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Abstract Two-phase studies are attractive for their economy and efficiency in re-
search settings where large cohorts are available for investigating the prognostic and
predictive role of novel genetic and biological factors. In this type of study, infor-
mation on novel factors is collected only in a convenient subcohort (phase II) drawn
from the cohort (phase I) according to a given (optimal) sampling strategy. In order
to estimate event incidence in the subcohort, a Kaplan-Meier method accounting for
the design has been derived with a proper variance estimator. The proposed method
is applied in the context of a two-phase study on childhood acute lymphoblastic
leukaemia.
Abstract I disegni di studio a due fasi sono attraenti per la loro efficienza quando
si hanno a disposizione ampie coorti per valutare il ruolo predittivo e prognostico
di fattori genetici e biologici rari. In questo tipo di studi, l’informazione genet-
ica/biologica è raccolta solo su un campione ottimale (fase II) della coorte (fase
I). Per stimare l’incidenza di evento nella sottocoorte, lo stimatore di Kaplan-Meier
(e la sua varianza) sono stati adattati per tener conto del disegno di studio. Il metodo
proposto è stato applicato per stimare l’incidenza di ricaduta in uno studio a due fasi
sulla leucemia linfoblastica acuta pediatrica.
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1 Introduction

Longitudinal cohort studies provide the ideal setting to identify new biomarkers (as
risk factors or predictors of response to treatment), since many of such studies have
stored biologic samples from thousands of individuals who are being followed up
over many years. However, the combination between large cohorts and expensive
new technologies makes infeasible to measure novel biomarkers on the entire co-
hort and efficient study designs are needed. The traditional approach consists in
the nested case-control design, that although is very efficient, allows to evaluate
risk/protective factors for the event type that defines the cases (and not for other
possible events of interest). This considerably limits the potentiality of the study,
in particular when precious samples from bio-banks are used to measure additional
’costly’ covariates.

An alternative approach is to use a two-phase sampling technique [1]. Advan-
tages of the two-phase design include the opportunity to use all the second phase
data, without having to comply to a strict matching, the possibility to use different
models and to accommodate different time scales in the analysis. Also, this design
is advantageous when exposure is rare, because this can be accounted for, through
stratification, in sampling from the cohort. The aim of this work is to develop a
weighted Kaplan-Meier (KM) survival estimator and its variance in the framework
of a two-phase design.

2 Methods

Let Ti be the failure time and Ci the censoring time of subject i (i = 1...M) in a
cohort (phase I random sample) of size M. The minimum between Ti and Ci (Zi =
min(Ti,Ci)) is observed and ∆i = I(Ti ≤ Ci) indicates whether the survival time or
the censoring time is observed, as commonly done in survival analysis. Ti and Ci are
assumed to be independent. The right continuous counting process dNi(t) records
the number of events experienced at time t (i.e. dNi(t) = I(Zi = t)∆i) and Yi(t)
indicates whether the subject is at risk and under observation at time t (Yi(t) =
I(Zi ≥ t)).

Suppose that a biomarker (or additional information) is measured on a subset m <
M of subjects drawn according to a certain sampling design (phase II). The goal is to
estimate the survival function S(t) = P(T > t) in subgroups defined according to the
variable ascertained only in the phase II sample. Under efficient sampling adopted
in phase II the Kaplan-Meier estimator would obtain a biased estimate. Unbiased
estimates of the total number of events and persons at risk that one would observe
on the entire cohort can be obtained using an Horvitz-Thompson approach dN̂·(t) =
m
∑

i=1
dNi(t)/πi and Ŷ·(t) =

m
∑

i=1
Yi(t)/πi, where πi is the probability of the sampling unit

i to be selected for phase II from the cohort (i.e. conditional on the realized random
phase I sample). Their variance estimates have been derived by Särndal [6].
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The Kaplan-Meier estimator of survival can then be derived as:

Ŝ(t) = ∏u≤t

[
1−dΛ̂(u)

]
= ∏u≤t

[
1− dN̂·(u)

Ŷ·(u)

]
where Λ(u) represents the cumulative

hazard function.
As far as the variance estimate, we concentrate on the variance for the cumulative

hazard and, given that S(t) = exp[−Λ(t)], the variance of the survival estimate will
be then estimated according to the delta method by: v̂ar[Ŝ(t)] = Ŝ(t)2v̂ar[Λ̂(t)].

A naı̈ve variance estimator would be the martingale-based variance estimate of
Λ̂(t) [7] where number of events and subjects at risk are properly weighted. This
however represents the irreducible minimum uncertainty that would remain if ev-
eryone in the cohort would be sampled in phase II, which is called the contribute

of phase I sampling: varI [Λ̂(t)] =
∫ t

0
dN̂·(u)
Ŷ·(u)2 . To obtain an unbiased variance esti-

mate, the contribute of phase II sampling has to be added in order to account for
the fact that the additional covariate has been ascertained only in the phase II sam-
ple: var[Λ̂(t)] = varI [Λ̂(t)] + varII [Λ̂(t)]. The phase II estimate makes use of the
results of Särndal and can be estimated as: v̂arII

[
Λ̂(t)

]
= ∑

u,u′<t
ĉov[dΛ̂(u),dΛ̂(u′)],

that can be further decomposed into the sum of covariances between total number
of subjects at risk and events:

ĉov[dΛ̂(u),dΛ̂(u′)] =
ĉov[dN̂·(u),dN̂·(u′)]

Ŷ·(u)Ŷ·(u′)
+

dN̂·(u)dN̂·(u′)ĉov[Ŷ·(u),Ŷ·(u′)]
Ŷ·(u)2Ŷ·(u′)2

+

−dN̂·(u′)ĉov[dN̂·(u),Ŷ·(u′)]
Ŷ·(u)Ŷ·(u′)2

− dN̂·(u)ĉov[dN̂·(u′),Ŷ·(u)]
Ŷ·(u′)Ŷ·(u)2

(1)

The formal derivation of the proposed variance used the functional delta method.
An alternative derivation can be performed by following the linearisation approach
by Demnati and Rao [2] (also denoted influence function approach). This yields the
same estimate, but this latter approach is computationally advantageous, as it does
not require the estimation of all the covariance terms in (1). An identical estimator
would be also obtained by a pseudo-likelihood approach.

3 Simulations

In order to evaluate the performance of the proposed estimator in two-phase studies,
we ran a simulation study, where we considered a constant hazard rate of 0.1, and
censoring time was generated according to uniform distribution. We drew B=1000
random first-phase samples of size M=1000, from which we sampled a second phase
sample (m=50 and 100 units) according to different sampling schemes in order to
mimic the following different study designs:i) random sample; ii) case-control sam-
pling: we randomly sampled m/2 individuals among those who experienced the
event (cases) up to time 2 and m/2 individuals among the others (controls);iii) strat-
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ified sampling: we considered the phase I sample divided into 4 strata defined by the
variable X = {0,1} (with frequencies 80% and 20%, respectively) and by the occur-
rence of the event. The marginal hazard rates in the two strata with X = 0 and with
X = 1 were assumed to be 0.16 and 0.4, respectively. An equal number of subjects
(m/4) was sampled for each strata (balanced sampling).

Bias fluctuated around 0 in each scenario and was always lower than 0.2%. For
each simulation, the 95% confidence interval of Ŝ(t) was computed on the logarithm
scale (log(S(t)) = −Λ(t)) to evaluate coverage and length. The average length of
the confidence interval was higher for random sampling (as expected) and was the
lowest in the stratified design underlying the advantages of a careful design. Specif-
ically, with a second phase sample of 50 subjects, the average length of confidence
interval was 0.15, 0.06 and 0.04 for random (i), case-control (ii) and stratified sam-
ples (iii), respectively. The coverage was very close to the nominal 95% value, rang-
ing mostly within a minimum of 92% and a maximum of 96%.

4 Application to a clinical study

The clinical context that motivated this work is represented by a study on childhood
acute lymphoblastic leukemia, performed in order to evaluate the role of different
genetic polymorphism on treatment failure due to relapse. We will concentrate on
the homozygous deletion (or null genotype) in glutathione S-transferase-θ (GST-
T1) gene. Clinical information was available for a cohort of 1999 consecutive pa-
tients (mainly European Caucasians, aged between 1 and 17 years, median age: 5
years) newly diagnosed with ALL in the Associazione Italiana di Ematologia Pedi-
atrica (AIEOP) centers between September 2000 and July 2006. For most of these
patients, biological samples stored at diagnosis were available, but a parsimonious
use of these specimens motivated the choice of a two-phase design [3]. Given the
study objective, we aimed at maximizing the precision of the estimate of the as-
sociation between genotype and relapse free interval. For this reason, we applied
the optimal sampling strategy developed by Reilly [5]. As first, the whole cohort of
1999 patients was divided in six strata according to the event of interest (relapse/no
relapse) and to the risk/treatment group (standard, medium, high risk). Different
sampling fractions were applied to each strata, and these were chosen to minimize
the variance of the estimate of the association between GST-T1 and relapse in a pilot
study of 164 genotyped patients. As typically obtained with this approach [5], the
optimality is achieved by sampling all cases (relapses) and a variable proportion of
controls (non relapses) depending on the genetic variability within each strata. Out
of the 766 children for whom genotyping was required according to study design,
614 had stored DNA material and valid genotype measure was obtained for 601
patients.

The performance of the proposed estimate can be actually shown here by de-
riving the overall relapse-free survival for patients in phase II sample, as well as
for the whole cohort of 1999 patients. Our phase II estimate was found to be very
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Fig. 1 Estimated relapse-free interval and point-wise confidence intervals in patients with normal
(reported with a solid line) and deleted (dashed line) GST-T1 gene.

similar to the cohort estimate: 3-year relapse free interval of 86.7% (standard error
(SE) 0.84%) and 86.2% (SE 0.83%), respectively. Moreover, the efficiency of the
design can be expressed through the ratio between the phase I variance and the total
variance of the KM estimate, which accounts for the fact that only a subsample was
genotyped. In our study, this ratio was about 91%, which is very satisfactory given
that this result is obtained after genotyping only 30% of the cohort.

Relapse-free survival by GST-T1 deletion can only be estimated based on phase
II data and shows that patients with GST-T1 deletion had higher risk of relapse, with
5-year relapse-free interval 75.7% (SE 4.1%) versus 83.5% (SE 1.1%, Figure 1). A
Cox model adapted for two-phase design, when applied to the cause specific hazard
of relapse, gives an hazard ratio of 1.32 (95% CI: 0.90, 2.00) for GST-T1 deleted
patients versus non deleted, after adjusting for relevant factors [3].

5 Discussion

Two-phase studies are attractive for their economy and efficiency, especially in re-
search settings where many novel biomarkers need to be investigated. These designs
have been applied sporadically mainly because there is no consolidated experience
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both in optimal sampling and statistical analysis and there is limited availability of
specific statistical software. In this work we extended the estimator of survival prob-
ability and its variance to deal with two-phase designs, and showed that they have
a good performance under different simulated scenarios. The code to compute this
estimates has been developed in R software and is available in the survey package
by svykm function [4], but can be very slow for large data-set. We also developed
a new code applying the linearisation method, that yields the same estimate in less
time.

In our motivating context, two-phase design is particularly attractive for a par-
simonious use of bio-specimens collected at diagnosis and also for the potential
to study the association of GST-T1 deletion with different outcomes. In the design
stage, we proposed an optimal approach for the choice of sampling fractions that is
based on relapse as the event of interest. This choice was actually quite efficient.

In order to recover the representativeness of the subcohort for the entire cohort,
we used weights related to the inverse of the probability to be sampled, but more
general weights can be used in this approach, such as calibration weights [4]. When
phase II variables are common genetic polymorphism, as in our motivating context,
it is unlikely to find any strong relation between phase I and II variables, therefore
no big advantage would be expected by calibration.

In this work, a valid survival estimator has been proposed for general two-phase
sampling designs. We are working to develop an incidence estimator that account
for possible competing risks.
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