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Abstract Filtering hidden Markov models amounts to perform sequential Bayesian
inference on some dynamic parameter given observations collected at discrete time
points. The filtering is exact if the sequence of posterior distributions are evalu-
ated in closed form rather than approximated. Relying on the notion of duality for
Markov processes, we provide general sufficient conditions for constructing a filter
which sequentially evaluates the posterior distribution of finite-dimensional param-
eters on uncountable state spaces. We then exploit the application of such results to
some specific models for extending the filtering strategies to some important classes
of measure-valued diffusions, which describe dynamically evolving nonparametric
distributions.
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1 The filtering problem

Consider a sequence of observations {Yn,n≥ 0}, Y ∈Y , and an unobserved Markov
chain {Xn,n ≥ 0}, which we assume to be the discrete-time sampling of a homo-
geneous continuous-time Markov process Xt . We assume Xt has state-space X ,
transition kernel Pt(x,dx′) and initial distribution ν(dx). The observations relate to
the hidden signal by means of a family of conditional distributions L (y | x). If the
model admits a common dominating measure for all values of the signal, so that
densities fx(y) exist, we will say the model is parametric.
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The exact filtering problem is the closed form evaluation of the filtering distribu-
tions L (Xtn |Y0, . . . ,Yn), henceforth denoted νn(dx), that is the conditional distribu-
tions of the unobserved signal at time tn given observations Yi = Yti collected up to
time tn. Once these are available, a number of statistical applications can be carried
out, such as the prediction of future observations, the derivation of smoothing dis-
tributions (the distribution of the signal given past and future observations) and the
calculation of the marginal likelihood in dominated models.

For parametric models, deriving an optimal filter entails solving the recursion
defined by ν0 = φY0(ν) and νn = φYn(ψtn−tn−1(νn)), for n ∈ N. Here φ defines the
update operator

φy(ν)(dx) = fx(y)ν(dx)/pν(y), pν(y) =
∫

X
fx(y)ν(dx),

which amounts to the application of Bayes theorem, with the filtering distribution
ν(x) taking the role of the prior, and ψ the prediction operator

ψt(ν)(dx′) = νPt(dx′) =
∫

X
ν(dx)Pt(x,dx′), (1)

which evaluates the distribution of the next step of the Markov chain initiated from
ν . The iteration of the two operators typically leads to intractable distributions,
with notable exceptions being Baum-Welch filters, for finite state-space cases, and
Kalman filters, for Gaussian state-space models. Previous results on parametric fil-
tering include, among others, Sawitzki (1981), Ferrante and Vidoni (1998), Rung-
galdier and Spizzichino (2001), Chaleyat-Maurel and Genon-Catalot (2006).

In the nonparametric case, when a common dominating measure is not avail-
able, we regard the signal as infinite-dimensional or measure-valued. In this case
the observations are samples from the signal itself, i.e., Yt | Xt ∼ Xt , and the update
operator φ is not defined. In particular, if a discrete Xt is defined on an uncountable
X , optimal filtering must take into account the possibility that the support of Xt
changes in time, as illustrated in Figure 1.

In Section 2 we derive sufficient conditions for the existence, in the parametric
case, of a filter whose complexity grows polynomially in the number of observa-
tions. Such conditions rely on the existence of a certain type of dual process for the
signal. In Section 3 we discuss some examples and briefly sketch how the results
can be extended to the nonparametric case, al least for some classes of dynamically
evolving distributions. The results presented here are based on Papaspiliopoulos and
Ruggiero (2014) and Papaspiliopoulos, Ruggiero and Spanò (2014).

2 Duality and filtering

Let {Vt , t ≥ 0} on V and {Wt , t ≥ 0} on W be two Markov processes. These are said
to be dual with respect to the function q(v,w) if
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(a)

(b)

Fig. 1 Illustration of a nonparametric filtering problem: (a) X0 is the the unobserved starting state of a purely
atomic measure-valued process, in the form of a discrete random measure, of which only the location Y0 = y is
observed; (b) over an interval of length t > 0, X0 has evolved into the discrete measure Xt represented; given
Y0 = y, the evaluation of the conditional law L (Xt |Y0 = y) of the signal must take into account that Y0 may no
longer be an atom of Xt , as occurs in the illustrated sample path.

E
(
q(Vt ,w) |V0 = v

)
= E

(
q(v,Wt) |W0 = w

)
, ∀v ∈ V ,w ∈W , t ≥ 0.

With some additional restrictions, a sufficient condition for duality can be expressed
in terms of the generators, through the condition

(A q(·,w))(v) = (Aq(v, ·))(w), ∀v ∈ V ,w ∈W ,

where A and A are the generators of Vt and Wt respectively. In the following, for
multi-indices m = (m1, . . . ,mK) ∈M = ZK

+ we will consider duality functions h :
X ×M ×Θ→R+, Θ⊆Rl , where the first two components (Xt ,Mt) will represent
Markov processes and the third Θt a deterministic process. With slight abuse of
notation we will write h(x,m) instead of h(x,m,θ) when Θt is absent or ancillary.
We assume h satisfies supx h(x,m,θ) < ∞ for all m ∈M ,θ ∈ Θ, l ∈ Z+. We also
define the following notion of conjugacy, by assuming F = {h(x,m,θ)π(dx), m ∈
M ,θ ∈ Θ} is a family of probability measures such that there exist functions t :
Y ×M →M and T : Y ×Θ→Θ with m→ t(y,m) increasing and such that

φy(h(x,m,θ)π(dx)) = h(x, t(y,m),T (y,θ))π(dx) .
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Papaspiliopoulos and Ruggiero (2014) showed that when the signal Xt is reversible
with respect to a probability measure π on X and has a dual process (Mt ,Θt) ⊂
M ×Θ with generator

(Ag)(m,θ) = λ (|m|)ρ(θ)∑
K
i=1 mi[g(m−ei,θ)−g(m,θ)]+∑

l
i=1 ri(θ)

∂g(m,θ)

∂θ
,

where ei is the vector with the unit ith coordinate being the only non zero element
and r : Θ→Θ is such that the differential equation

dΘt/dt = r(Θt), Θ0 = θ0 , (2)

has a unique solution for all θ0, then (1) can be written

ψt(h(x,m,θ)π(dx)) = ∑0≤i≤m pm,m−i(t;θ)h(x,m− i,Θt)π(dx). (3)

Here Θt is a deterministic process on Θ driven by the ODE (2) and Mt is a multidi-
mensional pure death process on M , with transition probabilities

pm,n(t;θ) = Pr(Mt = n|M0 = m,Θ0 = θ), n,m ∈M , n≤m,

available in closed form; see Proposition 2.1 in Papaspiliopoulos and Ruggiero
(2014). Thus, under the stated conditions, (3) allows to express the time propagation
of the signal as a finite sum even if the transition function in (1) has an infinite series
representation. This implies that the conditional law of the signal can be written

L (Xtn |Y0, . . . ,Yn) =
∫

h(x, t(Yn,Mn),T (Yn,Θn))π(dx)dL (Dn|Y0, . . . ,Yn−1),

where {Dn = (Mn,Θn) ,n≥ 0} is the chain embedded in (Mt ,Θt) at the observation
times. Thus, filtering Xtn in the original model can be achieved by filtering Dn in
the dual model. Since Θn evolves deterministically, optimal filtering for Xt reduces
to filtering Mn, which has finite support and whose associated probabilities can be
computed recursively.

3 Examples and nonparametric developments

3.1 Dirichlet case

Wright–Fisher diffusions are K dimensional processes which describe the evolution
of K frequencies and have generator

A =
1
2 ∑

K
i=1(γi−ϑxi)

∂

∂xi
+

1
2 ∑

K
i, j=1 xi(δi j− x j)

∂ 2

∂xi∂x j
, ϑ = ∑

K
i=1 γi,
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where δi j = 1(i= j) and A acts on functions in C2(∆K) on the (K−1)-dimensional
simplex ∆K . The diffusions with such operator are reversible with respect to the
Dirichlet distribution πK(dx) ∝ xγ−1dx (in multi-index notation), which is well
known to be conjugate to Multinomial observations. It can be shown that the
Wright–Fisher diffusion is dual, with respect to the function

h(x,m) =
Γ (ϑ +m)

Γ (ϑ)

K

∏
i=1

Γ (γi)

Γ (γi +mi)
xm, m =

K

∑
i=1

mi,

to a death process with generator obtained by setting l = 0, ρ(θ)≡ 1 and λ (|m|) =
(θ +m− 1)/2 in (2). Here there is no deterministic component, and we write h
with two arguments instead of three. Then, assuming a Multinomial likelihood for
the observations, from the results of the previous section it follows that (3) holds
with h(x,m)π(dx) being a posterior Dirichlet distribution conditional on m obser-
vations, with multiplicities m for the K categories, and pm,m−i(t) are the transition
probabilities of the death process with generator described above.

The Fleming–Viot process with parent-independent mutation is characterized by
the generator

Aϕ(x) =
∫

Y
x(dy)M

(
∂ϕ(x)
∂x(·)

)
(y)+

1
2

∫
Y

∫
Y

x(dy)(δy′(dy)− x(dy))
∂ 2ϕ(x)

∂x(dy)∂x(dy′)

where ∂ϕ(x)/∂x(dy) = limε→0+ ε−1(ϕ(x+ εδy)−ϕ(x)), M is the mutation opera-
tor

(M f )(y) =
θ

2

∫
Y
[ f (y′)− f (y)]P0(dy′), f ∈ B(Y ), (4)

and P0 ∈M1(Y ) is the nonatomic mutant offspring distribution. Such Fleming–
Viot process extends the Wright–Fisher diffusion and is reversible with respect to
the Dirichlet process, which enjoys a conjugacy property. By elaborating on the
results for Wright–Fisher diffusions and exploiting the relation between the two
classes of processes, one can show that an infinite-dimensional version of (3) holds
for this nonparametric case, yet still entailing a finite computation.

3.2 Gamma case

The Cox-Ingersoll-Ross model (Cox, Ingersoll and Ross, 1985), which is reversible
and ergodic with respect to a gamma G(α,β ) distribution, is a diffusion with gen-
erator

B =
1
2
(α−βx)

d
dx

+
1
2

x
d2

dx2 ,

acting on C2([0,∞)) functions which vanish at infinity. This can be shown to be dual
to a two-component process (Mt ,Θt), taking values in Z+×R+, with generator



6 Omiros Papaspiliopoulos, Matteo Ruggiero and Dario Spanò

Bg(m,θ) = 2m(β +θ)(g(m−1,θ)−g(m,θ))−2θ(β +θ)
∂

∂θ
g(m,θ),

with respect to the duality function

h(x,m,θ) =
Γ (α)

Γ (α +m)

(
β +θ

β

)α

(β +θ)mxme−θx.

The dual process (Mt ,Θt) is composed by a death process Mt on Z+, which, given
Θt = θ , decreases from m to m−1 at rate 2m(β +θ) and is absorbed at zero, and a
deterministic process Θt , whose associated ODE has solution

Θt = βe−2β t/(1+β/θ0− e−2β t), Θ0 = θ0.

Note that h(x,m,θ)G(α,β ) = G(α +m,β + n), which is a posterior Gamma dis-
tribution, conditional on n Poisson observations whose sum is m. Then, assuming
Poisson likelihood for the observations, we have

ψt
(
G(α +m,β +θ)

)
= ∑

m
i=0 Bin(m− i; m, p(t))G(α +m− i,β +Θt),

where p(t) = β (θ0−(β +θ0)e2β t)−1. Furthermore, such relation can be extended to
the infinite-dimensional case for the Dawson-Watanabe measure-valued branching
diffusion with generator

Bϕ(x) =
∫

Y
x(dy)M

(
∂ϕ(x)
∂x(·)

)
(y)+

1
2

∫
Y

x(dy)
∂ 2ϕ(x)
∂x(dy)2 ,

with M as in (4), which extends the CIR process. This follows by exploiting the
infinite divisibility property of the gamma process, which is the reversible mea-
sure, together with the results of Section 3.1 and the well-known representation of a
Dirichlet process as a normalised gamma random measure.
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