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Abstract Current demand for understanding the behaviour of groups of related
genes, combined with the greater availability of data, has led to an increased focus
on statistical methods in gene set analysis. In this talk, we will review the most re-
cent advances in the field, focussing in particular on the methodology that exploits
the potential of the graphical models theory to incorporate information contained
into pathways signalling networks, with the aim to develop statistically sound pro-
cedures for gene set analysis.
Abstract La crescente necessità di comprensione del comportamento di gruppi di
geni, unita alla ampia disponibilità di dati ha accresciuto l’attenzione verso i metodi
statistici per la gene-set analysis. In questo intervento verranno passati in rassegna
i principali contributi in tema di analisi statistica di insieme di geni, soffermandosi
in particolare sulle metodologie basate sui modelli grafici.
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1 Background

Recently, much attention has been directed towards the study of gene sets in the con-
text of microarray data analysis (hereafter GSA). A microarray experiment typically
provides a list of differentially expressed genes (DEGs) that represent the starting
point of a highly challenging process of results interpretation. The grouping of genes
into functionally related entities is of great help for interpreting the results. In this
context, statistical methods for the identification of groups of functionally related
genes with moderate, but coordinated, expression changes are fundamental to help
biologists in the process of results comprehension.
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Several GSA tests, both univariate and multivariate, have been recently devel-
oped. GSA methods can be divided into two broad categories: (i) methods based on
enrichment analysis performed on a list of genes selected through a gene-level test;
(ii) methods based on global and multivariate approaches that define a model on the
whole gene set (Ackermann and Strimmer, 2009). In general these two approaches
are based on two fundamentally different null hypotheses: the first type hypoth-
esizes the same level of association of a gene set with the given phenotype as the
complement of the gene set. The second type only considers the genes within a gene
set and hypothesizes that there is no gene in the gene set associated with the phe-
notype (Tian et al., 2005). Goeman and Buhlmann (2007) termed these approaches
competitive and self-contained, respectively.

In general, the a priori definition of gene sets is obtained from Gene Ontology
(GO) information or from biological pathways; while genes belonging to a GO cat-
egory do not have any explicit connections among them (apart from being involved
in the same function), genes in the same pathway are structured in a network with
explicit biological interactions. Almost all of the self-contained approaches, when
applied to biological pathways, use merely the list of genes belonging to a path-
way, and therefore, although effective, miss the relevant topological information
contained.

Although pathway topology is a valuable well-defined experimentally validated
biological information describing the relationships among genes, in the last years
little effort has been done (Draghici et al., 2007; Tarca et al., 2009; Laurent et al.,
2012) to consider the topological information within the self-contained GSA meth-
ods. This information could greatly improve the analysis and help result interpreta-
tion. In this contribution, we will review some of the most recent advances, based
on Gaussian graphical models theory, that explicitly take such form of a priori in-
formation into account.

2 From pathway to graph

Biological pathways can be described as sets of linked biological components inter-
acting with each other over time to generate a single biological effect. They com-
prise a myriad of interactions, reactions, and regulations, which are often identified
piecemeal over extended periods and by a variety of researchers. Figure 1 repre-
sents an example of such pathways, the Prostate cancer pathway taken from the
Kyoto Encyclopedia of Genes and Genomes (KEGG).

A vast variety of databases containing information such as that shown in Figure
1 exist. Among the widely used databases, we find Biocarta, KEGG (Ogata et al.,
1999), NCI/Nature Pathway Interaction Database (Schaefer et al., 2009) and Reac-
tome, (Matthews et al., 2009).

Pathway annotations is often too rich for the conversion to a graph. In particular,
challenges are posed by i) the presence of chemical compounds mediating inter-
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Fig. 1 Prostate cancer: pathway taken from the Kyoto Encyclopedia of Genes and Genomes
(KEGG).

actions (interactions for which a compound acts as a bridge between two elements)
and by ii) different types of gene groups that are usually represented as single nodes.

Sales et al. (2012) recently developed graphite (GRAPH Interaction from
pathway Topological Environment), a Bioconductor package that provides graphs
from the pathways of the main four databases. graphite expands the protein
complexes into a clique (all proteins connected to the others) and gene families
into a module without connections among the element of the group. Moreover, it
propagates the signal through compounds considering compound compartment.

The final output of the pathway conversion is a graph-based structure with as
many nodes as the number of genes and as many edges as the number of biological
reactions among them. There may be different type of reactions and they can be
directed or undirected.

3 Graph Inference using pathway topology

Within the graphical models context, data are considered as coming from Gaus-
sian multivariate distributions with a structured concentration matrix (inverse of the
covariance matrix), which reflects dependencies among variables. In this context
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Massa et al. (2010) recently introduced two statistical tests for comparing pathways
under different experimental conditions, which naturally stem from the adopted
theoretical framework. The first one addresses the question of testing whether the
strength of the connections among genes is altered in different experimental condi-
tions. It is likely to figure that a pathological condition does not change the structure
of a pathway, but, rather, can influence the strength of the biochemical reactions.
The second test is more traditionally designed for testing for differential expres-
sion. In doing the test, the procedure specifically employs the information about
the behaviour of the partial correlations among genes and about their possible het-
eroschedasticity in different experimental conditions. We stress that the two tests
can be performed independently one from each other. Of course, if one performs
both of them, there is a suggested natural order, but the particular research question
will define if they are both necessary or if, in a preliminary phase, only one of them
is requested. This approach is based on a very different null hypothesis with respect
to the method proposed by Tarca et al. (2009) called SPIA. First of all, SPIA uses
only differentially expressed genes and their average log fold-changes. Then, SPIA
combines two independent p−values. The first one captures the significance of the
given pathway as provided by an over-representation analysis of the number of dif-
ferentially expressed genes (hypergeometric test). The second one is derived from a
topological analysis called Impact Analysis. The impact analysis calculates a score
giving more weight to the differentially expressed genes lying near the entry point
of the pathway, following the hypothesis that closer the deregulation to the upstream
region of the pathway, more impacted will be the pathway itself. The significance
level of the impact score is calculated using a bootstrap approach.

3.1 The case of n > p

The structure of the pathway is converted into a simple directed acyclic graph (DAG)
D (see Cowell et al., 1999, pag. 46). Starting from D, its moral graph G is derived
(see Cowell et al., 1999, pag. 48). In detail, the moral graph is obtained by adding
edges between the parents of each node (if not already present), and, then, by re-
moving the directionality of the original edges. It is important to note that the moral
graph can differ from the corresponding DAG, in the sense that it usually has more
edges and that they are all undirected, but the choice of working with a moral graph
does not affect the purpose of this study.

For the sake of exemplification, in the following we will assume to have two
experimental conditions. Let yk = (y j

k), j = 1, . . . ,nk, be p-variate observations for
each condition k,k = 1,2. Such data are modelled as graphical Gaussian models
(see Lauritzen, 1996, Chap. 5) with the same undirected graph G, i.e., the Gaussian
models

M1(G) = {Y1 ∼ Np(µ1,Σ1), Σ
−1
1 ∈ S+(G)} and

M2(G) = {Y2 ∼ Np(µ2,Σ2), Σ
−1
2 ∈ S+(G)}
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are assumed. Here, p is the number of genes (vertices of the graph) and S+(G) is the
set of symmetric positive definite matrices with null elements corresponding to the
missing edges of G. Note that the assumption of normality of the data is motivated
by the well known fact that relative or absolute gene expression measurements are
approximately normal on the log scale.

To evaluate the hypothesis of equality of the strength of the links between genes
in two experimental conditions the hypothesis of interest is

H0 : Σ
−1
1 = Σ

−1
2 vs Σ

−1
1 6= Σ

−1
2 . (1)

The hypothesis of equal expression of the pathway can be explored by testing

H0 : µ1 = µ2 vs H1 : µ1 6= µ2 subject to Σ
−1
1 = Σ

−1
2 , (2)

or
H0 : µ1 = µ2 vs H1 : µ1 6= µ2 subject to Σ

−1
1 6= Σ

−1
2 . (3)

Tests for the hypotheses (1), (2) and (3) can be derived by generalizing the stan-
dard results in the case of a complete graph, i.e., a graph in which all nodes are
connected, to the case of a non complete graph G , i.e., a graph with r edges, say,
and r < p(p+1)/2. The tests are to be opportunely adjusted by introducing a con-
strained estimation of the covariance matrices such that their inverse matrices have
zeroes corresponding to the missing edges of G. This is the usual setting for Gaus-
sian graphical models when the graph G is known. In this context, the estimates of
the covariance matrices, Σ̂1 and Σ̂2 can be obtained by running the Iterative Pro-
portional Scaling algorithm (IPS, see Lauritzen, 1996, pag. 134) on S1 and S2, re-
spectively. The IPS algorithm guarantees that the estimated matrices are positive
definite and their inverse have null elements corresponding to the missing edges of
the graph.

Under H0 in (1), let Ŝ be the fitted covariance matrix obtained via the IPS algo-
rithm using estimated pooled covariance matrix S as starting point of the algorithm
and let K̂ = Ŝ−1. Under H1, let K̂1 = Σ̂

−1
1 and K̂2 = Σ̂

−1
2 be the inverse matrices

of the fitted covariance matrices via IPS (using as starting points S1 and S2, respec-
tively). The test statistic, denoted as ΛG is the equivalent of the usual likelihood ratio
test statistic (see Anderson, 2003), but takes into account the structure of the graph
G. It is given by

ΛG = n1 log
(

det K̂1

det K̂

)
+n2 log

(
det K̂2

det K̂

)
,

and its asymptotic null distribution is χ2
r+p (see Massa et al., 2010, for more details).

The Hotelling test statistic to test hypothesis (2) is given by

T 2
G =

n1n2

n1 +n2
(ȳ1− ȳ2)

T Ŝ−1(ȳ1− ȳ2).

In the Behrens Fisher setting of hypothesis (3), the test statistic is given by
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BF2
G =

n1n2

n1 +n2
(ȳ1− ȳ2)

T
(

Ŝ1

n1
+

Ŝ2

n2

)−1

(ȳ1− ȳ2).

In case of paired data, let y = (y j
1− y j

2), j = 1, . . . ,n, be the p-variate differences
to be analyzed. Such data are modelled as a graphical Gaussian model

M (G) = {Y ∼ Np(µ,Σ), Σ
−1 ∈ S+(G)}.

The hypothesis to be tested in this case is

H0 : µ = 0,

for which standard theory applies.
For the test statistics described above, a null distribution can be worked out, at

least asymptotically. However, following the lines in Janssen (1997), even when the
underlying distributions have different variances and with different sample sizes, it
is easy to see that permutation tests based on the previous statistics can allow one to
construct tests that asymptotically attain the nominal rejection probability when the
underlying distributions are different, while maintaining exact rejection probability
in finite samples when the underlying distributions are equal. Therefore, to compute
p-values for the above given tests, it is possible to rely on permutation strategies.

The tests described above are implemented in an R package called topologyGSA.
Furthermore, topologyGSA can be run automatically on a list of pathways of a
specific database from graphite.

3.2 The case of n < p

As reported above, the IPS guarantees that the estimated matrices belong to S+(G).
In this case, a necessary condition for the existence of the maximum likelihood
estimate is that the number of samples is greater than the cardinality of the largest
clique (see Lauritzen, 1996, pag. 133), a setting that is easily missed in case of gene
expression data.

To estimate the covariance matrix in such circumstances, Martini et al. (2013)
introduced a shrinking procedure in the estimation of the sample covariance ma-
trices. Apart from increased efficiency, the shrunken estimates have the additional
advantage of being always positive definite and well conditioned. The authors use
a James-Stein-type shrinkage estimator, as implemented in corpcor R package
(Schafer and Strimmer, 2005; Opgen-Rhein and Strimmer, 2007).

The shrunken estimates are passed on to the IPS algorithm. The use of a shrink-
age estimator, however, precludes the use of the asymptotic distribution of the log-
likelihood ratio test. Thus, a permutational approach on the samples is used.

Even if the IPS algorithm implemented in qpgraph (Castelo and Roverato,
2006) is one of most computationally efficient, in some cases (very large and com-
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plex pathways) it is highly computationally demanding (e.g. for various pathways,
the IPS algorithms takes even several days to converge) and sometimes it has prob-
lems of convergence. Therefore, the authors have also investigated the possibility of
computing the maximum likelihood estimate of the covariance matrices using the
approach of Friedman et al. (2008), implemented in the R package glasso, where
they have specified the indices of entries of the inverse covariance matrix to be con-
strained zero and set the regularization parameter equal to zero. In the examined
cases, the estimates of the covariance matrices obtained by glasso with no regu-
larization and with the IPS algorithm were the same and no significant improvement
in the computational efficiency were found.

4 Looking deeper within the pathway

One of the major advantages of the approach proposed in Massa et al. (2010) is the
possibility to break down the problem of differences among experimental conditions
into testing relevant subgraphs, while accounting for the multiplicity issue arising
from the number of subgraphs. In fact, if the graph is decomposable (see Cowell
et al., 1999, pag. 50), it is possible to decompose it into its maximal complete sub-
graphs (cliques) and repeat the previous two tests for each clique. If the graph is not
decomposable, it is always possible to add extra edges in order to obtain a triangu-
lation of the graph and therefore a graph that is decomposable (see Cowell et al.,
1999, pag. 57). Under decomposability, the density function is uniquely expressible
as the product of marginal density functions on cliques and these marginal densi-
ties are now the focus of interest. The cliques are, in fact, complete graphs (i.e., all
the nodes are connected by an edge), so that standard inference on homogeneity of
variances and equality of means can be performed (see previous section).

This decomposition allows to finely identify the portion of the pathway that is re-
ally involved in the experimental condition. Following this idea, Martini et al. (2013)
proposed an empirical approach, called clipper, that, exploiting the structure of
a junction tree derived from the graph decomposition, identifies signal paths within
the entire pathway mostly correlated with the phenotype.

Junction tree construction builds a new hyper-tree having cliques as nodes and
satisfying the running intersection property according to which, for any cliques C1
and C2 in the tree, every clique on the path connecting C1 and C2 contains C1 ∩
C2. Using the structure of this hyper-tree, clipper identifies paths and sub-paths
ranked according to a score that we called relevance. Briefly, the authors define a
path as the shortest path connecting the root clique with a leaf clique (identified
by maximum cardinality search algorithm). For each clique along the paths, the
p-value of the test on homoschedasticity is considered as weight w of the clique.
Then, the relevance score is a function of the p-values of the cliques belonging to
the path. Higher the relevance more associated to the phenotype is the path. For
a given graph, there could be more than one junction tree. Therefore, the root of
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the junction tree is forced to be in agreement with the biological structure of the
pathway.

5 The time course experimental design without replicates

Time course gene expression experiments are widely used to study the dynamics
of biological processes. Usually, the main goal of such experiments is to identify
genes modulated along a biological process or after a system perturbation (such
as drug treatments or genetic modifications). However, time course data are costly
and usually long time series have few or no replicates. Although several statistical
models have been proposed to account for differential expression in the contest of
time series without replicates (Storey et al., 2005; Han et al., 2007; Wu and Wu,
2013), none of them were proposed in the context of pathway analysis.

Martini et al. (2014) proposed a two-steps approach based on clipper, called
timeClip, to test pathway time-dependency. Briefly, given that a pathway is com-
posed by multiple genes, to reduce the dimension of a whole or of a portion of a
pathway, the authors used principal component analysis. Then, the first principal
component is explored for temporal variation.

5.1 Exploring the whole pathway

Let Yn×t be the normalized log transformed gene expression matrix with genes on
the rows and experiments (equal to time points t) on the columns. Let Y P

p×t the
sub-matrix of genes belonging to pathway P. Pathway P has p genes. Then, on
the transpose of Y P, Y P′ , the authors perform principal component analysis (PCA).
They used both the classical (R package stats) and the robust (rrcov R package)
version of PCA. Let ZP

t×p be the scores matrix and LP
p×t the loadings matrix. They

call ZP
1 , . . . ,Z

P
p the p principal components. In this way, the first PCs summarize the

temporal variation of the genes in pathway P (if present). Thus, from now on we
will indicate ZP

i as ZP
i (t).

Then, for irregularly sampled time series the authors assume that the irregularly
sampled signal ZP

1 (t) can be decomposed as Z(t) = p(t) + ε(t), where p(t) is a
deterministic function, hereafter called “trend”, and ε(t) is the realization of a sta-
tionary stochastic process with mean zero. Extensive exploratory analysis suggests
that a reasonable choice for the trend component is a polynomial of degree 2 in t,
i.e.,

p(t) = β0 +β1t +β2t2

with β1 capturing existing temporal behaviors of ZP
1 (t) and β2 correcting for poten-

tial non linearities. Moreover, the authors assume that ε(t) follows a continuous-
time Gaussian autoregressive process of order 1. The model is fitted using gen-
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eralized least squared (as implemented in nlme R package). The representative
p− value of pathway P is then taken to be the p-value of the test of nullity of β1
(obtained by a t-test as implemented in the gls function of the nlme R package).
Bonferroni correction is used to adjust p-values for multiple tests.

5.2 Decomposing the pathway

Pathways declared as time-dependent in step 1 are then moralized, triangulated and
decomposed into a junction tree as described in Martini et al. (2013).

A clique k of pathway P, noted as CP
k (with k = 1, . . . ,K), is composed by a

subset of genes in P, cP
k . Let Y P

ck
be the sub-matrix of Y corresponding to the genes

of the clique CP
k . For each clique k of P we apply the same approach as described

in step 1: PCA transformation and then a linear model with polynomial trend and
autoregressive process of order 1 on the first PCs. The p-value of clique k in pathway
P, pCP

k
is given by the p of the β1 of the polynomial regression. Finally, the best time-

dependent paths within a pathway P, hereafter called SPj , j = 1, . . . ,J, are identified
using the relevance measure as described in previously (Martini et al., 2013).

6 Future perspectives

The flexibility of the graphical modeling approach, when applied to gene set anal-
ysis, allows to tackle key questions in the analysis of the behaviour of groups of
genes, as shown by the contributions described in this talk. Clearly, effectiveness of
the approach increases by increasing the quality of the a priori information and of
the data. When pathways information lacks of trustable evidence, data might help to
acknowledge and adjust for the discrepancies in the structure of the pathway that are
provided by different sources and to discover novel genetic interactions. Strategies
to refine the structure of the pathways become therefore crucial to amplify the future
potential of such approaches.

References

Ackermann, M. and Strimmer, K. (2009). A general modular framework for gene
set enrichment analysis. BMC Bioinformatics, 10, 47.

Anderson, T. W. (2003). An introduction to multivariate statistical analysis. Wiley,
New York.

Castelo, R. and Roverato, A. (2006). A robust procedure for gaussian graphical
model search from microarray data with p larger than n. Journal of Machine
Learning Research, 7, 2621–2650.



10 Chiara Romualdi

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. (1999). Prob-
abilistic Networks and Expert Systems. Springer-Verlag, New York.

Draghici, S., Khatri, P., Tarca, A. L., Amin, K., Done, A., Voichita, C., Georgescu,
C., and Romero, R. (2007). A systems biology approach for pathway level anal-
ysis. Genome Research, 17(10), 1537–1545.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance esti-
mation with the graphical lasso. Biostatistics, 9(3), 432–441.

Goeman, J. J. and Buhlmann, P. (2007). Analyzing gene expression data in terms of
gene sets: methodological issues. Bioinformatics, 23(8), 980–987.

Han, X., Sung, W., and Feng, L. (2007). Identifying differentially expressed genes
in time-course microarray experiment without replicate. J Bioinf Comput Biol, 5,
281–296.

Janssen, A. (1997). Studentized permutation tests for non-i.i.d. hypotheses and the
generalized behrens-fisher problem. Statistics and Probability Letters, 36(9), 21.

Laurent, J., Pierre, N., and Dudoit, S. (2012). Gains in power from structured two-
sample tests of means on graphs. Annals of Applied Statistics, page In press.

Lauritzen, S. L. (1996). Graphical models. Clarendon Press, Oxford.
Martini, P., Sales, G., Massa, M. S., Chiogna, M., and Romualdi, C. (2013). Along

signal paths: an empirical gene set approach exploiting pathway topology. Nu-
cleic Acids Research, 41(1), e19.

Martini, P., Sales, G., Calura, E., Cagnin, S., Chiogna, M., and Romualdi, C. (2014).
timeclip: pathway analysis for time course data without replicates. BMC Bioin-
formatics, In Press.

Massa, M. S., Chiogna, M., and Romualdi, C. (2010). Gene set analysis exploiting
the topology of a pathway. BMC Systems Biology, 4(1), 121.

Matthews, L., Gopinath, G., Gillespie, M., Caudy, M., Croft, D., de Bono, B., Garap-
ati, P., Hemish, J., Hermjakob, H., Jassal, B., Kanapin, A., Lewis, S., Mahajan, S.,
May, B., Schmidt, E., Vastrik, I., Wu, G., Birney, E., Stein, L., and D’Eustachio, P.
(2009). Reactome knowledgebase of human biological pathways and processes.
Nucleic Acids Res., 37, 619–622.

Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., and Kanehisa, M. (1999).
KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res., 27,
29–34.

Opgen-Rhein, R. and Strimmer, K. (2007). Accurate ranking of differentially ex-
pressed genes by a distribution-free shrinkage approach. Statistical Applications
in Genetics and Molecular Biology, 6(9).

Sales, G., Calura, E., Cavalieri, D., and Romualdi, C. (2012). graphite - a bioconduc-
tor package to convert pathway topology to gene network. BMC Bioinformatics,
13(1), 20.

Schaefer, C., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., and Buetow,
K. (2009). Pid: the pathway interaction database. Nucleic Acids Res, 37(Database
issue), D674–9.

Schafer, J. and Strimmer, K. (2005). A shrinkage approach to large-scale covariance
matrix estimation and implications for functional genomics. Statistical Applica-
tions in Genetics and Molecular Biology, 4(32).



Recent advances in genomic studies 11

Storey, J., Xiao, W., Leek, J., Tompkins, R., and Davis, R. (2005). Significance
analysis of time course microarray experiments. Proc National Acad Sci USA,
102(36), 12837–12842.

Tarca, A. L., Draghici, S., Khatri, P., Hassan, S. S., Mittal, P., Kim, J.-s., Kim, C. J.,
Kusanovic, J. P., and Romero, R. (2009). A novel signaling pathway impact
analysis. Bioinformatics, 25(1), 75–82.

Tian, L., Greenberg, S. A., Kong, S. W., Altschuler, J., Kohane, I. S., and Park,
P. J. (2005). Discovering statistically significant pathways in expression profiling
studies. Proceedings of the National Academy of Sciences of the United States of
America, 102(38), 13544–13549.

Wu, S. and Wu, H. (2013). More powerful significant testing for time course gene
expression data using functional principal component analysis approaches. BMC
Bioinformatics, 14(1), 6.


