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Abstract We consider a recently developed algebraic criterion to check whether a
fraction is saturated or not for a given model. Such criterion is based on combina-
torial algebraic objects, namely the circuit basis of the design matrix of the model.
We show on a case study how to use indicator functions of the circuits to classify
saturated fractions. The connection with two optimality criteria is also analyzed.
Abstract Recentemente è stato messo a punto un criterio algebrico per verificare
se una frazione è satura rispetto ad un modello assegnato. Tale criterio è basato sui
circuiti associati alla matrice del piano fattoriale. Viene illustrato mediante un case
study l’uso delle funzioni indicatrici dei circuiti per classificare le frazioni sature.
Viene anche analizzato il collegamento con due criteri di ottimalità.

Key words: experimental design, circuits, optimality, Generalized Word Length
Pattern

1 Introduction

Saturated fractions have the minimum number of points to estimate all the param-
eters of a given model. Consequently there are no degrees of freedom to estimate
the error term. They are of common use in sciences and engineering for highly ex-

Roberto Fontana
Department DISMA, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10127 TORINO, Italy,
e-mail: roberto.fontana@polito.it

Fabio Rapallo
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pensive experiments. For general reference in design of experiments, the reader can
refer to [8] and [1], where the issue of saturated fractions is discussed. In recent
literature ([3], [5] and [4]) an algebraic and combinatorial description of saturated
fractions of factorial designs has been presented. Given a model with p estimable
parameters on the full factorial design, a new criterion is available in order to check
whether a given fraction with p points is saturated or not. Such criterion is based on
purely combinatorial properties of the fractions. Given the circuits associated to the
design matrix, it checks whether the fraction contains some supports of the circuits
or not.

We use here a methodology based on indicator functions ([2] and [6]) to high-
light the symmetries and to classify both circuits and saturated fractions into few
representative cases. Moreover, we show that such a combinatorial characterization
gives some information about the D-optimality of the fractions, and we present some
results also for fractions with more than p design points. In this work, we discuss
these issues on a special example, namely the 24 design under the model with main
factors and 2-way interactions. Indeed, this example is small enough for a complete
enumeration and classification of all circuits and saturated fractions. Moreover, the
structure of them reduces to few cases, due to the symmetry of the problem.

As described in [3], the key ingredient to characterize the saturated fractions of a
factorial design is its circuit basis. Due to space limitations, we leave out the formal
definition of circuit basis. The interested reader can refer to [7]. Given a model
matrix XD of a full factorial design D , the circuit basis of X t

D is a special basis of
the kernel of X t

D with major combinatorial properties, and is denoted with C . It is
known that C is always finite. For small- and medium-sized problems, the circuit
basis C can be actually computed with symbolic softwares, such as 4ti2 [10].

We denote by supp( f ) the support of the vector f , i.e., the set of indices j such
that f j 6= 0.

Given a model matrix XD on a full factorial design D with p estimable pa-
rameters, we recall that a fraction F ⊂ D with p design points is saturated if
det(XF ) 6= 0, where XF is the restriction of XD to the design points in F . With
a slight abuse of notation, F denotes both a fraction and its support. Under these
assumptions, in [3] is proved that F is a saturated fraction if and only if it does not
contain any of the supports {supp( f1), . . . ,supp( fL)} of the circuits of X t

D .

2 Case study. 24 with main effects and 2-way interactions

Let us consider the 24 design and the model with main factors and 2-way interac-
tions. As mentioned above, this example is not trivial and easy to handle. Under a
full-rank parametrization, the design matrix XD of the full design has 16 rows and 11
columns. The points are its row labels while the model terms are its column labels.
As the matrix XD has rank 11, we search for fractions with 11 points.

A direct computation shows that there are
(16

11

)
= 4,368 fractions with 11 points:

among them 3,008 are saturated, and the remaining 1,360 are not.
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The circuits of the 11×16 matrix X t
D , are needed to find the saturated fractions.

Using 4ti2, we have obtained 140 circuits; the cardinalities of their supports are 8
in 20 cases, 10 in 40 cases, 12 in 80 cases. For more details refer to [3].

In order to classify both circuits and saturated fractions into few representative
cases using the indicator function of a two-level fractional factorial designs, we
briefly recall some topics about it. We briefly describe the indicator function of a
fractional factorial design for two-level designs. We consider d factors coded as −1
and 1. The full factorial design D is {−1,1}d . We denote by L the set {0,1}d and
by Xα , α ∈ L , a main factor or an interaction. Given a single-replicate fraction
F ⊆D , the indicator function of F written in polynomial form is

F(x) = ∑
α∈L

bα Xα(x) = ∑
αi∈{0,1}

bα Xα1
1 (x) · · ·Xαd

d (x) = ∑
αi∈{0,1}

bα xα1
1 · · ·x

αd
d

where x = (x1, . . . ,xd) is a point of D and Xi, i = 1, . . . ,d, denotes a main factor.
Given a fraction F ⊆D , the coefficients can be calculated as bα = 1

2s ∑x∈F Xα(x).

Circuits

From now on, for ease in presentation, we refer to the support of a circuit simply
as the circuit. Computing the indicator functions for all the 140 circuits, we find
8 inequivalent circuits. It is known that two designs are isomorphic if one can be
obtained from the other by relabeling the factors, reordering the runs, and switching
the levels of factors. We denote by e a sign, e∈ {−1,+1}, that correspond to change
the factor codes.

1. Support cardinality equal to 8. There are 20 circuits corresponding to two in-
equivalent circuits, up to isomorphisms:

a. 8 circuits with indicator function: 8
16 +

8
16 eiXi, i = 1,2,3,4

b. 12 circuits with indicator function: 8
16 +

8
16 eiXiX j, i = 1, . . . ,3 j = i+1, . . . ,4

They are all regular fractions. We will refer to these two types of circuits as 8a
and 8b respectively.

2. Support cardinality equal to 10. There are 40 circuits corresponding to two in-
equivalent circuits, for i, j,h,k = 1,2,3,4 and i 6= j 6= h 6= k:

a. 8 circuits (type 10a) with indicator function:

10
16

+
2

16
(Xi e jX j +Xi ehXh +Xi ekXk + e jX j ehXh + e jX j ekXk + ehXh ekXk)

− 6
16

Xi e jX j ehXh ekXk

Notice that Xi has not coefficient. Each choice of signs produces the same
equivalent indicator functions.

b. 32 circuits (type 10b) with indicator function:
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10
16

+
2

16
(eiXi + e jX j + ehXh)

+
2
16

(eiXi e jX j + eiXi ehXh + e jX j ehXh)−
6
16

eiXi e jX j ehXh

3. Support cardinality equal to 12. There are 80 circuits corresponding to two in-
equivalent circuits, for n ∈ {1,2,3,4}, j,h,k ∈ {1,2,3,4}\{n}:

a. 16 circuits (type 12a) with indicator function:

12
16

+
2

16
(e1X1 + e2X2 + e3X3 + e4X4)+

4
16

e1X1 e2X2 e3X3 e4X4

− 2
16

(e1X1 e2X2 e3X3 + e1X1 e2X2 e4X4 + e1X1 e3X3 e4X4 + e2X2 e3X3 e4X4)

b. 64 circuits (type 12b) with indicator function:

12
16

+
2

16
Xn (en− e jX j− ehXh− ekXk)−

2
16

enXn e jX j ehXh ekXk

− 2
16

(enXn(e jX j ehXh + e jX j ekXk + ehXh ekXk)− 2e jX j ehXh ekXk)

Notice that for each choice of sign e1,e2,e3,e4 there are a circuit of type 12a and
four circuits of type 12b, one for each choice of n.

Saturated fractions

We classify the saturated fraction with respect to two criteria of optimality and to
their intersection with the circuits of the model matrix.

In [4] is shown that all the saturated fractions can be classified according to the
determinant of the information matrix and that, up to isomorphisms, there are 188
inequivalent saturated fractions: 1 fraction with determinant equal to 9 ·220; 20 frac-
tion with determinant equal to 4 ·220; 167 fraction with determinant equal to 1 ·220.

We present here another criterium of optimality, based on the coefficients bα of
the indicator function, that encode information about the aliasing of the fraction:
the Generalized Minimum Aberration (GMA) criterion, see for instance [9] for a
detailed presentation. It is based on the Generalized Word Length Pattern (GWLP)
i.e. the d-tuple (γ1, . . . ,γd) where each element γ j measures the degree of aliasing of
the interactions of order j (if j = 1 the main factors are considered). More precisely:

γ j = ∑
‖α‖= j,α∈L

(
bα

b0

)2

, j = 1, . . . ,d

and ‖α‖= ∑
d
k=1 αk is the order of the interaction. The GMA criterion consists in the

sequential minimization of the GWLP.
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Now we consider the intersection between the inequivalent saturated fractions
and the circuits of the model matrix; more precisely we consider two types of
intersection. First, the number of points in the intersection F ∩ supp( fi), with
i = 1, . . . ,140. The number of points in such intersections ranges between 4 and
11. Second, we consider the intersection of each fraction with circuits to which one
point has been deleted. We denote by k-incomplete circuit a circuit to which k points
have been deleted. It is worthwhile noting that each saturated fraction contains five
1-incomplete circuits of different type. The previous two types of intersection frac-
tion/circuits are shown in Table 1, together with the determinant of X t

F XF and the
GWLP of the fraction.

Table 1 Saturated fractions classified by: number of points in the intersection with the circuits;
intersection with the 1-incomplete circuits; determinant of the information matrix; GWLP

#(F ∩ supp( fi)) type of circuits det GWLP #

4 5 6 7 8 9 10 11

0 15 25 25 40 30 0 5 12a 12b 12b 12b 12b 9 ·220 (4,6,36,9) 1
1 14 18 37 38 21 10 1 8b 10b 10b 10b 12b 4 ·220 (4,14,36,1) 12

8a 10a 10a 10a 12a 4 ·220 (12,6,12,25) 4
8a 10b 10b 10b 12b 4 ·220 (12,6,28,9) 4

2 11 21 33 40 26 6 1 8b 8b 10a 10b 12b 1 ·220 (4,22,20,9) 12
8a 8b 10b 10b 12b 1 ·220 (12,14,28,1) 12
8a 8a 10b 10b 12a 1 ·220 (20,6,20,9) 6

3 9 20 34 42 26 6 0 8b 8b 8b 10b 10b 1 ·220 (4,30,20,1) 12
8a 8b 8b 10a 10b 1 ·220 (12,22,12,9) 24
8a 8a 8b 10b 10b 1 ·220 (20,14,20,1) 24

5 5 20 30 50 30 0 0 8a 8a 8b 8b 8b 1 ·220 (20,30,4,1) 12
4 8 17 34 48 25 4 0 8a 8b 8b 8b 10b 1 ·220 (12,30,12,1) 36

8a 8a 8b 8b 10a 1 ·220 (20,22,4,9) 12
8a 8a 8a 8b 10b 1 ·220 (28,14,12,1) 12

4 11 9 37 56 18 4 1 8a 8a 8a 8a 12a 1 ·220 (12,30,12,1) 4
8a 8b 8b 8b 12b 1 ·220 (36,6,4,9) 1

We observe that the D and GMA criteria coincide and are strictly related to the
classification with respect to the circuits. The optimal fraction is the intersection
of its five 1-incomplete circuits, all deriving from circuits with 12 points in the
support. Given a unique choice of e1,e2,e3,e4 for all the 5 circuits the product of
their indicator functions gives the indicator function of the optimal fraction with
GWLP = (4,6,36,9):

1
16

((11+ e1X1 + e2X2 + e3X3 + e4X4)+3e1X1 e2X2 e3X3 e4X4

− (e1X1 e2X2 + e1X1 e3X3 + e1X1 e4X4 + e2X2 e3X3 + e2X2 e4X4 + e3X3 e4X4)+

−3(e1X1 e2X2 e3X3 + e1X1 e2X2 e4X4 + e1X1 e3X3 e4X4 + e2X2 e3X3 e4X4))
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Fractions with more than 11 points

The intersections between a fraction and the circuits can be easily studied also for
fractions with more than 11 points. Also in this case, a direct enumeration shows
that the D-optimality is closely related the position of the design points compared
with the circuits. Limits in space does not allow to deal with a complete presentation
of all cases, therefore we report in Table 2 only the results for the estimable fractions
with 13 points, and we consider only the D-optimality criterion. In this case we can
observe that the D-optimality is reached with the fractions that contain the supports
of 2 circuits with the largest support cardinality. Finally, one can show that the D-
optimal fractions are optimal also under the GWLP criterion.

Table 2 Estimable fractions with 13 points classified by: number of points in the intersection with
the circuits; determinant of the information matrix

# of intersection det #

5 6 7 8 9 10 11 12

1 9 20 16 48 32 12 2 112 ·220 10
2 8 16 23 41 38 12 0 64 ·220 15
3 7 14 24 38 48 6 0 48 ·220 10
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