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Abstract The aim of this work is to present some recent advances in single in-
dex modelling when the covariate is a functional variable and the response a scalar.
We pay for special attention to the situation of possible structural changes which
produce unsmooth relevant direction. An estimation procedure combining spline
functions and the well-known Nadaraya-Watson approach is illustrated. From an
example of interest in the spectrometry, it emerges that the method provides a nice
exploratory tool both for analyzing structural changes in the spectrum and for visu-
alizing the most informative directions, still keeping good predictive power.

Key words: additive models; breaking-point; projection pursuit regression; single-
index model.

Introduction

In the multivariate regression setting, semi-parametric techniques had been intro-
duced in order to balance the trade-off betwen very few flexibility of pure paramet-
ric modelling and dimensional effects of non-parametric approaches. For a general
presentation of semi-parametric ideas in multivariate situations one can refer for
instance to [11] and references therein.
In the functional context (see e.g. the books [8] and [14]) one deals with variables
belonging to infinite-dimensional spaces (mainly curves but also images, arrays and
other complex data). The nature of the problem emphasizes the usual drawbacks
described before: from one hand the lacking flexibility of the linear model is much
more problematic, and on the other hand the negative impact of the dimensionality
on non-parametric approaches appears dramatically. Therefore the semi-parametric
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ideas have been extended to the functional framework since a few years, in order
to construct models combining both flexiblity and dimensionality reduction. In the
functional regression context, recent advances in such direction involve for instance
the functional single index model (see e.g. [1], [6] or [7]), the functional projection
pursuit regression (see [3] or [4]) and functional additive modelling (see e.g., [12]
or [13]).
The aim of this work is to focus on one of the simplest semi-parametric functional
model, namely the single index modelling, in situations where the relevant func-
tional index is not necessarily smooth due to structural changes in the regression
operator. This model will be presented and discussed in Section 1.1. The method-
ology for constructing estimates of the various components of the model will be
developed in Section 1.2. A real data analysis will be carried out along Section 1.3.

1.1 Single functional index model with breaking-points

Consider the probability space (Ω ,F ,P) and L 2
I , the Hilbert space of square

integrable real functions on I = [a,b] endowed with the inner product ⟨g,h⟩ =∫
I g(t)h(t)dt and the induced norm ∥g∥2 = ⟨g,g⟩. Define on Ω the L 2

I valued
random function (r.f.) χ and the real random variable (r.v.) Y . In the Single Index
Model approach one postulates that χ acts on Y only through its projection on some
single index function θ = θ(t), t ∈I , such that, for identifiability reasons, ∥θ∥2 = 1
and ⟨θ ,e1⟩= 1 where e1 is the first element of a basis of L 2

I . In a general form, the
model can be written as

Y = α +g(⟨χ,θ⟩)+ ε (1.1)

where α is a real constant, ε is a centered real random error uncorrelated with χ .
Such a model and estimation techniques for the link function g and the functional
direction θ have been studied intensively the literature: see for instance, [2], [6] or
[7].
Suppose now that specific parts of the curve χ operate in a different semi-parametric
way for explaining the response Y . This allows us to consider a partition of I in s
sub-intervals I j, j = 1, . . . ,2 (with I1 = [a,λ1], I j =

(
λ j−1,λ j

]
, j = 2, . . . ,s−1,

and Is = (λs−1,b]), and to define the restriction θ j of θ to I j, which are continuous
squared integrable functions on I j. Moreover, to generalized the above identifiabil-
ity conditions, we assume that the directions θ j satisfy∫

I j

θ 2
j (t)dt = 1 and

∫
I j

θ j (t)e1 (t)dt =
∫

Ih

θh (t) f1 (t)dt = 1 j ̸= h

where e1 and f1 are the first elements of some orthonormal bases of L2 (I j) and
L2 (Ih) respectively.
Assuming that g acts additively on the projections of χ over θ j’s, the SIM model
with breaking-points can be written as:
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Y = α +
s

∑
j=1

g j

(∫
I j

χ(t)θ j(t)dt
)
+ ε (1.2)

where α is a real constant, g j is an unknown real link function and ε is a centered
real r.v. uncorrelated with the regressor. When s = 2 one can refer to the recent work
[10]. Note that the proposed approach can play an important role in the selection
of the most important parts of the functional covariate that explain the variability
of the scalar response. This aspect of relevant practical interest will be highlighted
through real data analysis in Section 1.3.

1.2 Estimation procedure

Let {(χi,Yi), i = 1, . . . ,n} be a sample of i.i.d. replications of (χ,Y ), and let {(xi,yi),
i = 1, . . . ,n} the corresponding observed values. In what follows we introduce an
estimation procedure for model (1.2): first we consider the case where the break
points are known, then we introduce a method to find break points.

Break points are known. Suppose that λ js (and then s) are known: for each I j we
define a suitable space of spline functions with degree q j and with k j −1 interior eq-
uispaced knots (q j > 2 and k j > 1, integers) and denote by {B j,l j (t) , l j = 1, . . . ,q j +
k j} the normalized B-splines basis of such spaces. In such basis θ j (t) can be repre-
sented as θ j (t) ≈ δ T

j B j (t), where B j (t) is the vector of all the B-splines. In order
to remove trivial ambiguity, the vector δ j of coefficients is such that its first element
is positive, and satisfies the normalization condition δ T

j
∫
I j

B j (t)B j (t)
T dt δ j = 1.

To estimate the model (1.2) we introduce the following backfitting algorithm:

INITIALIZE – α̂ = n−1 ∑n
i=1 yi, ĝ j (u) = 0, δ̂ j = 0, for j = 1, . . . ,s.

CYCLE – For j = 1, . . . ,s, find δ̂ j which minimizes

CVj (d) =
1
n

n

∑
i=1

(
yi − α̂ − ∑

h ̸= j
ĝh

(
δ̂ T

h bh,i

)
− ĝ[−i]

j

(
dT b j,i

))2

where b j,i =
⟨
B j,xi

⟩
and ĝ[−i]

j is the leave-one-out Nadarya-Watson kernel
estimate of the link function g j, excluding the i-th observation.
Compute ĝ j from ĝ[−i]

j by subtracting its empirical mean.
Cycle the procedure until stabilization of the quadratic criterion
∑n

i=1 (yi − ŷi)
2, where ŷi = α̂ +∑ j ĝ j(δ̂ T

j b j,i).

Data-driven break point selection. The previous procedure is defined for fixed
values of the parameters λ js: we propose a method to choose them in practice. The
idea is to use a cascade algorithm which provides a partitioning tree based on the
minimal prediction error. In brief, this algorithm work as follows:
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INITIALIZE – State I ⋆ = I .
STEP 1 – Computing λ̂opt .
Using the backfitting algorithm introduced above, estimate the model (1.2)
restricted to I ⋆ with s = 2 for every ℓ ∈ Λ ⊂ I ⋆ (a grid of possible can-
didates), and compute the cross-validated prediction error CV (ℓ). Choose
λ̂opt which minimizes CV (ℓ).
STEP 2 – Splitting the interval I ⋆.
If CV

(
λ̂opt

)
< τ (a fixed treshold) split I ⋆ in two subinterval I ⋆

1 and I ⋆
2 .

then achieve the STEP 1 for each subinterval (updating I ⋆ = I ⋆
j );

else goto STEP 3
STEP 3 – Stop

1.3 Spectrometric example

In this section the methodology illustrated in the previous section is applied to a
well-known benchmark data-set, the Tecator dataset (see: lib.stat.cmu.edu/datasets/
tecator). The reader who is interested in a extensive comparative study, where some
alternative regression methods are applied to these data, can refer to [9].
The data. The Tecator dataset consists in 215 spectra in the near infrared (NIR)
wavelength range from 852 to 1050 nm, discretized on a mesh of 100 equispaced
measures, corresponding to as many finely chopped pork samples. The aim is to pre-
dict the fat content Yi, obtained by chemical analysis, from the spectrometric curve.
To avoid the well-known “calibration problem”, due to the presence of shifts in the
curves that cause noises, it is conventional to take as regressor χi the second deriva-
tives of spectrometric curves instead of the original ones (see [8]). These functional
data and their second derivatives are represented in Figure 1.1.
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Fig. 1.1 A random selection of original spectrometric data (left panel) and their second derivatives
(right panel).
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The estimation procedure. We applied the regression methodology described in
Section 1.2 to a learning-sample formed by the first 160 couples (xi,yi), and we
evaluated the goodness-of-fit over a test-set containing the remaining 55.
The first step was the identification of the breaking-point(s) using the algorithm
described before and whose partitioning tree is illustrated in Figure 1.2.

Fig. 1.2 Partitioning tree.

At the first step the minimum for CV (λ ) was achieved at 960 with a square predic-
tion error MSE = 1

55 ∑55
i=1 (y

out
i − ŷi)

2 equal to 1.392 (whereas for the single index
model without partitioning the MSE was equal to 3.704). Since the variance ex-
plained was 0.96 for the first term and 0.02 for the second one, we tried again to
partition the interval 582−960 nm in two parts, obtaining the break point 910. Be-
cause this partition does not improve the prediction abilities (with the MSE equal to
1.956), we stopped the algorithm at s = 2.
Interpretation of the outputs. To provide an interpretation of estimated model,
we analyzed the estimated additive terms. As observed previously, the empirical
variance explained from the first one is 0.96 against 0.02 for the second one: it
emerges that the second part of the spectrum, corresponding to wavelengths longer
than 960 nm, is in practice negligible in explaining the fat content. Concentrating our
attention on the relevant part of the spectrum and looking at the estimated directions
over this region (see Figure 1.3), it appears that the wavelengths between 850 and
890 nm seem not significant, whereas the ones in the range 890−950 are the most
important. This is coherent with the results on selection of variables in [5] where
such interval appears the most interesting.
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Fig. 1.3 Estimated directions θ j and link functions g j for spectrometric data.
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