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Abstract Structural learning of Bayesian network is usually fulfilley the expert
knowledge, whenever available, or by some efficient algorit procedures. De-
spite the vast literature on structural learning, stitldithas been done specifically
aimed at the multivariate time series modeling. We suggtessitang procedure able
to learn the DAG structure whose vertex set only consisth@fcomponents of a
stationary vector autoregressive VAR(p) model. The prappsocedure follows a
constraint-based approach by using a test between blocksiables. The class of
tests proposed is based on multivariate ranks of distanud & asymptotically
distribution-free under very mild assumptions on the noise
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1 Introduction

Bayesian networks (BNs - Cowell et al. 1999) are graphicadlehable to model
phenomena characterized by uncertainty. They are prasibinodels for repre-
senting the joint distribution of a set of variables by meafidirected acyclic graphs
(DAGSs). A graph G is an object composed by a set of nodes, ddrmtV and rep-
resenting variables, and a set of (eventually directed@gddenoted by E interlace
pairs of nodes. A directed graph is said to be acyclic if itas possible, following
arrows direction, to define a path where the starting andrideng node coincide.
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In a BN each node is associated with a (marginal or conditjgrrabability dis-
tribution function. When the dependence structure betwaeiables is known, the
DAG can be drawn on the basis of expert knowledge and the pilitpaables can
be manually filled in. In many applications the dependenagtire is unknown or
partially known, and the network need to be automaticallyiefrom the data. The
latter is the situation largely studied and discussed initBeature (Buntine 1994,
Buntine 1996) and it is known as structural learning. Themagiproaches to struc-
tural learning are thecoring and searchingnd theconstraint-based he first one
is based on searching, in a specific space, the model thaiddssét score, given a
chosen metric (Cooper and Herskovits 1992; Heckerman 1885second focuses
on the conditional independence relations revealed frardtta and the network
is drawn according to the test results (Spirtes et al. 2008. paper discusses the
opportunity to check conditional independence betweenkslof variables to de-
termine entire paths of the network by accounting for thepteral dimension. The
paper is organized as follows. Section 2 briefly discussesttte of art of modeling
temporal setting with graphical models and Bayesian nétsv@ection 3 concludes
with the class of conditional test for checking independsnc

2 Graphical modeling in temporal setting

The increasing interest in graphical models has been desdlalso in the time
series modeling. Brillinger (1996) introduced the idea efng graphical mod-
els in time series analysis. The first attempt for modelingetiseries in graphi-
cal models framework has led to the chain graphs (Lynggaadd/éalther, 1993).
Some applications of the tool can be found in Reale and Tliffaigvilson (2001),
Dahlhaus and Eichler (2003). In these papers, the analystsiricted on linear in-
terdependencies among the variables. More recently,mearliparametric and non
parametric models have been discussed (e.g., Tong, 1983rehYao, 2003). A
widespread approach is to consider the variables at diff¢irae slices and to rep-
resent them by separate nodes, with the consequence ofsgrashmany nodes.
More recently, Eichler (1999) proposed an alternative aeagh for modeling mul-
tivariate stationary time series by using the concept ohGea causality expressed

in terms of conditional independencies. The pictorial espntation of the model is
based on mixed graphs where: (1) each variable, i.e. eaehstmes, is displayed
by a single vertex; (2) Granger-causal relationships betwgairs of variables is
displayed by directed edges; (3) simultaneous dependénmuse is represented
by undirected edge.

The literature also focused on various approaches to incatg the temporal
dimension into BNs. The extension of BNs used to model tinniesés called dy-
namic Bayesian networks (DBNs - Webber and Jouffe, 2006n2ea Kanazawa,
1989). In a DBN, state at timeis represented by a set of variables and depends on
the states at previous time steps. A DBN is defined by one Blgvery time slice.
The time slices are repeated T-times. DBNs enable us tolizsuatra-slice connec-
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tions and inter-slice connections that incorporate comulitl probabilities between
variables from different time slices. This approach is telibenefit in the analysis
of multivariate long time series.

In this research we focus on the relevant theoretical ancpatational problems
related to the Bayesian Network structural learning in thétivariate time series
setting. We adopt a constraint based approach to learn a Biendach node is a
time series and arrows depict dependencies in a temporahdion. The dependen-
cies are checked with class of tests of conditional indepeece able to identify the
temporal structure of the system. The problem is tackledviecior Autoregression
framework where the temporal dimension is exploited in otdédentify the direc-
tion of the edges in the BNs. This approach is quite new initasature and would
avoid undirected edges.

3 Block-wise conditional independencein time

Let X; = ((Xt(l))T, (Xt(2> )T)T be ak x 1 vector of stochastic processes W)(k%l)

taking values iRk andxfz) in Rz (ky + ko = k), the Veector AutoRegressive model

of orderp, (denoted by VARp)) is
P
Xi = AiXi_i + & t=1,...,N (1)
2

whereA;,i=1,..., parek x kmatrices and; = ((st(l))T, (& )T)T is ak x 1 vector

of noise.

Clearly, in a VAR model contemporaneous relationships apvamiables are not
accounted for and are “hidden” in the contemporaneousletioe structure of the
error terms. The structural VAR analysis is based on thergitéo give a sensible
solution to this problem, based on the imposition of a setesfrictions. In this
paper we address more deeply the problem of testing réstricon the correlation
structure of the noise.

Consider the following partition in sub-matrices of botle #utocorrelation ma-
trices, fori = 1,..., p and the invertible and symmetricx k matrix Ag

(11) (12) (11) (12)
o A A B AO AO
A= (A:(zl) A:(22)> Ao = <(A(()12))T A(()zz)7>

which represents a perturbation of a block spherical npjse ((Ih(l))T, ("It(z))T)T,

i.e.& =AoNt, whereAéll) andAézz) are nonsingular symmetrig x k; andky x ko

matrices, respectively, an@(()lz) is aks x ko matrix. Without loss of generality we
assume thaAgl11 = 1.
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From the definition of instantaneous conditional indep@cde which in the
Gaussian case is equivalent to conditional non correlatesting for contempo-
raneous non correlation betwe¥f! andX (2 is testing the null hypothesis

Ay AYP =o0. )

Two necessary requirements are stationarity of the sttichmecess{; in model

(1) and finite second-order moments. Moreover, we conq’def((nt(l))T, (nt(2>)T)T
a marginally spherical noise, i.e. with density

(2 f1, f2) i= G ry,r, T (1 2V R[22 )

wherecy 1, 1, € R,z € R}, 22 ¢ R and f; : Ry — RT, f,: R§ — R* are a.e.
strictly positive are the marginghdial densitieof nt(l) andnt(z), respectively, and
are assumed to have finitedial Fisher information for location and scale

Under the null hypothesis of non correlati@an;= Aon: is a marginally elliptical
error term.

In synthesis, we require in (Al) the stationarity of the W&k model consid-
ered in (1), and we assume (A2) that under the null the inmmvaiare marginally
elliptical.

Let

8, := (vec' Ay,...,vec Ap)T, 8y :=((vecjAo)")"

andd := (8] ,0])" be respectively thek?, thek(k+1)/2— 1 and thepk? + k(k+
1)/2 — 1-dimensional vectors of unknown parameters correspgridirthe model
in (1), where the veghoperator is such that, for amyx k matrix A,

vech; A := (vech) AMY vec” A vech AT

with the usual definitions of vec, vech and vgd¢the last operator corresponds to
the vech operator, having dropped the top-left entry of thé&imA).

Vector 0, represents a vector of nuisance parameters in the testoigepn.
When 0, is left unspecified, the multivariate signs and ranks-bdsetistatistics
proposed in this paper is computed using any arbitrary estirad, = 6, " sat-
isfying assumptions previously specified. Then the tebtaddbws to achieve local
asymptotic optimality in the Le Cam sense, under adequai&es of the score
functions.

Let U == (U™ T,(UP)T)T, whereUY = 2% /d™ and U® = 2 /¢
are the unit-norm vectors which und@é"?‘f)Lf2 are i.i.d. and uniformly distributed

over thek; and kp-dimensional unit sphere. LeRt(j) be the rank ofdt(j) among
(di”, ... ,d,(\,”), j = 1,2, then define the sign and rank-based test statistics

N (9):=TNT@)ct TV (9) (3)

~ f1,f2 ~fy,f2 ~fy,fa~ 1y, fo
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with
1 N
TN 9)=—53B  vecUPu?" (4)
Nfl,fz N t= ~t, fl f2
(1) (2)
(1) @R (11)\ -1
B = e — (I A
Sl (N+1>J° (N+1)( oo )
(2) (1)
2 R (R (22)
+‘J1 (N+1 ‘]O (N+1 (A ®Ik1) ;
and

= Et. 1,[B BT
~ff, Kiko 1’2[~t,f1,fz~t,f1,fz’

where the score functions defined &9 (u) := ¢y, o FH(u), 32 (u) == ¢y, o
5 (u), 38 (u) == B (u) andIP (u) == F, *(u), satisfy assumptions on the score
function previously mentioned. Functloﬁ;_;( ) andF(-) are the distribution func-
tions of the moduli of the sphericized residuals under nmeigiadial densities; (-)
andfy(-).

Let J;(u) = K1(u), Jo(u) = Ko(u) be any continuous differentiable monotone
increasing square-integrable score functions then thergeacore version of the
test statistics (3) is

N @) :=TNT (9 c TN () (5)
~J ~J ~J ~J

with
TV@) = L S B vecUM U 6)
~J VNG~ vt

1

- Wlthfz[g BT].

~3 t~t

In particular, when the score funcﬂol(%J and K( () are equal to a function
KI(-), j = 1,2, the general score version of the test statistics boilsxdow

(2) 2
k@ (R (1),@T
(N+1) (N+1)Vecut Y

Then, under some mild assumptions, such as stationaritie §econd order
momentsconstraintnessroot-n consistengylocal asymptotic discretenesaffine
equivarianceand continuous differentiable monotone increasing sgiregrable
score function§ the test statistic® i )f (#) is block affine-invariant and asymp-

v - k1k2
~3 E[

totically invariant with respect to the group of continuamsnotone marginal radial

1 see Bramati (2013)
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transformations; is asymptotically chi-square whtlk, degrees of freedom under
Usy c.#(0) Us, Ug g Pé:\ll?el g, (50 thatp™) has asymptotic levat); is asymptot-

~J
ically noncentral chi-square witkik, degrees of freedom and noncentrality param-
eter

Y1, 9) = HCJ-,gl,gZVeCH(lZ)”%y

N
undeltpéll)JrN’l/zTu:e_l 91.92° T ¢ //Z(Q) X . i X

This research aims at combining uncertainty and tempamatdsion in Bayesian
Networks. The temporal dimension is generally exploitedrider to identify the
direction of the edges in the BNs and thus avoiding an a pgigen ordering. This
is done for understanding the relations of the system, \kighsimple idea that an
effect cannot precede its cause in time. The idea is to |é&rsttucture of the BNs
using constraint based approach based on block-wise comaliindependence tests
in time.
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