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Abstract Bivariate conditional autoregressive CAR models are widely used classes
of multivariate spatial models. In this paper, we consider their maximum likelihood
estimation which, under general boundary conditions, can be problematic. As in
time series analysis, it will be shown that the Kalman filter provides an alternative
and a computationally efficient solution for computing the likelihood.
Abstract I modelli autoregressivi condizionali costituiscono una classe di modelli
ampiamente usati nell’ambito dell’analisi di dati spaziali osservati su reticolo rego-
lare. In questo lavoro, utilizzando una specificazione bivariata, si considera il prob-
lema della stima di massima verosimiglianza che, per condizioni di bordo generali,
risulta problematica dal punto di vista computazionale. Come nell’analisi delle se-
rie temporali, anche in questo ambito, sfruttando la naturaricorsiva del modello,
dimostreremo che la verosimiglianza puó essere calcolata in maniera efficiente me-
diante il filtro di Kalman.

Key words: Gaussian Markov Random Field, Maximum likelihood, Kalman filter,
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1 Introduction

Large amounts of essentially-continuous spatial data are associated with the nodes
or interiors of a regular rectangular lattice. Examples include pixellated images
which occur in many different applications, regularly-sampled spatial data, and
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many agricultural field trials. Different types of models have been proposed for an-
alyzing such data. Here, we consider stationary Gaussian conditional autoregressive
(CAR) models, also known as Gauss-Markov random fields - GMRFS. We assume
the GMRFs are defined on an infinite regular rectangular lattice, and applied to data
on a complete finite lattice.

The paper is concerned with maximum likelihood - ML - parameter estimation
of bivariate GMRFs. As discussed in Rue and Held (2005) the Markov property
of a GMRF makes it possible to employ numerical methods for sparse matrices to
construct fast algorithms operating on the precision matrix. Specifically, if we are
prepared to assume toroidal boundary conditions for a lattice, then ML estimation
is relatively straightforward. However, for alternative boundary conditions the im-
plementation can be problematic.

Most of the difficulties can be overcome by exploiting the direct connection be-
tween the non-zero pattern of the precision matrix and the Markov properties of the
GMRF. As discussed by Lavine (1999) and Moura and Balram (1992) by using the
recursive structure of the GMRF, and its associated state-space representation, the
Kalman filter constitutes an alternative, quick, and an efficient method of param-
eter estimation. In this paper, we shall show that for some parameterizations this
approach is especially useful for estimating bivariate GMRFs.

The format of our paper is as follows. In section 2 we begin by briefly review-
ing the univariate GMRF model, its ML parameter estimation and its state-space
formulation. Section 3 introduces the bivariate GMRF. In particular, we discuss a
specific parametrization for which the joint distribution is obtained as the product of
the conditional and marginal distributions assumed to be univariate GMRFs. Here,
when the eigenvalues of the precision matrix are not know, itis shown that the use
of the Kalman filter offers a computationally efficient solution for computing the
likelihood. Section 4 concludes the paper with a discussionof the methodological
proposal.

2 Univariate Gauss-Markov random fields

Suppose thatttt, vvv andzzzare two-dimensional vectors, and assume that
{

x(ttt), ttt ∈ Z2
}

is a second-order stationary random field on the regular rectangular lattice, with
mean zero, autocovariance functionRx(vvv) = Cov{x(ttt),x(ttt + vvv)}, and autocorrela-
tion functionrx(vvv) = Rx(vvv)/σ2

x , whereσ2
x = Rx(000). Provided the sum is finite, the

autocovariance generating function - acgf - ofx is

Γx(zzz) = ∑
uuu∈Z2

Rx(vvv)zzz
vvv, zzz∈ C2

where∑ |Rx(vvv)|<∞ andzzzvvv = zzzv1
1 zzzv2

2 . Stationarity ensures that the acgf always exists
for |zzz|= 1, where|zzz|=

√

(zzz′zzz). The spectral density function - sdf - ofx is defined
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here asfx(λλλ) = Γx(eiλλλ ) = ∑Rx(vvv)eivvv′λλλ = ∑Rx(vvv)cos(vvv′λλλ ), whereλλλ ∈ (−π ,π ]2;
with its integral being(2π)2σ2

x . The inverse relationship is

Rx(vvv) = (2π)−2
∫

eivvv′λλλ fx(λλλ)dλλλ .

Let

A(zzz) =− ∑
jjj∈S+p

α jjjzzz
jjj

be a finite symmetric Laurent series withα000 = −1 and satisfyingA(zzz) = A(zzz−1),
i.e.α jjj = α− jjj for all jjj , whereSp is a finite subset ofZZZ2 containing neighbours of the
origin. Thusttt+Sp is the set of neighbours of sitettt. The order of the neighbourhood
set is denoted byp, and is defined sequentially by the maximum distance between
the origin and a point inSp. Hence, the first-order (p= 1) neighbours of a site are
those 4 sites which are adjacent to it; and the second-order neighbours (p= 2) are
these plus the 4 diagonally adjacent sites.

Let [x(ttt)|·] =
[

x(ttt)|x(ttt − jjj) : jjj ∈ Z2\{000}
]

denotex(ttt) conditional on the values
at all other sites. Then, under normality, the conditional autoregression CAR(p) or
Gauss-Markov random field of orderp, is defined by the conditional mean and the
constant conditional variance

E [x(ttt)|·] = ∑
jjj∈Sp

α jjj x(ttt − jjj), Var[x(ttt)|·] = Var[η(ttt)] = τ2
x ,

whereα jjj = α− jjj for all jjj and

η(ttt) = x(ttt)−E [x(ttt)|·]

is the interpolation error process. Then

A(LLL)x(ttt) = η(ttt), ttt ∈ Z2, (1)

whereLLL is a shift operator on an index, such thatLLL jjjx(ttt) = x(ttt − jjj), andΓηx(zzz) =
τ2

x , i.e. the interpolation errorη(ttt) is uncorrelated with allx’s exceptx(ttt). We call
A(zzz) reflection-symmetric if theα jjj are equal for all sign changes on thejjj i , and
completely-symmetric if they are also equal for all permutations of jjj . Hence, we
refer to a CAR(p) as reflection-symmetric, RS-CAR(p), or completely-symmetric,
CS-CAR(p), if its A(zzz) is.

2.1 The likelihood function

Consider an(N×M) lattice L with n = NM sites and letx(ttt), ttt ∈ L ⊂ Z2, be
the process observed at sites(ti , t j), i = 1, . . . ,N; j = 1, . . . ,M. The observed vector

is thus written asxxx=
[

xxxT
1 ,xxx

T
2 , . . . ,xxx

T
N

]T
, wherexxxi =

[

x(ti , t1),x(ti , t2), . . . ,x(ti , tM)
]T

.
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Following equation (1), by using a lexicographic order for the sites and stacking the
observations in the(n×1) vectorxxx, a non-causal representation of the GMRF can
be written as

A(ααα)xxx= ηηη , (2)

whereA(ααα) is then×n potential matrix, with entries equal to 1 along the principal
diagonal,−α jjj if the sitesttt and ttt − jjj are neighbours, and zero otherwise. From
equation (2) it readily follows thatxxx∼ N

(

0,τ2
x A−1(ααα)

)

, η ∼ N
(

0,τ2
x A(ααα)

)

and the
negative log-likelihood ofxxx is

L(ααα,τ2
x |xxx) =

n
2

log(2πτ2
x )+

1
2
|A(ααα)|+

1
2τ2

x
xxxTA(ααα)xxx.

The ML fit of the model can be found by maximizing the likelihood over the
valid parameter space to ensure the stationarity conditions. In general, the parame-
ter space where theααα can take values is defined by the positive definite condition of
the covariance matrix. Hence, in practice, optimization can be either over the covari-
ance matrix,Rx = τ2

x A−1(ααα), or the precision matrix,R−1
x , positive definite and the

constraint that all the eigenvalues are positive is equivalent to positive definiteness.
An important part of model specification and estimation refers to the choice of the

boundary conditions. Except for the torus assumption, the result for different bound-
ary conditions is non-stationary - variances are no longer constant, and correlations
at a given lag depend on the sites involved. Also, although there are computation-
ally fast algorithms for first-order and reflection-symmetric second-order GMRFs
with non-toroidal boundary conditions, computation is expensive. The use of the
band Cholesky decomposition ofR−1

x can be used to simplify the problem (see,
Rue and Held, 2005; sec 2.3-2.4). However, for very large lattices the algorithm can
be computationally demanding.

2.2 The recursive structure of a finite GMRF

By following Moura and Balram (1992), it is shown that the recursive formula-
tion intrinsic to a non-causal GMRF leads to a state-space representation which can
greatly facilitate the computation of the likelihood. Thisrepresentation is obtained
using a Riccati equation and is written as

xi = ΓΓΓ ixi+1+Giε i , 1≤ i ≤ N−1

xN = GNεN, (3)

whereGi andΓΓΓ i are parameter matrices obtained through the Cholesky decompo-
sition ofA(ααα), andE

[

ε ix j
]

= 0, for j < i.
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It can be immediately recognized that equation (3) represents a ”backward” state-
space row model for a noise-free GMRF. Hence, as in time series analysis, the
Kalman filter (Hamilton, 1994; p. 372) can be used to evaluaterecursively the like-
lihood for parameter estimation. In fact, letx̂xxi|i+1 = E

[

xxxi |Xi+1
]

the least-squares
forecast of the state vectorxxxi conditional on the information observed up to row
i +1 and letΣΣΣ i|i+1 denote the corresponding mean squared error matrix. Then, the
conditional distribution,xxxi |Xi+1, is Gaussian with mean̂xxxi|i+1 and covariance ma-
trix ΣΣΣ i|i+1, that is

f (xxxi |Xi+1) ∝ |ΣΣΣ i|i+1|
−1/2exp

{

(xxxi − x̂xxi|i+1)
T ΣΣΣ−1

i|i+1(xxxi − x̂xxi|i+1)
}

, i = 1, . . . ,N. (4)

From (4) the sample log-likelihood is thus obtained as

L(ααα ,τ2
x |xxx) =

N

∑
i=1

log f (xxxi |Xi+1),

which can be maximized numerically with respect to the unknown parametersτ2
x

andααα .

3 Bivariate GMRFs

In recent years, multivariate spatial models have been proven to be an effective
tool for analyzing spatially related multidimensional data arising from a common
underlying spatial process. Bivariate GMRF models have been mainly developed in
the fields of medicine and public health to study the regionalpatterns of multiple
diseases (see, for example, Kim et al. 2001). Applications with environmental data
are instead considered by Sain et al. (2011).

Suppose thatuuuv =
(

yyyT xxxT
)T

denotes a second-order stationary zero mean bivari-
ate GMRF of orderp represented in variable order (i.e. alln values for variabley
and then for variablex). Let

D =
1
τ2

x

(

I − ∑
jjj∈Sp

αx, jjj W( jjj)

)

, E =
1
τ2

y

(

I − ∑
jjj∈Sp

αy, jjjW( jjj)

)

and

F = βyI − ∑
jjj∈Sp

φy, jjjW( jjj),

whereW( jjj) is the incidence matrix for neighbours corresponding to themodel pa-
rameter matrices,D = R−1

x = Qx·y, E = R−1
y·x = Qyy andF = RyxR−1

x = −Q−1
yy Qyx.

Then, the covariance and the precision matrices of the jointdistribution can be writ-
ten as
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Ruv =

[

E−1−FD−1FT FD−1

D−1FT D−1

]

and R−1
uv

= Quv =

[

E −EF
−FTE D+FTEF

]

.

and their determinants can be computed as|Ruv|= |D−1| |E−1| and|Quv|= |Qyy| |Qx·y|.

4 Simplifying the computational complexity

In general, under general boundary conditions and for a large p, the computation of
the determinant is expensive. However, if we consider the case in which one of the
two variables, sayx, is assumed to be a predictor ofy, the joint distribution can be
written through the specification of simpler conditional and marginal forms, that is
f (uuu) = f (yyy|xxx) f (xxx). In fact, since the conditional distribution ofyyy|xxx is multivariate
normal with meanµµµy|x = Fxxx and nonsingular covariance matrixRy·x =Q−1

yy , it turns
out that the negative log-likelihood can be written as,L(θθθ |uuu) = L(θθθ |yyy·xxx)+L(θθθ |xxx),
or equivalently,

L(θθθ |uuu) = log(2π)−
1
2n

log
(

|Qyy| |Qx·y|
)

+
1
2n

(

xxxTQx·yxxx+ ỹyyTQyyỹyy
)

(5)

whereθθθ is the set of all model parameters andỹyy= yyy−Fxxx. Note that the likelihood
has been scaled by 1/n for convenience.

Since the conditional and the marginal distributions appear as univariate GM-
RFs, the log-likelihood in (5) can be computed for general model parameterizations
throughL(θθθ |yyy·xxx) andL(θθθ |xxx) which, in turn, can be evaluated by the Kalman filter
as in section 2. The performance of the Kalman filter estimator will be assessed in a
complete experimental study in the extended version of thisarticle.
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