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Abstract The problem of clustering functional data is considered. In particular we
refer to cases in which the functional form of the observations is known in advance.
In this setting, contrary to the classical functional approach, the approximation of
the function underlying the data is not required for functional clustering methods.
However, clustering functional data is a difficult task because the function space is,
generally, of infinite dimension. Thus, the distance among functions may have in-
finity solutions. For this reason, we restrict the space of the functions to a closed and
convex subset in an Hilbert space. In this proposed setting an L2 metric is applied
combined clustering algorithms for finite dimensional data.

Abstract Il lavoro affronta il problema della classificazione di dati funzionali. In
particolare si fa riferimento ai casi in cui la forma funzionale delle osservazioni é
nota a priori. Contrariamente all’approccio funzionale classico, in questi casi, non
é necessario approssimare la funzione sottostante i dati per procedere alla loro clas-
sificazione. Tuttavia, classificare i dati funzionali é un compito difficile in quanto
lo spazio funzionale é in genere infinito; di conseguenza, una metrica ad esso ap-
plicata potrebbe avere infinite soluzioni. Per questo motivo, restringiamo lo spazio
delle funzioni ad un sottospazio chiuso e convesso di Hilbert in modo da applicare
una metrica L2 insieme ad algoritmi di classificazione tipici degli spazi finiti.
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1 Introduction

Functional data analysis (FDA) (Ramsay and Silverman, 2005; Ferraty and Vieu,
2006) addresses problems in which the observations are described by functions
rather than finite dimensional vectors.
The curves in a functional data set often present a variety of distinctive patterns
corresponding to different shapes and variation (Chiou and Li, 2007) that can be
identified by clustering the functions (Tarpey, 2007; Abraham et al., 2003; James
and Sugar, 2003).
However, clustering functional data is generally a difficult task because of the infi-
nite dimensional space data belong (Jacques and Preda, 2004). For this reason, most
approaches are based on dimension reduction before clustering. In particular, the
infinite dimension problem has been reduced to a finite one by approximating data
with elements from some finite dimensional space, such as coefficients of functional
data expansion (Abraham et al., 2003) or a given number of principal component
scores (Peng and Muller, 2008). Then, classical heuristic clustering algorithms can
be performed. It is common to refer to this procedure with the term two-stage ap-
proach.
Alternatively, nonparametric methods can be applied for clustering functional data.
They consist generally in defining specific distances or dissimilarities among curves
and then apply clustering algorithms for finite dimensional data (Ferraty and Vieu,
2006; Ieva et al., 2013).
Finally, model based clustering methods can be performed assuming a probabilis-
tic distribution on some finite dimensional coefficients describing data (Ray and
Mallick, 2006; Sam et al., 2011).
The disadvantage of the above methods is that clustering results can differ depend-
ing on how the curves are fit to the data. For example, nonparametric methods can be
assimilated to raw-data clustering (Bouveryon and Brunet, 2012) or to a two-stage
method, depending on whether the distance is approximated using directly the dis-
crete observations of curves or using an approximation of the curves into a finite ba-
sis. Moreover, estimating curves using different sets of basis functions corresponds
to different linear combinations of the data and many clustering algorithms, such as
K-means, are not invariant to linear transformations of the data (Tarpey, 2007).

2 Functional classification on convex function spaces

This paper focuses on a particular aspect of FDA, called parametric FDA (De Sanc-
tis and Di Battista, 2012; Di Battista and Fortuna, 2013), that is, when the functional
form underlie the observations is known in advance. For this reason, the approxi-
mation by means of basis functions is not required. In these cases, functions belong
to a parametric family of functions, say S, which is a subset of Lp(µ) where µ is a
positive measure of an arbitrary measure space X .



Title Suppressed Due to Excessive Length 3

Starting form n parametric functional data, f1(x), f2(x), ...., fn(x), we aims to iden-
tify a set of homogeneous clusters in Lp(µ) by determining a partition of the space
according to minimal distance. Since the functional observations belong to an in-
finite dimensional space, the equivalence between norms and distances, typical of
finite dimensional Euclidean spaces, fails. In this context, the choice of the prelimi-
nary norm becomes crucial (Ferraty and Vieu, 2006).
Several proximity measures can be used. A suitable measure of distance between
two functions, fi(x) and f j(x) is the Lp distance:

d
(

fi(x), f j(x)
)
= || fi(x)− f j(x)||Lp =

(∫
X

∣∣∣ fi(x)− f j(x)
∣∣∣pdµ(x)

) 1
p

(1)

for which different p can be chosen.
However, Ferraty and Vieu (2006) have highlighted that semi metric spaces are more
flexible with respect to normed or metric ones. In this case, the distance between two
functions can be expressed as follows:

dl

(
fi(x), f j(x)

)
=

(∫
X

(
f (l)i (x)− f (l)j (x)

)2
dx

) 1
2

(2)

where f (l)(x) is the l-th derivative of f (x).
We recall that a semi-metric can be defined to be a metric but such that d( fi(x), f j(x))=
0 6⇒ fi(x) = f j(x).
Indeed equation (2) represents a semi-metric for l > 0; in fact, by considering
f (0)(x) = f (x) the L2 metric is obtained.
However, it is not always appropriate to use a semi-metric because it emphasizes
features of the derivatives rather than of the curves themselves.
The main problem caused by the infinite dimensionality of the spaces, is that there
may be infinitely many solutions for the distance in (1). For this reason, we restrict
the space of the functions to closed and convex subsets, S, in Hilbert spaces (De
Sanctis et al., 2014). We recall that L2(µ) is the space of square integrable measur-
able functions on X whose norm is induced by the inner product:

( fi, f j) =
∫

X
fi(x) f j(x)dµ(x) (3)

whenever fi(x), f j(x) ∈ L2(µ) An essential property of Hilbert space is that the dis-
tance of a point to a closed set is always attained. In fact, if S is a closed convex
set in a Hilbert space, H, and h ∈ H, then, there exists a unique point s ∈ S that
minimize the distance between h and a point in S (Rudin, 1986):

d(h,S) = ||h− s||= min{||h− s|| : s ∈ S} (4)

Whereas, in a metric space the distance from a point t to a set S is:
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d(t,S) = inf{||t− s|| : s ∈ S} (5)

In the case in which the function space S is nonconvex, we can resort to a biunivocal
transformation, T , between S and a convex subset S′ in Lp(X) (De Sanctis et al.,
2014). In particular, let f1(x), f2(x), ..., fn(x) be functional observation belong to a
nonconvex functional space S and g1(x),g2(x), ...,gn(x) the corresponding functions
in a convex subset S′, defined by T . Let g(x) a functional cluster mean defined as
the mean of the corresponding function, then the L2 distance between the functions,
gi(x), and the functional cluster mean is:

d2

(
gi(x),g(x)

)
=

(∫
X

(
gi(x)−g(x)

)2
dx

) 1
2

(6)

The main advantage of the parametric FDA approach is that it is possible to com-
pute the functional distance directly on the explicit form of the functions when the
function space is convex in L2(X). Otherwise, we refer to the corresponding func-
tions, defined by the transformation T and then return to the original space through
the inverse transformation, T−1. Fort this reason, clustering results not depend on
how the curves are fit to the data, contrary to the classical FDA approach.

2.1 Functional k-means

In this proposed setting an L2 metric in function space is applied combined with
a k-means algorithm for finite dimensional data (MacQueen, 1967). The latter is
an iterative procedure that is initialized by fixing the number k of clusters and by
selecting a set of k arbitrary and distinct initial centroids in S, {φ (0)

1 (x), ...,φ (0)
k (x)}.

At the m-th algorithm iteration, m> 0, each function is assigned to the cluster whose
centroid, at the (m−1)-th iteration, is the nearest according to the chosen distance:

C(m)
i = argmin

q=1,2,..,k

(∫
X
| fi(x)−φ

m−1
q (x)|2dx

) 1
2

(7)

where C(m)
i is the m-th cluster assignment of the i-th function, i = 1,2, ...,n. Once all

of the functions have been assigned to a cluster, the cluster means are updated as:

φ
m+1
q (x) = ∑

fi∈cq

fi(x)
nq

(8)

where nq is the number of functions in the q-th cluster, cq. This procedure continues
until no function changes cluster. We remark that the algorithm is possible because
S is a closed and convex subset in a Hilbert space then it contains a unique element
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of smallest norm (Rudin, 1986). If the functional space is nonconvex, the original
observations fi(x) are replaced with the corresponding functions gi(x) = T

(
fi(x)

)
.

Next, the procedure can be transported on S by the transformation T−1.

3 Application

The framework described previously, has been applied to a real data set concerning
biodiversity of epiphytic lichens in Liguria region, in northwestern Italy. Lichen
biodiversity provide useful information about the global conditions affecting the
environment over a given area (Giordani et al., 2002). These organisms, in fact, are
particularly sensitive to environmental stresses, especially with regard to pollution,
eutrophication and climate change (ANPA, 2001).
Data on lichen abundance have been collected following the standards suggested
by Asta et al. (2002). The survey lasted from 2002 to 2003 and involves a total of
196 epiphytic lichen species and 153 plots (excluding the plots in which the lichen
frequency is equal to zero).
Figure (1) shows the location of the sample units in the region.
For every i-th environmental site (i = 1, ..,153) and for each j-th species ( j =

Fig. 1 Locations of the sample units in Liguria region.

1, ..,196), we consider an abundance vector, NNNi = (Ni1, ..,Nis)
′, calculated as the

sum of the lichen frequencies found on every t-th tree, t = 1,2, ...,T , belonging to
the plot and a relative abundance vector, pppi = (pi1, ..., pis)

′, with p j = N j/∑
s
j=1 N j,

such that 0≤ p j ≤ 1 and ∑
s
j=1 p j = 1.

In order to evaluate lichen biodiversity we refer to a parametric families of diversity
indices (Hill, 1973; Patil and Taillie, 1982), which are usually referred to as diversity
profiles. They consist of a sequence of measurements allowing different aspects of
community structure to be encompassed in a single diversity spectrum. In particular,
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the Intrinsic diversity profile (Patil and Taillie, 1979) has been applied. It is defined
as the plotting of the (l,Tl) pairs, where:

Tl =
s

∑
j=l+1

p( j)# l = 0,1, ....,s (9)

is the right-tail sum diversity index, p( j)# is the relative abundance vector ranked
in descending order and l is the species abundance rank. Figure (2) displays the in-
trinsic profiles for the overall area with species abundances rank, l, on the abscissa.
Since there are many rare species, figure (3) shows the intrinsic profiles focusing on
the the first forty ordered species.
It is no possible to distinguish a site with greater diversity because the profiles cross

Fig. 2 Intrinsic profiles for Liguria re-
gion.

Fig. 3 Intrinsic profiles for the first 40 or-
dered species of Liguria.

each other. One solution could be to perform a pairwise comparison, when it is pos-
sible, but, in this way, a complete description of the study area is not provided.
Since diversity profile is a convex and decreasing curve, it can be analyzed in a func-
tional framework (Gattone and Di Battista, 2009) and, in particular, in a parametric
functional framework (Di Battista and Fortuna, 2013).
In order to identify specific common patterns among sites, a nonparametric clus-
tering method has been applied. In particular, a functional k-means algorithm has
been implemented, specifying an L2 metric directly on the explicit known form of
the functions. This is possible because the set of the sequences of intrinsic profiles
in (9) is convex in the l2 space (De Sanctis et al., 2014). The k-means procedure
has been initialized by choosing three arbitrary centroids, φ

(0)
1 (x),φ (0)

2 (x),φ (0)
3 (x).

At each m-th iteration, the functions have been assigned to the cluster according to
the minimum distance between them and the centroids:

d(Tli,T l) =

(
n

∑
i=1
|Tli−T l |2

) 1
2

(10)
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where the functional mean has been computed in the usual way as the average of
the functions, obtaining an element of S due to the convexity property:

Tl =
1
n

n

∑
i=1

Tli (11)

The first group (dash-dot red line in figure 4) presents the grater diversity. It is com-
posed of 61 sites which are mainly located in the province of Genoa. The second
group (solid yellow line in figure 4), shows the opposite situation. It consists of 36
sites that are especially of the province of Savona. Finally, the third group (dot-
ted blue line in figure 4), composed of 56 sites which are prevalently located in
the province of Imperia, is placed between the other two, indicating a situation of
medium diversity. Indeed the classification not return a clear ordered among sites.

Fig. 4 Three clusters for Tjl for the first 40 ordered species.

In fact, some curves of the clusters continue to overlap with each other. The aver-
age intrinsic profiles of the three groups (fig. 5), however, return a clear ordering
between sites without showing overlapping. The classification of the profiles, thus,
returns three macro-areas in Liguria region. In particular, it is possible to distinguish
an area of dominance (cluster two) with a few dominant species and, at the other ex-
treme, an area of evenness (cluster one).

The proposed method, allows us to classify the intrinsic profiles computing the
functional distance directly on the explicit form of the observations, leading to clus-
tering results that not depend on how the curves are fit to the data. In particular, in
an ecological setting, the combined used of parametric FDA and functional classi-
fication methods, allows us to identify different patterns of biodiversity when the
intrinsic biodiversity profile not highlights an explicit ranking of biodiversity.
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Fig. 5 Mean Intrinsic profile for the three clusters for the first 40 ordered species.
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