) andF̃2(·) are the distribution func-
tions of the moduli of the sphericized residuals under marginal radial densitiesf1(·)
and f2(·).

Let J1(u) = K1(u), J0(u) = K0(u) be any continuous differentiable monotone
increasing square-integrable score functions then the general score version of the
test statistics (3) is

W
∼

(N)

J
(ϑϑϑ) := T

∼
(N)T

J
(ϑϑϑ)C

∼
−1

J
T
∼
(N)

J
(ϑϑϑ) (5)

with

TTT
∼
(N)

J
(ϑϑϑ) :=

1√
N

N

∑
t=1

B
∼t

vecU(1)
t U(2)T

t (6)

C
∼J

:=
1

k1k2
Ef1, f2[B∼t

B
∼

T

t
].

In particular, when the score functionsK( j)
1 (·) andK( j)

0 (·) are equal to a function
K j(·), j = 1,2, the general score version of the test statistics boils down to

W
∼ J

=
k1k2

E[K(1)2]E[K(2)2]

∥

∥

∥

∥

1√
N

N

∑
t=1

K(1)
(

R(1)
t

N+1

)

K(2)
(

R(2)
t

N+1

)

vecU(1)
t U(2)T

t

∥

∥

∥

∥

2

.

Then, under some mild assumptions, such as stationarity, finite second order
moments,constraintness, root-n consistency, local asymptotic discreteness, affine
equivarianceand continuous differentiable monotone increasing square-integrable
score functions1, the test statisticsW

∼
(N)

f1, f2
(ϑϑϑ) is block affine-invariant and asymp-

totically invariant with respect to the group of continuousmonotone marginal radial

1 see Bramati (2013)
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transformations; is asymptotically chi-square withk1k2 degrees of freedom under
⋃

θθθ II ∈M (Q)

⋃

θθθ I

⋃

g1,g2
P(N)

θθθ II ;θθθ I ,g1,g2
(so thatφ

∼
(N)

J
has asymptotic levelα); is asymptot-

ically noncentral chi-square withk1k2 degrees of freedom and noncentrality param-
eter

ψ2(τττ II ,ϑϑϑ) = ‖CJ,g1,g2 vecH(12)‖2
CJ
,

underP(N)

θθθ II +N−1/2τττ II ;θθθ I ,g1,g2
, τττ II /∈ M (Q).

This research aims at combining uncertainty and temporal dimension in Bayesian
Networks. The temporal dimension is generally exploited inorder to identify the
direction of the edges in the BNs and thus avoiding an a priorigiven ordering. This
is done for understanding the relations of the system, with the simple idea that an
effect cannot precede its cause in time. The idea is to learn the structure of the BNs
using constraint based approach based on block-wise conditional independence tests
in time.
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