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Abstract We propose a procedure for detecting the modes of a density estimate
and test their significance. We use a data-splitting approach: potential modes are
identified using the first half of the data and their significance is tested with the sec-
ond half of the data. The mode test is based on nonparametric confidence intervals
for the eigenvalues of the Hessian. In order to get valid bootstrap confidence sets
even in presence of multiplicity of the eigenvalues, we use a bootstrap based on an
elementary-symmetric-polynomial transformation.
Abstract Si propone un metodo per identificare le mode di una stima di densità e
verificarne la significatività. L’approccio prevede la suddivisione in due del cam-
pione: la prima metà dei dati viene usata per individuare le possibili mode, la cui
significatività viene poi verificata sfruttando la seconda metà del campione. Il test è
basato su intervalli di confidenza non parametrici per gli autovalori dell’hessiana.
Al fine di ottenere intervalli validi anche in presenza di autovalori non tutti distinti,
la procedura di bootstrap proposta prevede la trasformazione degli autovalori in
polinomi simmetrici elementari.
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1 Introduction and main ideas

We present here some results of a paper in collaboration with Chris Genovese, Is-
abella Verdinelli and Larry Wasserman [8].

Figure 1 shows a one-dimensional density estimate with two modes. The left-
most mode is likely to correspond to a real mode in the true density, but the second
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smaller mode on the right may be due to random fluctuation. How can we recognize
a real mode from random fluctuation? In this paper, we provide a test to answer this
question that is easy to implement, even in multivariate problems.

Fig. 1 The mode on the left
appears to be real. The mode
on the right might be due to
random fluctuation.

There are many reasons for mode hunting and many methods to find modes; see,
for example, [9, 10, 6]. In particular, modes can be used as the basis of nonpara-
metric clustering [3, 4, 5, 7, 10]. Before finding clusters, it is important to find out
which modes are significant and which are explainable as random fluctuations. Even
if based on similar ideas, our procedure is simpler, both theoretically and computa-
tionally, than the method in [2].

A mode is a maximum of the density, hence at each mode the gradient of the
density is null and all the eigenvalues of the Hessian are negative. Consider a point
x ∈ Rd and suppose we want to test

H0 : x is not a mode of p versus H1 : x is a mode of p.

First, testing the null hypothesis of “no mode” raises problems because the alterna-
tive forms a measure zero set. More precisely, if g(x) = (g1(x), . . . ,gd(x))T is the
gradient of p at x and λ1(x)≥ ·· · ≥ λd(x) are the eigenvalues of the Hessian of the
density, then the alternative hypothesis

H1 :
{
(λ1,g) ∈ R×Rd : λ1 < 0, g = (0, . . . ,0)T

}
. (1)

is a measure zero subset of Rd+1. No meaningful test can be constructed of such
a “reverse null hypothesis.” The second problem is that a mode can occur at un-
countably many possible locations, leading potentially to a difficult multiple testing
problem. Finally, the eigenvalues are not continuously differentiable functions of
the Hessian which makes methods like the bootstrap and the delta method invalid.

We overcome these problems by combining several ideas:

1. We split data in two subsamples to separate the process of finding candidate
modes from the process of hypothesis testing. This ameliorates the multiplicity
problem and simplifies the hypothesis test as well.
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2. First, we use the first subsample to find a finite set of candidate modes.
3. We then use the second half of the data to estimate the Hessian of the density

at the candidate modes. We transform the eigenvalues of the Hessian using el-
ementary symmetric polynomials (ESP). As noted in [1], the bootstrap leads to
asymptotically valid confidence sets for the transformed eigenvalues. We then in-
vert the mapping to get a valid confidence set for the eigenvalues. This provides
useful shape information about the modes, which we call an eigenportrait.

4. The eigenportrait can be used to formulate a test for the importance of the mode.
As a surrogate for testing whether a candidate mode is not really a mode, we
instead test if x is an “approximate mode”. This requires reformulating the alter-
native to capture the idea of an approximate mode. There is no unique way to do
this. One possibility is to consider

H ′0 : Rd+1−H ′1 versus H ′1 :
{
(λ1,g) ∈ R×Rd : λ1 < 0, ||g||< δ

}
(2)

where δ > 0 is a small positive constant. We will show that, in practice, the
constraint ||g|| < δ has no effect on the test so we can simplify matters by just
testing λ1 ≥ 0 versus λ1 < 0.

2 The procedure

For simplicity, assume that the sample size is even, say 2n. Our testing procedure
involves the following steps:

Data splitting: Randomly split the data into two subsamples X and Y of size n.
Stage 1: Using X , construct a density estimate p̂X ,h and find its modes M̂ .
Stage 2: Use Y to construct another density estimate p̂Y,h.

At each candidate mode m̂∈ M̂ obtained in Stage 1, compute the Hessian of p̂Y,h

and its eigenvalues λ̂ = (λ̂1, . . . , λ̂d).
Construct a confidence rectangle G for λ using the ESP bootstrap procedure
described later in Section 3. From G get a confidence interval C for the the
leading eigenvalue.

Test: If sup{x ∈ C }< 0, reject H ′′0 : λ1 ≥ 0 and declare m̂ to be a real mode.

Here are some details on the steps.

Data splitting: The purpose of the data splitting is to assure the validity of the
confidence intervals. If we did not split the data, we could instead get a valid test
by treating the estimated Hessian as a stochastic process over the whole space and
then estimating the maximum fluctuations of this process. While this is possible,
splitting the data and focusing on finitely many points is much simpler.
Stage 1: We use the kernel density estimate with Gaussian kernel K and bandwidth
h > 0. To locate the modes we use the Mean Shift Algorithm (see [7, 5]):

1. Start with a mesh of points {a(0)1 , . . . ,a(0)N }.
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2. For each mesh point a(0)j , iterate the following equation until convergence:

a(s+1)
j ←−

∑
n
i=1 XiK

(
||a(s)j −Xi||

h

)
∑

n
i=1 K

(
||a(s)j −Xi||

h

) .

3. Let M̂ = {m̂1, . . . , m̂k} be the unique values of the set {a(∞)
1 , . . . ,a(∞)

N }.

Stage 2: We estimate the Hessian at m̂ by using the Hessian of the kernel density
estimator from the second half of the data.

Using the method described later in Section 3, for each m̂ ∈ M̂ we construct
1−α/k confidence set G for λ , where k is the number of candidate modes.

The validity of the bootstrap, together with the independence from sample split-
ting, ensures that

liminf
n→∞

P(λ ∈ G, for all m̂)≥ 1−α.

Test: In principle, for all m̂ ∈ M̂ , we would like to test the null hypothesis m̂ is
not a mode versus the alternative m̂ is a mode formalized in (1). But, as we ex-
plained earlier, it is not possible to construct a non-trivial test for this hypothesis
since the alternative has measure 0. Instead we could replace the alternative with
the statement: m̂ is an approximate mode. This suggests testing the hypotheses in
(2). However, thanks to the data-splitting, testing H ′0 versus H ′1 is asymptotically
equivalent to testing

H ′′0 : λ1 ≥ 0 versus H ′′1 : λ1 < 0.

This follows since m̂ is a mode of p̂X ,h, hence ||ĝX ,h(m̂)||= 0 and

||ĝY,h(m̂)||= ||ĝX ,h(m̂)||+OP

(
1

nhd+2

)
= 0+OP

(
1

nhd+2

)
= oP(1).

Hence, with probability tending to 1, ||ĝY,h(m̂)||< δ and, asymptotically, we reject
H ′0 if and only if we reject H ′′0 . In summary, we interpret the rejection of H ′′0 to mean
that m̂ is an approximate mode.

3 The ESP Bootstrap

We construct confidence regions for the eigenvalues using the bootstrap. Bootstrap-
ping the eigenvalues poses some problems since λ = (λ1, . . . ,λd) is not a contin-
uously differentiable function of the Hessian of the density. As a result, standard
bootstrapping applied to the Hessian will not produce valid confidence sets for the
eigenvalues. However, Beran and Srivastava (1985) note that if the eigenvalues are
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transformed using elementary symmetric polynomials, then the confidence set ob-
tained has the correct asymptotic coverage.

Given ordered, not necessarily distinct, eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λd , the ele-
mentary symmetric polynomials (ESP) is a vector s = (s1, . . . ,sd) with generic entry

st =
d

∑
i1=1

d

∑
i2=i1+1

. . .
d

∑
it=it−1+1

λi1 ·λi2 . . . ·λit (x). (3)

The ESP is a continuously differentiable function of the Hessian, hence bootstrap
confidence sets for the vector s have the right coverage. Since the map from λ to s
is one-to-one, a confidence set for s can be turned into a confidence set for λ .

The steps in the bootstrap, at a particular candidate mode m̂ are as follows:

1. Let λ̂ be the eigenvalues of the Hessian of p̂Y,h and let ŝ be its ESP.
2. Draw Y ∗1 , . . . ,Y

∗
n ∼ Pn where Pn is the empirical distribution of Y1, . . . ,Yn.

3. Using Y ∗1 , . . . ,Y
∗
n compute the density estimate, the Hessian and the estimated

eigenvalues λ ∗ = (λ ∗1 , . . . ,λ
∗
d ). Use (3) to get the ESP-transformed eigenvalues

s∗ = (s∗1, . . . ,s
∗
d).

4. Repeat steps 2 and 3 B times yielding B vectors s∗1, . . . ,s∗B.
5. Compute the 1−α/k bootstrap confidence set S for s and the corresponding

confidence rectangles G for the eigenvalues.

4 Concluding remarks

The numerical example reported in Figure 2 shows promising results. The data have
three well-separated modes and a ring. The three modes are detected in Stage 1 to-
gether with three other modes on the ring. In Stage 2, modes on the ring are declared
to be non significant, since the corresponding confidence interval for λ1 lies across
0. The eigen portrait in the two bottom panels distinguishes the difference in shape
between the different significant modes.

An accurate bandwidth selection is crucial in mode detection: too much smooth-
ness could hide true modes (and, consequently, some existing cluster), too little
smoothness could highlight fake modes. The fake modes removal in Stage 2 makes
it possible to use our procedure for bandwidth selection, choosing the bandwidth to
maximize the number of significant modes.
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Fig. 2 TOP: scatterplot (with 6 detected modes) and estimated density. BOTTOM: confidence in-
tervals for λ1 (left) and λ2 (right) at each detected mode.
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