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Abstract Different forms of non-separability for space-time covariance functions
have been recently defined in the literature, then various well-known non-separable
space-time stationary covariance models are analyzed and classified according to
the notion of non-separability. These results can be helpful to generate as well as
to select appropriate covariance models for describing space-time data. Box-plots
of sample non-separability ratios, classified for spatial lags and temporal lags, have
been proposed as an appropriate diagnostic tool to detect different forms of non-
separability and to support the choice of the type of non-separability which should
characterize a suitable covariance model for the data. The analysis of the non-
separability index for some covariance models and the space-time sample covari-
ance function forPM10 data are presented.
Abstract Recentemente, sono state definite alcune tipologie di non-separabilità,
sulla base delle qualìe possibile classificare i modelli di covarianza spazio-tempora-
li. Tali risultati teorici risultano essere particolarmente rilevanti in quanto con-
sentono di selezionare degli opportuni modelli di covarianza per la descrizione
dei dati a struttura spazio-temporale. Nel presente lavoroverrà analizzato l’indice
di non-separabilit̀a per alcuni modelli di covarianza e per la covarianza empirica
spazio-temporale relativa al PM10.
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1 Introduction
In the last years there has been a great demand for models describing the evolution
of spatio-temporal processes. In this context, the selection of an appropriate class
of models for the variable under study represents a priorityproblem with respect to
the choice of a particular model of a specified class. In literature, various classes
of space-time covariance functions are available. Under the convenient assumption
that space and time could be treated separately, the productcovariance model has
represented the base to generate other parametric familiesof space-time covariance
functions [2, 3, 9, 10]. Otherwise, various classes of non-separable space-time co-
variances have been constructed through different approaches by Cressie and Huang
[1], Gneiting [7], Rodriguez and Diggle [12], among others.Many statistical tests
for separability are based on parametric models [14, 8], likelihood ratio tests and
subsampling [11] or spectral methods [13, 6] and can help to decide for a separable
or a non-separable model; but they are not able to suggest thetype of non separabil-
ity and the appropriate covariance model for describing space-time data.
Section 2 reviews the definition of the non-separability index for a spatial-temporal
covariance proposed by De Iaco and Posa [5]. Therefore, a classification of mod-
els with respect to the type of non-separability is discussed. Section 3 describes
the implementation of the non-separability index in the R environment as a useful
tool to help in modeling and describing the evolution of a spatio-temporal process
and a case study regarding an environmental data-set, involving dailyPM10 average
concentrations measured at some monitoring stations is considered.

2 Positive and negative non-separability
Let Z be a second order stationary spatio-temporal random variable. A stationary
space-time covariance functionC is separable if there exist stationary, purely spa-
tial and purely temporal correlation functionsρs and ρt , respectively, such that:
C(hs,ht) = σ2ρs(hs)ρt(ht) ∀(hs,ht) ∈ D × T ⊆ ℜd+1, whereσ2 = C(0,0) and
ρs(0) = ρt(0) = 1.
De Iaco and Posa [5] proposed a generalization of the two definitions of non-
separability suggested by Rodriguez and Diggle [12] in order to distinguish be-
tween pointwise and uniformly positive and negative non-separability. In particular,
given a spatio-temporal covariance, letρ(hs,ht ;Θ) be the the corresponding spatio-
temporal correlation function, De Iaco and Posa [5] proposed the following defini-
tion of positive and negative non separability:

r(hs,ht ;Θ) =
ρ(hs,ht ;Θ)

ρ(hs,0)ρ(0,ht ;Θ)
. (1)

Then, a covariance is uniformly positive non-separable if

r(hs,ht ;Θ)> 1, ∀(hs,ht) ∈ D×T ⊆ ℜd+1, (hs,ht) 6= (0,0), ∀Θ , (2)

while it is uniformly negative non-separable if

r(hs,ht ;Θ)< 1, ∀(hs,ht) ∈ D×T ⊆ ℜd+1, (hs,ht) 6= (0,0), ∀Θ . (3)

On the other hand, ifr(hs,ht ;Θ) > 1, for some(hs,ht ;Θ), the covariance function
is pointwise positive non-separable at the same(hs,ht ;Θ). Alternatively, the co-
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varianceC is pointwise negative non-separable at(hs,ht ;Θ), if r(hs,ht ;Θ) < 1 for
the same(hs,ht ;Θ). As pointed out by De Iaco and Posa [5], a covariance function
which is uniformly positive (negative) non-separable is also pointwise positive (neg-
ative) non-separable, but the converse is not true. According to the above definition
[5], some classes of covariance models could be classified with reference to the type
of non-separability:

• uniformly non separable models: the Gneiting class [7] and the class of space-
time stationary covariance functions generated by positive mixtures [9] are char-
acterized by uniformly positive non-separability, while the product-sum model
[2] is characterized by a uniformly negative non-separability;

• models with different non-separability indexes: some example are given below.

The spherical metric model, whose analytic expression is given below

ρ(h;a1,a2,b) =











[

1−1.5
h
b
+0.5

(

h
b

)3
]

, 0≤ h≤ b

0, h> b,

(4)

whereh=
(

a1‖hs‖
2+a2 |ht |

2
)0.5

andb∈ ℜ+ is the spatio-temporal range, is non-

uniformly non-separable, as shown in Fig. 1. In fact, given different combinations

Fig. 1 box plots of non-
separability ratio, defined for
the spheric model (4) and
classified for spatial lags and
temporal lags. (a) Parameters:
a1 = 1, a1 = 2 andb= 5. (b)
Parameters:a1 = 0.2, a1 = 1
andb = 3. (c) Parameters:
a1 = 0.2, a1 = 0.5 andb= 2.

of the parametersa1,a2 and b there always exist lags(hs,ht) 6= (0,0) such that
r (hs,ht ;a1,a2,b) associated to the model (4) is not always greater or less than1. In
particular, the non-separability indexr is greater than 1 for small spatio-temporal
lags, it becomes less than 1 when the distanceh tends to the rangeb.
The example 4 proposed by Ma [9]

ρ(hs,ht ,Θ) =
log[1−θ1ρs(hs)−θ2ρt(ht)−θ12ρs(hs)ρt(ht)]

logθ3
(5)

whereθ3=1−(θ1+θ2+θ12) andθ12 are non-negative constants such that 0<θ1+
θ2+θ12<1, is non-uniformly non-separable, that is the ratior is greater or less than
1, depending on the lags and/or the parameter of the model (Fig. 2-a)). However,
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the class of covariance functions proposed by Ma [9] is able to describe uniformly
positive and negative non-separability, as shown in Fig. 2-b). The class of integrated

Fig. 2 box plots of non-
separability ratio, defined for
a mixture model proposed
by Ma (5) and classified for
spatial lags and temporal
lags. (a) Parameters:a1 = 1,
a1 = 2, θ1 = 0.1, θ2 = 0.3
andθ12 = 0.2. (b) Parameters:
a1 = 2, a1 = 2, θ1 = 0.1,
θ2 = 0.2 andθ12 = 0.5

models, proposed by De Iaco et al. [3] is flexible enough to handle either uniformly
positive and negative non-separability or non-uniform non-separability, depending
on the lags and/or to the parameters of the chosen models. In particular, consider the
following integrated product-sum model:

ρ(hs,ht ,Θ)=
∫ ∞

0

[

k1e
−x‖hs‖

α/be−x|ht |
δ /c+k2e−x‖hs‖

α/b+k3e−x|ht |
δ /c

] β n+1

τ(n+1)
xne−βxdx

= k1
β n+1

(

‖hs‖
α

b + |ht |
δ

c +β
)n+1 +k2

β n+1

(

‖hs‖
α

b +β
)n+1 +k3

β n+1

(

|ht |
δ

c +β
)n+1 (6)

whereΘ =(b,c,α,δ ,k1,k2,k3,β ,n) is the parameters vector.
Let Θ = (1,1,1,1,0.4,0.3,0.3,2,2) the integrated product-sum model describes
space-time covariances that are uniformly negative non-separable (Fig. 3-a)); on
the other hand, letΘ = (1,1,2,2,0.7,0,0.3,2,2) the integrated product-sum model
describes space-time covariances that are uniformly positive non-separable (Fig. 3-
b)). Finally, if Θ = (1,1,1,1,0.6,0.1,0.3,1,1) the integrated product-sum model

Fig. 3 box plots of non-
separability ratio, defined for
the integrated product-sum
model (6) and classified for
spatial lags and temporal lags.

describes space-time covariances that are non-uniformly non-separable (Fig. 3-c)).
The class of models proposed by Rodriguez and Diggle [12] is given below
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C(hs,ht ,Θ) =
σ2

2
[ρs,1(hs;θ1)ρt,1(ht ;φ1)+ρs,2(hs;θ2)ρt,2(ht ;φ2)] (7)

where ρs,1(hs;θ1),ρs,2(hs;θ2),ρt,1(ht ;φ1),ρt,2(ht ;φ2) are, respectively, two non-
negative and integrable spatial correlation functions andtwo non-negative and inte-
grable temporal correlation functions. Note that the aboveclass of covariance func-
tions could be considered as a special case of integrated product models.
If ρs,1(hs,as1) = e−as1‖hs‖ andρs,2(hs,as2) = e−as2‖hs‖, and similarlyρt,1 andρt,2

are exponential models with parametersat1 andat2, then the Rodriguez and Dig-
gle model is uniformly positive non-separable whenas1 >as2 andat1 >at2 (Fig. 4-
a)), whereas they are uniformly negative non-separable when as1 <as2 andat1 >at2

(and viceversa), Fig. 4-b). Otherwise, ifρs,1(hs,as1) = e−as1‖hs‖
2

andρs,2(hs,as2) =

e−as2‖hs‖, andρt,1 andρt,2 are exponential and Gaussian models, respectively, with
parametersat1 andat2, then they are non uniformly non-separable (Fig. 4-c),-d)).

Fig. 4 box plots of non-separability ratio, defined for the Rodriguez and Diggle model (7) and
classified for spatial lags and temporal lags.

3 Case study
In this paper, the new function calledsep index, defined for determining non-
separability index (1) in the R environment, has been applied in order to analyze
the space-time correlation structure of the dailyPM10 averages, observed at some
monitoring stations, from 1998 to 2009.
Structural analysis and non-separability inspection could be performed in the R en-
vironment (with packagesspacetime andgstat) through the following steps: 1)
create a spatio-temporal object to record the data set; 2) determined sample spatio-
temporal variogram surface; 3) inspect marginal variograms (vario marg); 4)
compute sample spatio-temporal covariance surface; 5) compute the empirical non-
separability index (sep index). Note that the new function calledvario marg
has been properly developed in order to compute, plot and model marginal vari-
ograms. The new function, namedsep index requires some parameters to be set:
the number of spatial lags (ns), the number of temporal lags (nt), the matrix in
which the spatio-temporal covariogram values (cov) are stored and the value of
the global sill (globalSill). The functionsep index returns the purely spatial
and purely temporal sample covariances matrix, empirical non-separability index
ratio and box-plots of sample non-separability ratios, classified for spatial lags and
temporal lags. For the environmental data set under study, sample non-separability
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Fig. 5 box-plots of sample
non-separability ratio, com-
puted for daily averagesPM10
concentrations and classified
for (a) spatial lags and (b)
temporal lags

index is less than 1 for allhs,ht (Fig. 5). Hence, it should be suitable to select a
covariance model characterized by uniformly negative non-separability, such as the
integrated product-sum model (6) and the Rodriguez and Diggle (7) for appropriate
choices of the coefficients and the marginals.
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