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Abstract The empirical likelihood method is known to be a flexible arft@
tive approach for testing hypotheses and constructing @emdie regions in a non-
parametric setting. This framework is adopted here foridgatith the outlier prob-
lem in time series where conventional distributional agstimms may be inappro-
priate in most cases. The procedure is illustrated by a sitioul experiment.
Abstract Il metodo basato sulla verosimiglianza empiriaoto essere un approc-
cio flessibile ed efficiente per il controllo di ipotesi e lsstrmzione di regioni di con-
fidenza in ambito non parametrico. Questo appro@eiui adottato per affrontare
il problema dei dati anomali in serie storiche dove le ipotasla distribuzione di
probabilita dei dati risultano spesso inappropriate
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1 Introduction

Ouitliers in time series may be defined as those observatiansld not conform to
the overall behavior of the data sequence. In the indepé¢md¢a framework usu-
ally outliers are searched for among either the largesteositiallest observations. In
time series framework outliers are to be found instead ambsgrvations that show
some unexpected departure from predicted value or fail thédicorrelation struc-
ture inferred by the majority of the data. Such a result magrbeuced by outlying
observations characterized by different shapes whichcteftetime series statistics
in some peculiar ways. [11] distinguished outlying obsgores of four types that
may distort linear model parameter estimates, i.e. add{t\NO), innovation (10),
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transient (TC) and permanent (LC) level change. Other eutlipes which have
been considered in the literature are the so called patdtesa, sequence of con-
secutive outlying observations that do not show a steadgaf[2]), and outliers
in generalized autoregressive conditional heteroscied@&ARCH) models which
may impact either levels or volatility or both ([1]). Furthextensions refer to out-
liers in non linear and in vector time series (see, e.g.,dbhfreview).

Statistical inference on outliers in time series usuallieseon distributional as-
sumptions on some appropriate data generating processs lpaper a distribution-
free schema for building confidence regions for parametanates and conducting
hypothesis testing in the context of time series data plysaffected by outlying ob-
servations is considered. The empirical likelihood (EL)moels ([9]) are adopted
so that the familiar likelihood ratio statistic may be usddah allows the statistical
inference to be based essentially on the chi squared digtib New developments
that prove to be necessary in order to handle difficult sitmatare employed which
came to be known as adjusted EL and balanced EL ([4, 6]). Atteris specially
directed to outliers of the AO type and outliers which indacpermanent LC. A
rather general framework is provided however, that alloexgerl different other
types to be handled along very similar guidelines. Some lsitiom experiments are
presented to illustrate the effectiveness of the methodse ©f moderate sample
size.

The plan of the paper is as follows. In Sect. 2 the EL framevieikiefly con-
sidered. In Sect. 3 inference methods for outliers in timeseare developed based
on EL methods. In Sect. 4 the behavior of the statistics flarence in small sam-
ples is outlined by means of some simulation experimentscilsions and possible
suggestions for further research are provided in Sect. 5.

2 Theempirical likelihood

EL methods have been introduced by [7, 8, 9] and have beenafsawards for
many applications, including time series analysis. Bdlgigm unknown probabil-
ity p; is assigned to each observation in a sanypte(y1,ys,...,yn) to define an
empirical distributiorF specified by(yi, pi),i = 1,...,n. This way the necessity to
assume a family of probability distributions on which sttial inference may be
based is avoided. The EL is defined insteatl @s) = [{"_; pi under the constraints
pi >0, S, pi = 1. The probability distributiorr may possibly depend on a pa-
rameters sef so that one has to consider the maximun¢8) to obtain a well
defined probability distribution. Ledl be e.g. the meaé = ; piyi, then the largest
probability to obtain the observed sample is

EL(0) = max {|ﬂl pi : pi >0, i pi =1, ipiyi = 9} : 1)
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This is called the EL profile fo6. The maximum is reached t=y =y y;/nand
equalsn™", corresponding t@; = 1/n, i = 1,...,n. Thus,yis the maximum EL
estimator off. The EL ratio is obtained dividing (1) by its maximum™.

The addition of the so called estimating equations ([9, 1®}he constraint set
is a further step that allows complicated models to be estichand statistical infer-
ence for building confidence regions and conducting testypbtheses to be based
on EL ratio. Let the datg be generated by a model which depends on a parameter
vector@ of lengthp and assume that> p equations of the type

E{g(y,0)} =0, g=(91,---,0)’, (2)

exist that uniquely describe the relationships betweeddt@ and the model param-
eters. The functiongy, . .., gr are called the estimating functions and Equations (2)
are called the estimating equations. The EL ratio may beemrit

ELR(6) = Jmax {ﬂ(npiﬂpi >0, i; pi =1, i; pig(yi, 8) = 0} )]

If r = p Equations (2) are as many as the number of the unknown pagesnét
model for which this circumstance occurs is often calledsa identified model. In
what follows such assumption will be held satisfied.

Let 6y denote in Equation (3) the true parameter vector. Then ittmeahown (]9,
10]) that under some regularity conditions,ras> o, the statistic—2log{ ELR(0)}
in 8 = 6 is distributed as g2 with p degrees of freedom, in close agreement with
the similar property which holds for ordinary parametri@linood. So even in the
absence of any assumption on the probability distributibthe data, confidence
regions and tests of hypotheses may be computed all the same.

3 Empirical likelihood for inference on outliersin time series

It seems convenientin the present EL context to considdptlmving general time
series model with outliers

Yt = f(x,0)+&, (4)

wherex; summarizes all explanatory variables possibly including or more dum-
mies which account for outliers occurring at known time émés, anck; is a zero
mean random error for which no distributional assumptiaciesraade. The vector
parametef assumed of lengtp includes both model parameters and outlier sizes.
The following procedure may be used to inscribe the infezgroblems related to
model in Equation (4) in the EL framework. Lat=y; — f(x, 8). The least squares
estimated is obtained by solving the normal equations

%tietzzai(yt— f(Xt,G)){—%f(xt,G)} =0, k=1,....p. (5
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The estimating functiongq(x, 6) in the EL framework are each of the terms in the
sum which defines Equation (5).

Two cases will be considered here in some details, i.e. thardthe LC outlier
type. In both cases an autoregressive (AR) model of opdeill be assumed in
the presence of a single outlier of siag which occurs at timé = g. For the AO a
dummy variable; may be built that takes the forcp= 1 if t = g and zero otherwise.
The dummy for the LC will bec; = 1 if t > g and zero elsewhere. More details on
how either an AO or an LC impacts the observed time segiegsay be found in
[11]. The explanatory variables axe= (i—1,.. ., ¥t—p,Ct)’ and the parameter vector
is 0= (q,....¢,w). So model in Equation (4) becomes in more compact form
Yt = X0 + &. The estimating functiongk(x,0),k=1,...,p+ 1, may be derived
from Equation (5).

gk(xtae):(ytfk_clfkw)aa k:177p

p
Op+1(X,0) = G- —C | &.
p+ <; 1) )

For eachf, the likelihood ratio function ELRB) is well defined only if the con-
vex hull of {g(x,6),t =1,...,n} contains thep+ 1)-dimensional vector 0. For
AO outliers the probability that the vector 0 is not contaire the convex hull of
g increases when autoregressive order decreases. Thieprofhy well be exem-
plified by an AR(1) model with an AO. In this peculiar case thstlconstraint in
Equation (3) becomes

Pq92(Xg, 8) + Pg+192(Xg+1,6) = 0.

If the estimating functions have the same sign the uniqueisalis py = 0, pg1 =0
and—2log{ELR(8)} goes to infinity. Two kinds of EL adjustments have been sug-
gested to address the convex hull constraint, i.e. the AefiSL (AEL) and the Bal-
anced EL (BEL). An AEL has been proposed by [3] which consistdding an ar-
tificial observation and then calculating the EL statisaséd on the augmented data
set. In the present example, this amounts t@set, 1, 0) = —ang. [4, 6] proposed

a BEL where two balanced points are added to the data sej;(x@.1,6) = d and
02(Xn12,0) = 2g— o. The investigation on the BEL method for inference about a
parameter vectof seems very important for improving the method performance.
An appropriate choice of location for the new extra poinggrgposed in such a way
as to guarantee that correct coverage levels are obtained.

4 Some results from a simulation experiment

The first example is concerned with an LC in an AR(1) model. &Mdard nor-
mal random numbers have been generated and used for buddifgR(1) time
series with parametaep = 0.7. The first 50 values have been discarded. An outlier
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of sizew = 5 has been added starting from time= 100 on. The 90% confidence
region for the ELR test compared to the likelihood test inmality hypothesis is
displayed in Fig. 1 (left hand panel). The confidence regamesquite similar in
spite of the fact that much less information has been empldge building the
ELR test. For nominal + a confidence level, the observed coverage frequencies
computed on 1000 replications refer to EL{Xg ) and normal-based (& ay)
confidence regions. Nominal and observed coverage levelispiayed in Table 1.
Results are quite satisfying overall, and with the only @tiom of the 90% confi-
dence probability level the EL coverage frequencies aghtyi more accurate than
their normal-based counterpart.

The second example is concerned with an AO in the same AR(@eman AO
of sizew = 5 has been added at tinge= 100. The 90% confidence region for the
ELR test compared to the parametric likelihood ratio testarmormality hypothe-
sis is displayed in Fig. 1 (right hand panel). The confideeggon computed under
the hypothesis of normality is narrower than that computedhie ELR statistic
since the former benefits of a strong distributional assionptHowever as far as
the AR parameter is concerned the difference is neglighttge that the BEL had
to be employed necessarily for the EL method to work propérigccordance with
the argument developed in the preceding Sect. 3.

Fig. 1 LC (left hand panel) and AO (right hand panel) simulated inA&{(1) ¢ = 0.7 n = 200
w=5qg=100. Confidence regions at 90% Green=ELR Blue=normal eliips

Table1 Coverage frequencies for a Level Change in an AR(1) model

1-a 1-agL 1-an
0.95 0.946 0.933
0.90 0.889 0.891
0.80 0.794 0.786
0.70 0.699 0.698
0.60 0.607 0.610

0.50 0.502 0.510
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5 Conclusions

Empirical likelihood methods have been considered fonesing outliers size in
time series models and computing confidence regions fordtimated sizes. The
use of the balanced empirical likelihood has been takendotmunt aiming at ob-
taining more accurate coverage and larger power in tesfilymotheses, and al-
lowing the computation of outlier size estimates in casesre/plain empirical like-
lihood fails to provide feasible solutions. The empirigaklihood based methods
for making inference on outliers in time series have beestithted on two simu-
lated examples concerned with a level change outlier andditivae outlier in a first
order autoregressive model. Further interesting topigs,aher outlier types, and
outliers identification and estimation in a wider class ofdiseries models, such as
the general autoregressive moving average and the norm hinedels, are left for
future research.
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