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Abstract We propose a method for making inference on a functional of a mul-
tivariate distribution. The method is based on a copula representation and on the
properties of an Approximate Bayesian algorithm based on empirical likelihood.
Abstract Si propone un metodo per la stima di un funzionale di interesse relativo
ad un modello multivariato. Il metodo si basa sulla rappresentazione in termini di
copula e sfrutta le proprietà delle tecniche computazionali bayesiane approssimate
che utilizzano metodi di verosimiglianza empririca.
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1 Introduction

Copula models are nowadays widely used in multivariate data analysis. A copula
is a flexible tool that allows the researcher to model the joint distribution in two
separate steps: the marginal distributions and a copula function which captures the
dependence structure of the joint distribution.

Whereas it is simple to produce reliable estimates of the parameters of the
marginal distributions of the data, the problem of estimating the dependence struc-
ture, however it is defined, is crucial and complex, especially in high dimensional
problems. On the other hand, dependence is one of the most fundamental features
in (applied) statistics, economics and probability.

In the classical approach to copula estimation, there are no broadly satisfactory
methods for the joint estimation of marginal and dependence parameters. Bayesian
alternative are not yet fully developed, although Min and Czado (2010), Smith et.
al. (2012) and Wu et al. (2013) are remarkable instances.
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In this work we consider the general problem of estimating some specific quan-
tity of interest of a generic copula (such as, for example, tail dependence index or
Spearman’s ρ) by adopting an approximate Bayesian approach along the lines of
Mengersen et al. (2013). In particular, we discuss use of the BCel algorithm, based
on the empirical likelihood approximation of the marginal likelihood of the quantity
of interest. Our approach is approximate in two aspects: i) elicitation is required
only on the parameter of interest, and its prior is combined with the empirical like-
lihood; ii) we do not use the “true” likelihood function, but rather an approximation
based on empirical likelihood theory (Owen, 2010). This hopefully reduces the po-
tential for incorrect distributional assumptions. Our approach can be applied both to
parametric and nonparametric modelling of the marginal distributions. The method
described in this paper, although using a different kind of approximation, is in the
spirit of Hoff (2007), and it is similar, although from a different perspective, to the
analysis in Schennach (2005).

2 Copulae and Empirical Likelihood

A copula model is a way of representing the joint distribution of a random vector
X = (X1, . . . ,Xm). Given an m-variate cumulative distribution function (CDF) F, it
is possible to show that there always exists an m-variate function C : [0,1]m→ [0,1],
such that F(x1, . . . ,xm) = C(F1(x1), . . . ,Fm(xm)), where FJ is the marginal CDF of
X j. The copula function C is a CDF with uniform margins on [0,1]: it binds together
the univariate CDF F1,F2, and Fm to produce the m-variate CDF F. The copula
function C does not depend on the marginal distributions of F, but rather it accounts
for potential dependence among the components of the random vector X.

For each pair of components of X, say Xi and X j, assume they have continuous
CDF’s F1 and F2. It is well known that both the transformed variables U1 = F1(X1)
and U2 = F2(X2) have uniform marginal distributions. A semiparametric copula
model consists of a parametric model for the joint distribution of (U1,U2) and no
assumptions on the marginal CDF’s. A nonparametric copula is assumed when the
joint distribution of (U1,U2) depends on an infinite dimensional parameter. In this
paper we will allow the marginal distributions Fj to follow either a parametric or
a non parametric model. For the copula function we will not make any parametric
assumption. Rather we will limit our goal to the estimation of a particular function
of interest of the copula C.

Empirical likelihood is a way of producing a nonparametric likelihood for a quan-
tity of interest in an otherwise unspecified statistical model. It is particularly useful
when a true likelihood is not readily available either because it is too expensive to
evaluate or when the model is not completely specified. Assume that our dataset is
composed of n independent replicates (x1, . . . ,xm) of some random vector X with
distribution F and corresponding density f . Rather than defining the usual likeli-
hood function in terms of f , the empirical likelihood is constructed with respect to a
given parameter of interest, say ϕ , expressed as a functional of F , and then a sort of
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profile likelihood is computed in a nonparametric manner. Consider a given set of
generalized moment conditions of the form EF (h(X ,ϕ)) = 0, where h(·) is a known
function, and ϕ is the quantity of interest. The resulting empirical likelihood is de-
fined as LEL(ϕ;x) = maxp ∏

n
i=1 pi, for all p such that 0 ≤ pi ≤ 1, ∑

n
i=1 pi = 1, and

∑
n
i=1 h(xi,ϕ)pi = 0. See Owen (2010) for a general discussion of empirical likeli-

hood methods.

3 ABC and EL

Approximate Bayesian computation has now become an essential tool for the anal-
ysis of complex stochastic models when the likelihood function is unavailable or
expensive to evaluate. It can be considered as a class of popular algorithms that
achieves posterior simulation by avoiding the computation of the likelihood func-
tion. A crucial condition for the use of ABC algorithms is that it must be relatively
easy to generate new pseudo-observations from the working model, for a fixed value
of the parameter vector. In its simplest form, the ABC algorithm proposes a value
from the prior and the value is accepted only if it produces new data which are sim-
ilar enough to the actual data. Many more sophisticated computational strategies
are available in order to avoid generating values from the prior; we will not dis-
cuss these issues and we rather concentrate on a different ABC approach which can
avoid the most expensive step in computational time, that is the proposal of new data
sets. This method has been proposed by Mengersen et al. (2013) and it is a sort of
re-sampling scheme where the proposed values are re-sampled with weights propor-
tional to their empirical likelihood. In practice, the algorithm is a sort of sampling
importance re-sampling method for models in which the “true likelihood” evalua-
tion is out of reach and the “true” weights are approximated through their empirical
likelihood.

Algorithm 1 BCEL algorithm

for i = 1 to M do
repeat
Generate θi from the prior distribution π(θ)
Set the weight for θi as ωi = LEL(θi;data).
end for
for i = 1 to M do
Draw, with replacement, a value θi from the previous set of M values using weights ωi,
i = 1, . . . ,M.
end for
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4 The proposed approach

Here we propose to adapt the BCEL algorithm of Mengersen et al. (2013) to a situ-
ation where the statistical model is only partially specified and our main goal is the
estimation of a finite dimensional parameter of interest. In practice this is the proto-
typical semiparametric set-up, where one is mainly interested in some meaningful
characteristic of the population, although the statistical model may contain nuisance
parameters which are often introduced with the aim to creating more flexible mod-
els that might better fit the data at hand. In order to make inference on the quantity
of interest, one must deal with them, in some way. Even if some of the additional
parameters are not particularly important in terms of estimation - they often lack of
a precise physical meaning - their estimates can dramatically affect the inference on
the parameter of interest. In these circumstances it might be more reasonable and
robust to partially specify the model and adopt a semiparametric approach.

4.1 The algorithm in full detail

We assume that a data set is available in the form of a size n×m matrix X, where n is
the sample size and m is the number of variables. In the following, X[·, j] will denote
the j-th column (variable) and X[i,·] the i-th row of X, respectively. For each j =
1, . . . ,m, we use the information in X[·, j] to estimate the marginal CDF of X[·, j]. Let

λ j = (λ
(1)
j ,λ

(2)
j , . . .λ

(S)
j ), j = 1,2, . . .m be the posterior sample obtained from some

Bayesian inference method for the distribution of X j. λ j can be either a sample from
the posterior distribution of the parameters of the model adopted for X j or a posterior
sample of CDF’s in a nonparametric set-up. Then we use a copula representation for
estimating the multivariate dependence structure of the random vector (X1, . . . ,Xm),

F(x1, . . . ,xm) =Cθ

(
F1(x1),F2(x2), . . . ,Fm(xm)

)
,

where θ is the parameter related to the copula function. Since we have already es-
timated the Fj(x j)’s, we now need to estimate Cθ (·) This can be done either using
some parametric model for the copula such as Clayton, Gaussian, Skew-t, Gumbel,
etc. . . . or using a nonparametric approach. In this paper, we follow a nonparamet-
ric route and we concentrate on some specific function of Cθ (·), say ψ = T (F).
This is particularly useful when there is no theoretical or empirical evidence that a
given copula should be used and we are mainly interested in some specific synthetic
measure of the multivariate dependence.
The final output of the above algorithm is then a posterior sample drawn from an
approximation of the posterior distribution of the quantity of interest ϕ . There are
several critical issues both in the practical implementation of the method and in
its theoretical properties. First, the constraints might hold only asymptotically: for
example the sample version of the Spearman’s ρ is only asymptotically unbiased.
Also, prior information is only provided for the marginal distributions and for ϕ:
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Algorithm 2 ABCOP algorithm

[1:] For s = 1, . . . ,S, use the s-th row of the posterior simulation λ
(s)
1 ,λ

(s)
2 , . . . ,λ

(s)
m to

create a matrix of uniformly distributed pseudo-data

u(s) =


u(s)11 u(s)12 . . . u(s)1m

u(s)21 u(s)22 . . . u(s)2m

. . . . . . u(s)i j . . .

u(s)n1 u(s)n2 . . . u(s)nm


with u(s)i j = Fj

(
xi j;λ

(s)
j

)
.

[2:] Given a prior distribution π(ϕ) for the quantity of interest ϕ ,
for b = 1, . . . ,B,

1. draw ϕ(b) ∼ π(ϕ);

2. compute EL
(

ϕ(b);u(s)
)
= ωbs;s = 1, . . . ,S.

3. take the average weight ωb = S−1
∑

S
s=1 ωbs

4. re-sample - with replacement - from
(
ϕ(b),ωb

)
,b = 1, . . . ,B.

end for

this, of course, has advantages and, on the other hand, poses theoretical issues. The
main advantage is the ease of elicitation: one need not to elicit unnecessary aspects
of the prior distribution. This is mainly in the spirit of the partially specified mod-
els, quite popular in the econometric literature. Another obvious advantage of the
proposed approach is the implied robustness of the method, with respect to different
prior opinions about non-essential aspects of the dependence structure. The most
important disadvantage of the proposed method is its inefficiency when compared
to a parametric copula, under the assumption that the parametric copula is the true
model. The practical implementation of the algorithm is quite simple in R ; it use
some functions contained in the suite gmm: see for example Chaussé (2010).

5 A simple illustration: Spearman’s ρ

To illustrate the method, for the sake of brevity, we only consider a simple ex-
ample with m = 2 . The Spearman’s ρ measure of dependence is defined by
ρ = 12

∫ 1
0
∫ 1

0 C(u,v)dudv− 3. Its sampling counterpart ρn is nothing but the cor-
relation among ranks and it can be written as

ρn =
1
n

n

∑
i=1

(
12

n2−1
RiSi−3

n+1
n−1

)
. (1)
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First we produce a size S posterior sample from the two marginal distributions of X1

and X2, say (λ 1
j ,λ

S
j ), for j = 1,2. For each fixed s = 1, . . . ,S let λ

(s) = (λ
(s)
1 ,λ

(s)
2 ),

and compute the n× 2 matrix U(s) whose generic element is given by u(s)i j =

Fj
(
xi j;λ

(s)
j

)
∈ [0,1], i = 1, . . . ,n; j = 1,2. Then we take ranks (R(s)

i ,S(s)i ) of the orig-

inal values and compute ρ
(s)
n for each single λ

(s). Also we are able to evaluate the
empirical likelihood of ρ for a given value of ρn as maxpi EL(ρ;λ

(s)) =∏
n
i=1 npi(ρ)

under the constraints ∑
n
i=1 pi = 1, and ∑

n
i=1 pi

( 12R(s)
i S(s)i

n2−1 −3 n+1
n−1 −ρ

)
= 0. From gen-

eral results on empirical likelihood, one has

EL(ρ;λ
(s)) =

n

∏
i=1

(
1+ηg(R(s)

i ,S(s)i ;ρ)

)−1

where η is the Lagrange multiplier which can be obtained from ∑
n
i=1

g(R(s)
i ,S(s)i ;ρ)

1+ηg(R(s)
i ,S(s)i ;ρ)

=

0, where g(R(s)
i ,S(s)i ;ρ) =

12R(s)
i S(s)i

n2−1 −3 n+1
n−1−ρ. We can then use Algorithm 2 to pro-

duce a posterior sample for the quantity of interest ρ .
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