A changepoint analysis on spatio-temporal point
processes

Un’analisi changepoint per processi di punto
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Abstract This work introduces a likelihood ratio based test statistic for detecting
change points over time in the inhomogeneous intensity of a spatio-temporal point
process. We propose a new method for detecting changes by fitting a spatio-temporal
log-Gaussian Cox process model using INLA. A simulation study assessing the
validity and properties of the test is presented.

Abstract Questo lavoro presenta una statistica test basata sul rapporto di verosimi-
glianza per identificare nel tempo change points nell’intensitd non-stazionaria di un
processo di punto spazio-temporale. I cambiamenti sono identificati utilizzando un
modello di Cox log-Gaussiano spazio-temporale che impiega INLA. Uno studio di
simulazione valuta la validitd e le proprietd del test.
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1 Motivation

Changepoint analysis is a well-established area of statistical research; while some of
the existing changepoint methods can be extended to the spatio-temporal context, for
spatio-temporal point processes this appears to be as yet relatively unexplored. Some
differences with regard to the standard changepoint analysis have to be taken into
account: firstly, an individual datum is a pattern of points, which makes any anal-
ysis more complex; secondly, the measured response variable is the point location,
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different from a common quantitative/qualitative variable. Moreover, the issues of
spatial dependence among points and of temporal dependence within time segments
have to be addressed. We therefore believe a statistical analysis of changepoint de-
tection methods in the context of spatio-temporal point processes is a challenging
and interesting study area.

1.1 Background

The basic assumption in a changepoint analysis is that data are ordered and split
into segments, following the same model but under different parameter specifica-
tions [6]. The other common assumption is that observations are i.i.d.. Modelling
dependence within data segments in the context of unknown multiple change points
is currently a challenge: when dependence is allowed, the segments’ marginal likeli-
hood usually becomes intractable, and the computational complexity of the problem
increases; there is a need for fast methods providing an accurate and tractable ap-
proximation of the likelihood. Recent work by Wyse et al. [6] uses Integrated Nested
Laplace Approximation (INLA) to make a model allowing for dependence within
segments feasible. INLA is an alternative, computationally efficient approach to
MCMC methods [4] to obtain the posterior distribution of model parameters; Wyse
et al. employ INLA to produce approximations for the posterior of both the number
of change points and their positions.

Our work extends these new techniques to the context of spatio-temporal point
processes, in the case of log-Gaussian Cox point processes (LGCPs). Cox processes
assume that the point distribution over space is due to stochastic underlying hetero-
geneity, modelled as a random intensity function A (s) [2]; given A (s), the distribu-
tion of points follows an inhomogeneous Poisson process. In LGCPs the logarithm
of the intensity surface in an observation window W is assumed to be a (latent)
Gaussian field Z(s), i.e. A(s) = [y A(s)ds = exp(Z(s). LGCPs constitute a very
flexible class of models that can be adapted to the spatio-temporal case and fitted
using INLA [3]. The INLA approach has several fundamental advantages: first of
all, it is an effective computational tool for model implementation; its efficiency al-
lows an extension from the temporal to the spatio-temporal context; the likelihood
values resulting from different changepoint positions can be evaluated, to choose
the best position a posteriori. We present a simulation study of this approach in the
spatio-temporal point process context; unlike traditional changepoint detection al-
gorithms (see [1]), with this method the 3 dimensions of the problem (two spatial
and one temporal) are maintained. We define a test statistic allowing decisions on
whether, and how many, temporal change points are present.

Our study is motivated by questions on the monitoring and recovery of radioac-
tive particles from Sandside beach, North of Scotland [5]; over approximately 30
years, there have been three major changes in the equipment used to detect the par-
ticles, representing known potential change points. In addition, offshore particle re-
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trieval campaigns are believed to have reduced the particle intensity onshore with an
unknown temporal lag, generating multiple unknown change points in the intensity.

2 Methodology

We define what is meant by a change point under several common, but increasingly
complex, point process models. We consider the case of one change point at an
unknown location; we focus on discrete models, and we assume y; ~ Poi(|C|A)
where |C| is the cell area, ¢ indexes time and s space. We initially consider a model
with fixed effect which assumes a spatially homogeneous intensity A,

log(A)=u-+e ey
which is expressed under each hypothesis as :

HO:log(4)=u+¢g
H1:log(A) = +¢& fort < t*.
log(A) = up + & fort > t*

Under HO all values over both space and time depend on a single value for y,
while under H1 y, is constant over space but allowed to vary over time. For a single
change point, we first have to detect where the change occurs, and then we estimate
two values for ;.

We separately add a random effect describing temporal dependence and a ran-
dom effect describing spatial inhomogeneity and dependence; finally, for the most
complicated model we consider both effects:

logA)=0+¢1+¢+¢€ 2)

where o is an intercept, ¢ is modelled as an intrinsic CAR, i.e. as a Random Walk
in two dimensions on a lattice, and ¢» is modelled as an AR(1). The temporal depen-
dence is only assumed to be within, not across, segments. The precision parameter
for both effects has a Gamma(a, ) prior. Specifically,

{HO : log(Ars) = 0+ @1+ Pos + &5
H1:log(Ay) = @+ Qs+ P+ &

For the spatially inhomogeneous case, we build the model assuming that the spatial
structure is the same over time up to a scale parameter, and the changepoint detection
identifies the time point that describes the change of scale in our data, taking spatial
and temporal dependence into account.

The test statistic we choose is

m(t*)Ly (%)

3
Lo 3)

Yox =
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where 7* is the changepoint position returning the maximum likelihood value under
HI1, m(7*) is the prior distribution on its position, and L; (7*) and Ly are the maxi-
mum likelihoods under H1 and HO respectively. This is a more conservative version
of the Bayes Factor, where the numerator would be the sum over all s, used in
place of the posterior ratio (when the prior ratio is 1) to decide if there is a change
point [1]. Equivalently, we can take the logarithm of (3)

Yer = log(n(")) + 1} —lo. 4)

If V/T* > 0, we reject the null model of no change point, and the change point is
estimated to occur at T*.

3 Simulation study

3.1 Simulation design

To evaluate the proposed changepoint test procedure, a simulation study is imple-
mented on a square observation window with a 10 x 10 unit area. We consider the
case of detecting a single change point, with a time series length 7 = 50.

A prior distribution must be set on both number (0 or 1) of change points and its
position; we give the same probability mass to both values: 7(0) = z(1) = 0.5.
As for its position (excluding the endpoints of the range):

7(t) = 75 for T € {5,6,...,44,45}.

We build four model scenarios: a simple one assuming a spatially homogeneous
process and introducing a fixed effect, a model adding a temporal random effect, a
third model with intercept and spatial dependence and heterogeneity, and finally a
spatially inhomogeneous model with two smooth effects allowing for both spatial
and temporal dependence within segments. The discretised response vector Y is
[T x S] long, where S = 400 is the number of grid cells, and is made up of blocks Y;,
counting, for each time point, the number of points in each cell s.

In the simplest model, data are generated from a stationary Poisson process; for
the more general case, they are generated from a spatially inhomogeneous process,
whose spatial structure is constant over time up to a scale factor, using an inhomoge-
neous Poisson process (analogous to generating from a LGCP, but fixing the latent
field). For both cases, we produce datasets under the null hypothesis of no change
point and under the alternative hypothesis of one change point; we choose to try
different change magnitudes: given an initial function A, the changes are 10, 24
and 1.2A;. The number of simulation replicates, for each scenario and under both
hypotheses, is 100. An example of an inhomogeneous pattern is shown in Fig 1.

For every model scenario, under the alternative, the model is run 7 — 9 times for
each simulation replicate; in each run, we condition on the change point occuring at
location T = (5,6,...,44,45) and return /;(T) given that changepoint location. We
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take as the most likely a posteriori changepoint position 7* the one returning /{ =
11 (") = max(11(7)). The model is then run once under HO. Finally, the test statistic
(4) is evaluated to choose between the two competing models. The computational
efficiency of INLA and the ability to return the (approximate) likelihood value for
any model makes this changepoint search algorithm feasible.

3.2 Simulation results

Fig 2 shows the performance of the method under the first model scenario with
a single change point and a fixed effect; the test statistic (4) leads to the correct
conclusion in all cases. Under HO no clear peak can be found in the pointwise aver-
aged posterior probability function; under H1, with the two greater intensity change
magnitudes, the correct change point is detected in all replicates. Even with 1.24,
despite the magnitude of the change being very small compared to the data vari-
ance, a change point is detected, and in 70 % of the replicates the correct location is
identified, while in all other cases it is detected in adjacent locations.

When adding temporal dependence, results remain substantially identical for HO
data and for the two greater changes; as for 1.2A, a change point is detected only
in 40% of cases, but a greater difficulty in detecting such a small change is to be
expected when data are assumed to be dependent over time. According to DIC, the
more complicated model is preferred to the first one in all cases.

Even when accounting for both temporal and spatial dependence and heterogene-
ity, the INLA detection algorithm maintains a very good performance and the graphs
returned highlight change points in the correct position or extremely close to it.

4 Conclusions and discussion

We developed a likelihood based changepoint detection technique with the two im-
portant innovations of being applicable to spatio-temporal point processes and al-
lowing for both spatial and temporal dependence within segments. The choice of a
conservative version of the test statistic should protect against type 1 errors; there
is still a need to improve the statistic (4) to obtain better results for the spatially
inhomogeneous models under the alternative hypothesis. The simulation study with
the simple scenarios considered shows that the proposed method performs well. Fur-
ther work will develop more realistic scenarios to further check the chosen statistic’s
significance and power.

There are several extensions to the current work under consideration. In the first,
application to a more general model allowing for any type of spatial inhomogeneity,
where change could occur in both space and time. In the second, generalising to
multiple change points. even in these relatively simple cases, computational time is
relatively long; it may be reduced by using the recent stochastic partial differential
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equation approach. Another option for large datasets is the reduced filtering recur-
sion (RFR) presented by [6], based on selecting a representative subset of points
from the data and looking for change points inside the sampled series. The reported
study can nevertheless be considered as a first step toward the analysis of intensity
change points in a general spatio-temporal context.

Inhomogeneous density, lambda=1 Inhomogeneous density, lambda=1.2 Inhomogeneous density, lambda=2 Inhomogeneous density, lambda=10

Fig. 1 Simulated data example, different intensity levels

Proportion of each chp detection, HO data Posterior probability, H0 data Posterior probability, H1 data Posterior probability, H113 data

T T AR L e R
58 121620 25 31 3 42 58 12 16 20 24 28 32 36 40 44 58 12 16 20 24 23 32 35 40 44 58 12 16 20 24 28 32 36 40 44

Chp postion Changepoint postion Changepoint posttion Changepoint postion

Fig. 2 Examples of changepoint detection and posterior probabilities
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