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Abstract We illustrate a novel approach for developing robust posterior distribu-

tions using Approximate Bayesian Computation (ABC) methods with proper scor-

ing rules. This is formally motivated by the use of unbiased estimating functions as

automatic informative summary statistics in ABC. Examples with the Tsallis score

are illustrated, and comparisons with robust M-estimating functions are considered.

Abstract In questo lavoro si propone un approccio per ottenere distribuzioni a pos-

teriori robuste attraverso i metodi ABC con le scoring rules proprie. L’approccio

è formalmente motivato dall’uso di funzioni di stima non distorte come statistiche

nelle procedure ABC. Il metodo proposto è illustrato attraverso due esempi con

la funzione score di Tsallis e, ove possibile, si considerano anche confronti con le

equazioni di stima di tipo M.

Key words: Likelihood-free inference, M-estimators, robustness, summary statis-

tic, unbiased estimating function.

1 Introduction

The summary of the data offered by the likelihood function is the basis of Bayesian

methods. However, Bayesian likelihood-based inference cannot be performed when

the likelihood is analytically or computationally intractable. Moreover, the stability

of Bayesian likelihood-based procedures generally requires strict adherence to the

model assumptions, and it is well-known that they may behave quite poorly under

slight violations of model assumptions (see e.g. [5]).

When the likelihood function is computationally intractable, ABC methods, also

known as likelihood-free techniques, allow us to make inference about the param-

eters of the posterior distribution (see e.g. [7]). ABC methods rely on a function

which measures the distance between some empirical summary statistics and their

simulation based counterparts. The most crucial point of ABC algorithms is the
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selection of these summary statistics, particularly regarding their sufficiency prop-

erties. In this respect, in [8] it is shown that composite likelihood score functions can

be fruitfully used as automatic informative summary statistics in ABC in order to

obtain accurate approximations to the posterior distribution. Composite likelihoods

are suitable surrogates of the full likelihood when the latter is intractable, and their

use has been widely advocated in different complex applications ([10]). The use of

composite likelihood score functions as summary statistics is formally motivated by

the use of the score function of the full likelihood, and it may be extended to general

unbiased estimating functions.

The aim of this paper is to discuss ABC with proper scoring rules (see e.g. [4],

and references therein). Full likelihood and composite likelihood estimation are spe-

cial cases of the general estimation technique based on proper scoring rules. Such

rules supply unbiased estimating equations for any statistical model, which can be

chosen to increase robustness or for ease of computation. The appeal of scoring rule

estimation lies in the potential adaptation of the scoring rule to the problem at hand,

and it forms a special case of M-estimation (see e.g. [6]). This contribution focuses

on proper scoring rules with robustness properties in order to obtain robust pos-

terior distributions, and the comparison with classical robust M-procedures is also

considered.

In Section 2 some background on proper scoring rules and ABC with composite

score functions is given. The proposed ABC algorithm, based on proper scoring

rules, is presented in Section 3, together with two illustrative numerical examples.

Concluding remarks are given in Section 4.

2 Statistical methods

2.1 Proper scoring rules

Let X be a random variable, taking values in a sample space X . A scoring rule

(see e.g. [3]) is a loss function S(x,Q) measuring the quality of a quoted probability

distribution Q for X , in the light of the realized outcome x of X . It is proper if, for

any distribution P for X , the expected score S(P,Q) := EX∼PS(X ,Q) is minimized

by quoting Q = P. There is a wide variety of proper scoring rules ([4]). A prominent

example is the log score S(x,Q) =− logq(x), with q(·) the density (or the probabil-

ity mass function) of X , which is simply the negative log likelihood. Another useful

example is the Tsallis score ([9]), given by

S(x,Q) = (γ − 1)
∫

q(y)γ dµ(y)− γ q(x)γ−1 , (1)

with γ > 1, also called the density power score in [1]. Setting γ = 2 in (1) yields the

quadratic or Brier score ([2]). Other examples of some special proper scoring rules

are given in [4].



Approximate Bayesian Computation with proper scoring rules 3

In estimation problems, proper scoring rules provide attractive loss and utility

functions that can be tailored to a scientific problem. Suppose that we wish to fit a

parametric statistical model Fθ = F(x;θ ) based on the sample (x1, . . . ,xn). To esti-

mate θ , we might consider the goodness-of-fit by the total empirical score Sn(θ ) =

∑n
i=1 S(xi,Fθ ). Then, asymptotic arguments indicate that θ̂S = arg maxθ Sn(θ )→ θ0

as n → ∞, where θ0 is the true parameter value. This suggests a general approach to

estimation: choose a proper scoring rule that is tailored to the problem at hand and

use θ̂S as the optimal score estimator based on the scoring rule. Maximum likelihood

estimation, as well as composite likelihood estimation, are special cases of optimal

score estimation when Sn(θ ) is the corresponding log likelihood, and optimal score

estimation forms a special case of M-estimation ([6]). Indeed, consider

s(x,θ ) =
∂S(x,Fθ )

∂θ
. (2)

Then, θ can be estimated by θ̂S, the root of the estimating equation ∑n
i=1 s(xi,θ ) = 0.

It can be shown that, for any differentiable scoring rule and any smooth statisti-

cal model, Eθ (s(X ,θ )) = 0, i.e. s(x,θ ) is an unbiased estimating function ([4]).

In particular, it will typically deliver a consistent and asymptotically normal esti-

mator for θ , with mean θ and variance V (θ ) = K(θ )−1J(θ )K(θ )−1, with J(θ ) =
Eθ (s(X ,θ )s(X ,θ )T ) and K(θ ) = Eθ (∂ s(X ,θ )/∂θT ). The form of V (θ ) is due to

the failure of the information identity since, in general K(θ ) 6= J(θ ).
From the general theory of M-estimators, the influence function of the estimator

θ̂S is given by

IFS(x;θ ) = K(θ )−1s(x,θ ) ,

and it measures the effect on the estimator of an infinitesimal contamination at the

point x, standardized by the mass of the contamination. The estimator θ̂S is B-robust

if and only if s(x,θ ) is bounded in x. Robustness properties of the Tsallis score are

discussed in [1].

2.2 ABC with unbiased estimating equations

Let π(θ ) be a prior distribution for θ , L(θ ) the likelihood function based on data

x = (x1, , . . . ,xn) and π(θ |x) ∝ π(θ )L(θ ) the posterior distribution. Suppose that

L(θ ) is unavailable, but that it is possible to simulate from the full model Fθ . The

accept-reject ABC algorithm works as follows:

1. generate θ ∗ from the prior π(θ )
2. generate x∗ from Fθ∗

3. if ρ(t(x), t(x∗))≤ ε accept θ ∗, otherwise reject

where t(·) is a suitable summary statistic, ρ(·) is a given distance, and ε is a fixed

tolerance level. One of the crucial points of the ABC algorithm is the choice of

t(·). In this respect, in [8] it is suggested to consider the composite score function,
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evaluated at the maximum composite likelihood estimate, as the summary statistic

for the ABC procedure. This is formally motivated by the use of the score function of

the full likelihood, and it may be extended to general unbiased estimating functions.

3 ABC with proper scoring rules

Starting from a proper scoring rule Sn(θ ) and extending results in [8], we propose

∑n
i=1 s(xi,θ ) as a summary statistic in ABC. In terms of the accept-reject ABC al-

gorithm in Section 2.2, we propose to replace step 3. with

ρ

(

n

∑
i=1

s(xi, θ̂S),
n

∑
i=1

s(x∗i , θ̂S)

)

≤ ε .

The evaluation of ∑s(xi,θ ) in θ̂S is computationally convenient since ∑s(xi, θ̂S) = 0

and we only need to evaluate ∑s(x∗i , θ̂S).
If s(x,θ ) is bounded in x, i.e. if the estimator θ̂S is B-robust, then the approxima-

tion to the posterior obtained with this algorithm is resistant with respect to slight

violations of the model assumptions.

Example 1: equi-correlated normal model Let Fθ be a q-variate normal distri-

bution Nq(µ ,Σ), with µ vector of means and Σ covariance matrix, with the main

diagonal equal to σ2 and the off-diagonal entries equal to ρσ2.

Let us focus on the correlation coefficient ρ and let us assume µ = 0 and σ2 = 1.

As an illustration we consider a sample of size n = 50 from Fθ , with θ = ρ = 0.5
and q = 20. With an uniform prior for ρ , the full posterior π(ρ |x) based on the

full likelihood is compared with the ABC posterior based on the Tsallis score, for

γ = 1.1,1.25,1.5,1.95, also with contaminated data. The contamination is obtained

by adding the vector c1n, to one of the q dimensions of the observed data, where 1n

is the (n× 1) unit vector and c is a positive constant (fixed to 0, 7.5, 15, 22.5 and

30).

The comparisons are shown in Figure 1. On the left side, we notice that, when

there is no contamination, e.g. c = 0, and γ increases, the ABC posterior based on

Tsallis’ score flattens out, and is slightly shifted with respect to the full posterior.

On the right side, instead, we notice that contaminating the dataset by c leaves the

shape of the Tsallis score essentially unchanged. On the other hand, the full score

tends to shift to the right, as the value of c increases. Hence, while both scores are

not B-robust (increasing the range of ρ reveals an S-like shaped function for Tsallis’

score), the Tsallis score is nevertheless more resistant to outlying observations.

Example 2: Normal model Let Fθ be the normal distribution N(µ ,σ2), with mean

µ and variance σ2. Let θ = (µ ,σ). As an example let us consider a random sample

of size n = 50 from N(0,1), and let us assume that µ is a priori N(0,9) and that σ
is uniformly distributed in (0, 13) and independent from µ .
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Fig. 1 Equi-correlated normal model. Left: ABC posteriors (dashed) based on the Tsallis score

with several values of γ (increasing values of γ correspond to flatter densities) compared with the

full posterior (solid). Right: full (dashed lines) and Tsallis (solid) scores for different γ and c values

(for each quadrant, the dashed lines corresponds, from left to right, to c equal to 0, 7.5, 15, 22.5

and 30).

Figure 2 illustrates the posterior based on the full likelihood, the ABC posterior

based on the Huber’s location and scale estimating equations and the ABC posterior

based on the Tsallis scoring rule with γ = 1.25. We notice that the marginal poste-
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Fig. 2 N(µ ,σ ) model. Top: marginal ABC posteriors for µ (left) and σ (right) with Tsallis’ score

(dot-dashed) and ABC posterior with Huber’s score (dashed) compared with the full posterior

(solid). Bottom: sensitivity analyses of posterior means under contaminated data.

riors of σ are quite different and this is reasonable as the three posteriors are based

on different functions of the observed data x. Indeed the ABC posteriors are based

on suitable functions of the data which are guaranteed to deliver robust parameter

estimates, whereas the full posterior is based on the sufficient summary statistic.

We consider again datasets with several contaminations c = (±50,±37.5,
±25.0,±12.5) and for each of the contaminated datasets we compute the expecta-

tions of the full posterior and the two ABC posteriors based on Huber’s and Tsallis’
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score, respectively. From the sensitivity analyses of theposterior means plotted on

the bottom part of Figure 2, we notice that, while the full posterior mean is quite

sensitive to outlying observations, the means of the two ABC posteriors are robust.

4 Final remarks

The Bayesian literature on robust posteriors, with respect to data, is not well devel-

oped. A typical approach to robustness is by means of robust estimating functions

which, under suitable regularity conditions, can deliver robust point estimates. How-

ever, the use of these robust unbiased estimating functions in Bayesian inference is

generally possible only through the use of quasi- and the empirical likelihoods in the

Bayes formula (see e.g. [5]). However, quasi-likelihood is available only for scalar

parameters of interest while empirical likelihood can be unstable for small sample

sizes.

This article contributes to Bayesian robustness theory by proposing an approxi-

mation method that is based on unbiased estimating function. The method delivers a

posterior distribution which is guaranteed to be robust, when the underlying scoring

rule or estimating function is robust.
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