Introducing Prior Information into the Forward
Search for Regression

Un approaccio Bayesiano alla Forward Search

Anthony C. Atkinson and Aldo Corbellini

Abstract The forward search provides a flexible and informative forfrmabust
regression. We describe two ways of introducing prior infation into the regres-
sion model used in the search, either through fictitious Masens or through prior
distributions of the parameters. The relationship betvikeriwo methods is estab-
lished. The extension to the forward search is not entiteaightforward, requiring
weighted regression. Forward plots are used to exhibitffeetef prior information
on inferences.

Abstract L'obiettivo del paper € mostrare come si pud incorporaferimazione
a priori allinterno dell'algoritmo di forward search edustrare la performance di
guesto nuovo approccio.

Key words: consistency factor, fictitious observation, robust regjoag weighted
regression

1 Introduction

Methods of robust regression have been described in seveois, for example
Rousseeuw and Leroy (1987), Atkinson and Riani (2000) anditeeet al.(2006).
The recent comparisons of Riagtial. (2014b) indicate the superior performance of
the forward search (FS). However, none of these methodsdaslprior informa-
tion; they can all be thought of as developments of leastregudhe purpose of
the present paper is to show how prior information can berpamated into FS for
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regression and to give some results indicating the compana¢rformance of this
Bayesian method.

In order to detect outliers and departures from the fittedagsion model, FS uses
least squares to fit the model to subsetsnaibservations. The initial subset of
observations is chosen robustly, for example by least techsguares. The subset
is increased from sizento m+ 1 by forming the new subset from the observations
with them+ 1 smallest squared residuals. For eatfimg < m< n— 1), we test for
the presence of outliers, using the observation outsidsubset with the smallest
absolute deletion residual. The algebraic details of thizg@dure are described in
§2. In §3 we introduce prior information into this forward procedun the form
of fictitious observations. The alternative form througk gpecification of prior
distributions of parameters is introducedsdhand related to statistics derived from
the fictitious observations. The results of the FS are tylyigaesented through a
forward plot of quantities of interest as a functionmfin §5 we use such plots to
elucidate the change in properties of the search with vanatf the amount of prior
information.

2 Algebrafor the Forward Search

2.1 Testsin the Linear Model

In the regression modgl= X + ¢, yis then x 1 vector of responseX; is ann x p
full-rank matrix of known constants, witlth rowx' , andg is a vector ofp unknown
parameters. The normal theory assumptions are that theseree i.i.d.N(O, o?).

The least squares estimatorfdfs 3. Then the vector ofi least squares residuals
ise=y—9=y—XB = (I —H)y, whereH = X(XTX)~1XT is the ‘hat’ matrix,
with diagonal elements; and off-diagonal elements;. The residual mean square
estimator ofo? is % =e"e/(n—p) =S, €/(n—p).

FS fits subsets of observations of sim¢o the data, withmy < m< n. Let S*(m)
be the subset of sizea found by FS, for which the matrix of regressorsxgm).
Least squares on this subset of observations yields pagamsimate$3(m) and
s?(m), the mean square estimateat onm— p degrees of freedom. Residuals can
be calculated for all observations including those n&'ifm). Then resulting least
squares residuals are

e(m) = yi —x B(m). (1)

The search moves forward with the augmented sugget+ 1) consisting of the
observations with then+ 1 smallest absolute values&{m). To start we takeny =
p and search over subsetsmbbservations to find the subset that yields the LMS
estimate of3. However, this initial estimator is not important, provitimasking is
broken.

To test for outliers the deletion residual is calculatedtf@n — m observations
not in S*(m). These residuals, which form the maximum likelihood teststlie
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outlyingness of individual observations, are

yi =X B(m) a(m)
¢s2 M{L+h(m)} /ML h(m)}

where the leveraghi(m) = xT {X(m)TX(m)}~1x. Let the observation nearest to
those formingS*(m) beiy, where

ri(m) =

(2)

imin=arg min |ri(m)|.

min gi¢9(m)| i(m)]
To test whether observatiog,, is an outlier we use the absolute value of the min-
imum deletion residual, nametymin(m), as a test statistic. If the absolute value is
too large, the observatiap,;, is considered to be an outlier, as well as all other
observations not i$*(m).

2.2 Estimation of the Variance

In order to test for outliers we need a reference distriluar r;(m) in (2). If we
estimatedo? from all n observations, the statistics would have distribution on
n— p degrees of freedom. However, in the search we select theatembut of n
observations to provide the estimatém), so that the variability is underestimated.
To allow for estimation from this truncated distributioat the variance of the sym-
metrically truncated normal distribution containing trentralm/n portion of the
full distribution beo?(m). See Rianet al. (2009) for a derivation from the general
method of Tallis (1963). We take as our approximately urddasstimate of vari-
ances? = §(m)/a2 = s?(m)/c(m,n). In the robustness literatucgém, n) is called a
consistency factor (Riamt al., 2014a).

3 Prior Information from Fictitious Observations

In some of the applications in which we are interested, fangale fraud detection
(Perrotta and Torti, 2010) we have appreciable prior inftion about the values
of the parameters. This can sometimes be thought of as cdinainmgny fictitious
observationgyp with matrix of explanatory variableXy. Then the data consist of
the ng fictitious observations plua actual observations. The search in this case
now proceeds fronm = 0, when the fictitious observations provide the parameter
values for alln residuals from the data. The search then continues as editibove
but with the fictitious observations always included in thased for fitting, their
residuals being ignored in the selection of successiveatsibs

There is one complication in this procedure. Tefictitious observations are
treated as a sample with variang@. However, them observations from the ac-
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tual data are again from a truncated distributiomodut of n observations and so
asymptotically have a varian@ém,n)o?, which must be adjusted before the two
samples are combined. This becomes a standard problemghtedileast squares
(for example, Rao 1973, p. 230). Lgt be the(np + m) x 1 vector of responses
from the fictitious observations and the subset and let thiar@ance matrix of these
observations b&?G, with G a diagonal matrix. Then the firgp elements of the
diagonal ofG equal one and the last elements have the valwém, n). In the least
squares calculations we need only to multiply the elemeifrtiseosample values of
y andX by c(m,n)~1/2,

4 Prior Distribution of Parameters

Chaloner and Brant (1988), as part of a study of Bayesianadstfor outlier detec-
tion, specify prior information for a linear regression nebah terms of parameter
values. For comparability between the two approaches, werite these prior pa-
rameter values in terms of the fictitious observations ofittexious section.

Let T = 1/0?. The prior distribution ofr is gamma, that ig(7) 0 7@ Ve T,
The mean ig/b and the varianca/b?. To finda andb, we consider the distribution
of % the customary mean square estimatoodffrom theny observations. The
degrees of freedom are=ng— p. LetS= v%, that is the residual SS, distributed
aso?x2. Then it follows that vats3) = 20*/v. We require vat, wheref = 1/s3.
We use the standard Taylor series expansiorg@ar= {g'(x) }var(x), with g(x) =
1/x, x= s = 1/1, so that vaff) = var(x)/x* = 212/v. Then the relationships for
the mean and variance of the gamma distribution pield

a=v/2=(ng—p)/2 and b=v/(2f)=vs/2=S/2.

We now use the prior information for the linear model to ob&h expression fd3.
Prior information for the linear model is given as

R=XJX and fBo=R XJyo,

so that L
S=Y§Yo— B3 RBo-

5 Examples

To explore the properties of FS including prior informatiove use simulation to
provide forward plots of the distribution of quantities atérest during the search.
In these simulations we kept the prior values fixed, rathen tliepeatedly simulating
them using fictitious observations. Figure 1 shows plothefstimate 062. In the
left-hand panel the prior information is overwhelming, lwity = 1,000, whereas
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Fig. 1 Forward plots of estimates of2. Left-hand panel, strong prior informationy(= 1,000;n =
100). Right-hand panel, weak prior informatiam, & 100;n = 1,000). 10,000 simulations; 1%,
50% and 99% empirical quantiles. Dotted lines, with pridoimation; heavy line, without prior
information

nis only 100. The distribution of the estimate is shown by ewdtines; it is lit-
tle affected by the sample information. The continuousdiirethe figure are for
the estimate ot that uses only sample information. Although, by the end ef th
search, the median estimate is close to the population \lfiee, there is great
variability, particularly at the start of the search, whéne skewed nature of the
scaled chi-squared distribution of the estimate is evident

In the right-hand panel the prior information is apprecgjatgélduced, withng =
100 anch= 1,000 The estimate using prior information is always less vaddhan
that based solely on sample information, although they kiatally converged by
the end of the search. For small valuesrthe estimate including prior information
is much more precise, although the distribution is sliglsthgwed, reflecting the
asymptotic nature of the action of the correction factor.
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Fig. 2 Forward plots of minimum deletion residuals. Left-hand glastrong prior information

(no = 1,000;n = 100). Right-hand panel, weak prior informatiam, & 100;n = 1,000). 10,000

simulations; 1%, 50% and 99% empirical quantiles. Dotteddj with prior information; heavy

line, without prior information
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The forward plots of minimum deletion residuals form thetcaintool for out-
lier testing in the FS. Outliers are detected when the cuovehfe sample values
falls outside a specified envelope. The actual rule for dieteof an outlier has to
take account of the multiple testing inherent in the FS (doceach value ofn).
One rule, yielding powerful tests of the correct size is giby Rianiet al. (2009).
The left-hand panel of Figure 2 shows the envelopes for gtpior information.
The upper envelopes for procedures with and without prifarination agree. For
the 1% and 50% quantiles the values of the statistics in tkerai® of prior infor-
mation are higher than those in its presence, reflectingnitreased prevalence of
smaller estimates of?, division by which give larger values of the statistics. In
the right-hand panel, with weaker prior information, thetsets of curves agree
for all except sample sizes around 100 or less. Howevernibighe agreement in
distribution of the statistics that is important, since émeelopes apply to different
statistics, but rather the importance is the increase ingp@ivthe tests that comes
from including prior information. We look forward to demdreting this feature in
our future research.
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