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Abstract In this paper, we consider an inference approach based on Hyvérinen’s lo-
cal homogeneous scoring rule within the stationary first order autoregressive frame-
work for which both full and pairwise likelihood-based inference are available. Sim-
ulation studies were conducted to compare the estimator found by resorting to the
Hyvirinen score to the full and pairwise maximum likelihood estimators.

Abstract Nel presente lavoro consideriamo un metodo di inferenza basato sulla re-
gola di punteggio locale e omogenea di Hyvdrinen nel contesto dei modelli autore-
gressivi stazionari del primo ordine per i quali sia il metodo della verosimiglianza
completa che quella a coppie sono disponibili. Sono stati effettuati degli studi em-
pirici per confrontare lo stimatore ottenuto con il metodo di Hyvdrinen con gli sti-
matori di massima verosimiglianza classico e a coppie.
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1 Introduction

Composite likelihood methods have become extremely popular in recent years due
to their computational advantages in estimating the parameters of very complex
statistical models; see [15] for a review on the subject. Among the best known com-
posite likelihood methods, we mention the pairwise likelihood introduced by [10].
A viable alternative to the composite likelihood approach to overcome possible dif-
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ficulties related to the derivation of the normalizing constant of the full likelihood
has been proposed in [11, 12]. Their methodology is based on a local homogeneous
proper scoring rule, known as the Hyvérinen score ([8]), defined as

1
5(x,0) =A1HCI(X)+§||V1M(X)||27 ()

where Q is the quoted distribution with density function ¢ of a random variable X,
taking values x in the set ¥ = R¥ equipped with the standard norm || - ||. The notation
V denotes the gradient vector, and A the Laplacian operator. The procedure seems
appealing since homogeneous local scoring rules do not require the specification of
the normalising constant of the model, and the resulting estimator is asymptotically
normal. The aim of this work is to compare numerically the behaviour of the estima-
tors obtained from the Hyvirinen score, and the pairwise and full likelihood-based
methods in models for which the maximum likelihood estimator is available. In
particular, we focus our attention on the inference of the autoregressive parameter
in stationary first order autoregressive processes. Results concerning comparisons
between pairwise and full likelihood-based methods within the first order autore-
gressive framework have been proposed in [9].

The paper unfolds as follows. Section 2 gives a brief introduction to the basic
notions on scoring rules. Section 3 describes first order autoregressive processes
resorting to full and the pairwise likelihood-based methods, and to the Hyvirinen
scoring rule approach. Section 4 summarizes the results of the simulation study con-
ducted to compare the minimum Hyvirinen score estimator to both the full and the
pairwise maximum likelihood estimators.

2 Scoring rules

A scoring rule is a loss function designed to measure the quality of a given proba-
bility distribution Q for a random variable X, in view of the result x of the random
variable X, taking values in the set . Specifically, if a forecaster quotes a predic-
tive distribution Q for X and the event x realizes, then the loss will be S(x,Q); see
[4]. The function S(x, Q) takes values in the interval (—eo, o] and its expected value
under P is denoted by S(P, Q).

Definition 1. The scoring rule S is proper relative to the class of distributions & if

S(P,Q) > S(P,P), forall P,Qc 2. 2)
It is strictly proper relative to &2 if S(P,Q) > S(P,P) with equality if and only if
Q=P.

Examples of proper scoring rules are the log-score, i.e. S(x,q) = —logg(x) ([7]),
and the Hyvirinen score in formula (1). Note that we are implicitly identifying a
distribution Q over x by its probability density g; so the two notations S(x,q) and
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S(x, Q) are indistinguishable.

Scoring rules whose values are not affected by any positive scale factor of the
predictive density g are termed homogeneous. For instance, formula (1) remains
unchanged if ¢ is multiplied by a positive constant.

Another important feature of scoring rules is locality. A scoring rule is called lo-
cal if it depends on the quoted distribution Q only through the value of the predictive
density g of Q at the point x. A weaker definition is the definition of m-locality. A
scoring rule is called local of order m: if it depends on Q only through the values of
the density ¢ and the derivatives of g up to the order m at the point x.

An example of local scoring rule is the log-score, which depends only on the
values of g at x. Whereas an example of homogeneous local scoring rule of order 2
is the Hyvirinen score, which involves the values of ¢, ¢’ and ¢” at the point x; see
formula (1).

2.1 Estimation using scoring rules

Let (x,...,x,) be a sample of size n from Py, a parametric family of distributions for
the random variable X indexed by the parameter 8 € @, where © is an open subset
of R¥. Given a proper scoring rule S, let S(x, 8) denote S(x, Py).

Inference for the parameter 6 may be performed using the total empirical score,
ie. Y1, S(x;,0).

The minimum score estimate és, if it exists, is the value of 6 which minimizes
the total empirical score, namely, O = argmin g Y S, 0).

Under broad regularity conditions on the model, see for example [1], s is a root
of the score equation:

5(0):=Y s(x;,0)=0, (3)

-

I
-

1

where s(x,0) denotes the gradient vector of S(x,0) with respect to 8. The score
equation (3) yields an unbiased estimating equation; see [5]. It is worth pointing out
that if S is the log-score, then the score equation (3) reduces to the likelihood equa-
tion, and the minimum score estimate és coincides with the maximum likelihood
estimate 6.

Under suitable conditions on the model, the minimum score estimate és is con-
sistent and asymptotically normally distributed with asymptotic covariance matrix
given by the inverse of the Godambe information matrix G(6) (see [6, 12]), namely
Os~N(6, {nG(8)}71).

The Godambe information matrix G is defined as G(8) := K(6)J(0)~'K(8),
where J(68) = E (s(X,0)s(X,0)"),and K(6) = E (Vs(X,0)").

In the special case that 0 is a scalar parameter, the ratio of G(68) to the expected
Fisher information 7(0) determines the asymptotic relative efficiency of O relative
to the maximum likelihood estimator 6. Whereas, if 0 is a d-dimensional vector,
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the asymptotic relative efficiency of O relative to 0 is defined as the d-th root of the
ratio of the determinants of G(0) and 1(0); see [3].

3 The first order autoregressive process

The stationary univariate autoregressive process of order 1, denoted by AR(1), is
defined by the equation

YI*ﬂ:‘])(thl*I»l)*)% with t:27"'7d7 (4)

where ¢ is a constant known as the autoregressive parameter, such that |¢| < 1.
Moreover, A, denotes a normal variable with 0 mean and variance 2. The random

. . . . . . 2

variable y; is a Gaussian random variable with mean p and variance lf ek Then y;
is a linear combination of normal variables and yy,...,y, are jointly normal with
mean vector i1,, where 1, is the d-dimensional unit vector, and covariance matrix

given by

1 ¢ ¢2 “.¢d71
R 1 ¢ ._.¢d72
el I | 5)

¢d:71 ¢d:72 ¢dl3 1

whose inverse is given by the matrix (see for instance [3])

1 —¢ 0 - 0 0
¢ 1+¢> —¢ - 0 0O
0 —¢ 1+¢>--- 0 0
Ql=0o : : T : ©)
0 0 0 146 —¢
0 0 0 - —¢ 1

Full likelihood approach for a single series

The overall full log-likelihood function of a single series is (see for example [13])

1 d d—1 d
1(6) = —wz{Z(yt—u)2+¢22(yz—u)2—2¢ Z(yt_u)()’tl_u)}+
t=1 =2 =2
d 2 1 2
— Elogc +§10g(1—¢ ), @)

with 8 = (i, 0,9).
The likelihood equations are
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Pairwise likelihood approach for a single series

The pairwise likelihood for contiguous pairs of observations of a single series is (see

(13D

d d d
pl(6) = *217 {Z(yi#)2+2(yi1 —u)? =20 Y (yi—p) (i1 u)} +
i=2 i=2 i=2
- (d71)10g02+Qlog(1 —0?). (8)

The pairwise likelihood equations are (see Appendix in [13])

1—¢ [ d
Plu(6) = —— {Z(y[u)JrZ(yuu)};

d —
pls(0) = % {Z()’z _ﬂ)2+2(yt—1 _u)z_zq) Z(yz )0 _u)} _ 2(d 1);

(e

ply(0) =

The pairwise likelihood estimator denoted by ép is the solution of the previous
equations. Note that we differentiate with respect to ¢ and not with respect to 2 as
in [13].

Hyvdrinen approach for a single series

By using basic differentiation rules, it is easy to find the Hyvérinen score for the
model

. _ 2
HS( Z (14+¢2) #)_¢(yt—l+YI+l_2“)]2_ 2+ 52(1+¢ J
2 2
- bd_ﬂ_qzjc(;yétd_l_”)] e L ©

The minimum score estimate of 6, denoted by ég, can be found by minimizing
the Hyvirinen score in the above equation or by solving simultaneously the follow-
ing equations:
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_ 2y d—1
15,0.0) = 20O (1049200 )~ 0011 43000 —20)] +

=2
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d—1 _ 5
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- % {[YI —u= 02— )+ e~ — 9 (at 7”)]2};

d—1
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=2
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3.1 v independent series

Consider v independent first order autoregressive processes with the same parame-
ter @, in the special case that 4 =0 and ¢ = 1. We can define a v x d random matrix
Y where each row represents a stationary first order autoregressive processes with
the same parameter ¢. Moreover, each row of Y has a d-variate normal distribution
with mean O and variance covariance matrix £ defined at equation (5) and is inde-
pendent of the other rows.

Inference for the parameter ¢ can be performed by resorting to the sum of v in-
dividual Hyvirinen scores or Vv score equations or even V pairwise score equations.
Here, we exploit the fact that the sum-of-squares-and-products matrix S = Y7Y,
a sufficient statistic for the multivariate normal model, is characterized by the
Wishart distribution with parameters v and 2. Assume VvV > d, taking into con-
sideration all of the properties of the derivatives of traces and determinants, it can
be shown that the Hyvérinen score relative to the Wishart model based on variables
(sij:1<i<j<d)is

d
u

HS(S,Q) = Z

i=1 Ij 1

v_d—1) ;1 1
24 Z{ Ea)f] , (10

where @', s, s; ; are the elements of the matrix Q1 s lands, respectively.
Since 2 depends only on the parameter ¢, the score equation turns into

Cd 1 i
HSy(S,Q2) = — = Z { v Y i f%a)/’} ‘9;; —0, a1

1/1

which, after taking account of the elements of the matrix Q! defined in equation
(6), leads to the cubic equation

[(d=2)(1+¢*) +d—1] =0. (12)
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4 Numerical assessment

We carried out a simulation study to asses the performance of the minimum
Hyvirinen score estimator for the case that 4 = 0 and 6 = 1. We consider 1000
random samples for v = 2000 independent AR(1) models of length d = 50, for
some values of the autoregressive coefficient ¢. For each simulated sample, we es-
timate the parameter ¢ by resorting to the full likelihood method (@), the pairwise
likelihood ((]Sp), the sum of v Hyvirinen scores (¢s), and the Hyviirinen score based
on the Wishart model ((ﬁHs). Results of the simulation study are summarized in Ta-
ble 1. All calculations are performed with the software R ([14]).

It should be pointed out that, for large v, we could empirically estimate the func-
tion J for the sum of v Hyvirinen score by employing the mean of the functions
HSy (y,,-,qsg)Q, fori=1,...,v, where y; = (y1i,-..,y4i). We refer to [15] for a dis-
cussion of the estimation of J in the composite likelihood approach.

Table 1 Estimates with standard deviation (sd), root mean square error (RMSE), and absolute
value of bias (|BIAS)|), for varying values of ¢, v = 2000, d = 50.*

(a)

0 ¢ |BIAS|  sd RMSE  §, |BIAS|  sd RMSE

—-0.6  —0.5999 0.0001 0.0025 0.0024 —0.5939 0.0061  0.0028  0.0066
-0.2  —-0.2000 0 0.0031  0.0031  —0.1961 0.0039  0.0032  0.0050
0.0 0.0001  0.0001  0.0032 0.0032 0.0001 0.0001 0.0032  0.0032
0.3 0.3001  0.0001  0.0030 0.0030  0.2948 0.0052  0.0032  0.0061

0.7 0.7000 0 0.0022  0.0022  0.6950  0.0050  0.0025  0.0057
(b
) s |BIAS|  sd SRMSE  ¢ps |BIAS|  RMSE
—0.6  —0.6002 0.0002 0.0041 0.0042 —0.6003 0.0003  0.0057
-0.2  —0.2000 0 0.0033  0.0033  —0.2000 0 0.0038
0.0 0.0001  0.0001  0.0032 0.0032 0.0000 0 0.0032

0.3 0.3001  0.0001  0.0035 0.0034 0.3001 0.0001 0.0043
0.7 0.6998  0.0002  0.0044  0.0045 0.6997 0.0003  0.0059

*All values in the Table are empirical estimates, except for the standard deviations of ¢ which
is based on the asymptotic formula of Fisher information function and the standard deviations of
qS,, and @5 which are obtained by resorting to an empirical estimate of the Godambe information
function obtained by compounding the numerical estimate of J and the exact formula of K.
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5 Discussion

Results from the simulation study reveal that (133 and @y produce, on average, es-
timates of the autoregressive parameter very close to the true values; see Table 1.
Unreported results indicate that the minimum Hyvérinen score based on the Wishart
model performs unsatisfactorily in terms of mean square error compared with the
other methods when d and v are of comparable order, and when |¢| approaches 1.
Moreover, the relative asymptotic efficiency (ARE) of both g and @ps with respect
to the maximum likelihood estimator decreases when |¢| increases and approaches
1. Although, we lose efficiency with respect to the maximum likelihood estimator as
long as |¢| approaches 1, ¢s may represent an appealing alternative to the pairwise
likelihood approach in situations where computation of the normalizing constant is
infeasible, since it has the advantages to use the full likelihood, and, when d is very
small, to perform better in terms of bias. It would be also of interest to analyse the
performance of ¢g in relation to the nuisance parameter ¢ or to consider a vector
parameter of interest 8 = (¢, o). Indeed, as is known (see [2]), an aspect which
deserves particular attention under this set-up is the dependence on the correlation
structure of the consistency of the estimator when Vv is rather small with respect to
d.
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