
An efficient algorithm to estimate the sparse
group structure of an high-dimensional
generalized linear model
Un algoritmo efficiente per la stima della struttura sparsa
e raggruppata di un modello lineare generalizzato
definito in uno spazio ad alta dimensionalità
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Abstract Massive regression is one of the new frontiers of computational statistics.
In this paper we propose a generalization of the group least angle regression method
based on the differential geometrical structure of a generalized linear model speci-
fied by a fixed and known group structure of the predictors. An efficient algorithm
is also proposed to compute the proposed solution curve.
Abstract I modelli di regressione caratterizzati da un elevato numero di variabili
esplicative costituiscono una delle nuove frontiere della statistica computazionale.
In questo articolo proponiamo una generalizzazione del group least angle regres-
sion method fondato sulla struttura geometrica differenziale di un modello lineare
generalizzato specificato mediante struttura raggruppata e nota dei regressori. Pro-
poniamo inoltre un efficiente algoritmo per la stima del sentiero dei coefficienti.
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1 Introduction

This paper deals with the problem of how to find important groups of predictors in a
generalized linear model (GLM) [5]. In linear regression modelling, [8] propose an
extension of the lasso estimator [7], called group lasso to select a sparse predictive
set of groups of predictors. A number of papers studies the theoretical properties
of the group lasso estimator. In [2] the behaviour of the group lasso estimator, as a
group selection method, is studied under the assumption of a fixed number of ran-
dom predictors. In [6] the previous asymptotic results are extended showing that a
direct generalization of the adaptive lasso [9] to the group lasso framework satis-
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fies the oracle properties. They also derive the asymptotic behaviour of the group
lasso when the dimension of the parameter space grows with the sample size. For a
complete treatment of the group lasso estimator, the interested reader is referred to
[3]. In this paper we extend the differential geometrical framework proposed in [1]
to define a generalization of the group least angle regression method (glars) intro-
duced in [8]. The rest of this paper is structured as follows. In section 2 we study
how to use the differential geometrical structure of a GLM to deal with the group-
ing structure of the predictors and we propose an extension of the dglars that we call
group dglars. Finally in section 3 we propose an efficient computational methods to
estimate the solution path.

2 Group dglars: differential geometric foundation

Let Y be a scalar random variable with probability density function p(y;θ ,φ) =
exp[{yθ − b(θ)}/a(φ)+ c(y,φ)], where θ ∈Θ ⊆ R is called canonical parameter,
φ ∈ Φ ⊆ R+ is called dispersion parameter and a(·),b(·) and c(·, ·) are specific
given functions. We shall assume that Θ is an open set and φ is a fixed value so
that, to simplify our notation, we can let φ = 1. The expected value of Y is related
to the canonical parameter by E(Y ) = µ = ∂θ b(θ). We let S̃ = µ(int Θ). Since
µ is a reparametrization of the model, we denote by p(y; µ) the probability density
function of Y . Let X be the p-dimensional vector of random predictors. In what
follows, we shall assume that we have a fixed number of groups, say G, and that
such grouping structure defines a partition of the set A = {1, . . . , p}. To simplify
our notation, we shall use the multi-index notation, i.e. let m = {m1, . . . ,m|m|} the
set of indices identifying the mth group, then the corresponding block of a given
p-dimensional vector is denoted using m as index, for example by βm we denote the
|m|-dimensional parameter vector corresponding to the mth group of predictors.

Consider N i.i.d. copies of the observation pair (Y ,X T )T , under this setting a
GLM is based on the assumption that the conditional expected value of Yi given
Xi = xi is specified by the link function h(·) as follows h(E(Yi|Xi = xi)) =

∑m⊂A xT
i,mβ ?

m. With a slight abuse of notation we let h−1(∑m⊂A xT
i,mβm) = µi(β )

and µ(β ) = (µ1(β ), . . . ,µN(β ))
T . In what follows we shall assume that our model

has a sparse grouping structure, this means that there exists a subset A ? ⊂A such
that β ?

m = 0 if and only if m 6⊂A ?. Let `i(β ) be the log-likelihood function for the
ith observation. The log-likelihood function is denoted by `(β ) = ∑

N
i=1 `i(β ) while

the average observed log-likelihood function is denoted by PN`(β ) = ∑
N
i=1 `i(β )/N.

Finally, throughout this paper we shall use the convention that the indices i, j and l
correspond to the quantities related to µ while m,n and q refer to the quantities re-
lated to the groups of predictors. For example, by ∂i`(β ) we mean the derivative of
the log-likelihood function with respect to µi and evaluated at µ(β ), i.e. ∂`(β )/∂ µi,
while by ∂m`(β ) we mean the block of the gradient vector corresponding to the mth
group of predictors.
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Let p(y; µ(β ?)) be the true conditional distribution function which is an element
of the set M = {p(y; µ(β )) = ∏

N
i=1 p(yi; µi(β )) : β ∈ Rp+1}. Following [1], M

can be treated as a submanifold of S = {p(y; µ) = ∏
N
i=1 p(yi; µi) : µ ∈ S̃ N}. The

tangent space of S at p(y; µ(β )) is defined as the linear vector space Tp{µ(β )}S =

span{∂i`(β )/
√

N : i = 1, . . . ,N} while, considering the grouped structure of the
p predictors, the tangent space of M at p(y; µ(β )) can be defined as direct sum
of the G tangent spaces associated to the considered groups, i.e. Tp{µ(β )}Mm =

span{∂m j`(β )/
√

N : m j ∈ m} is the tangent space associated to the mth group.
An inner product can be defined by the conditional expected value of Y given
X , i.e. the inner product between vβ = ∑

N
i=1 vi(β )∂i`(β )/

√
N ∈ Tp{µ(β )}S and

wm
β
= ∑m j∈m wm

m j
(β )∂m j`(β )/

√
N ∈ Tp{µ(β )}Mm, is defined as 〈wm

β
,vβ 〉p{µ(β )} =

EY |Xβ (wm
β
· vβ ), where X is the design matrix. In order to complete the differential

geometrical framework, it is necessary to introduce the observed response vector
and to consider its relationship with the tangent spaces Tp{µ(β )}Mm. This can be
done by the tangent residual vector, i.e. rβ = ∑

N
i=1 ri(β )∂i`(β )/

√
N ∈ Tp{µ(β )}S ,

where ri(β ) = yi−µi(β ) are fixed values.

2.1 Group dglars: formal description of group dglars

Let β be a fixed point of Rp+1 and rm
β
= ∑mh∈m rm

mh
(β )∂mh`(β )/

√
N be the projec-

tion of rβ onto Tp{µ(β )}Mm. The following identities extend the results given in [4]
to GLMs with grouped predictors:

PN∂m j`(β ) = 〈∂m j`(β )/
√

N,rβ 〉p{µ(β )} = ∑
mh∈m

PNIm jmh(β )rm
mh
(β ),

where PN∂m j`(β ) = ∑
N
i=1 ∂m j`i(β )/N and PNIm jmh(β ) = ∑

N
i=1 EYi|xT

i β
{∂m j`i(β ) ·

∂mh`i(β )}/N. Using the previous identities we can conclude that the coefficients
of rm

β
are given by the following expression

rm
m(β ) = {PNImm(β )}−1PN∂m`(β ), (1)

where PNImm(β ) is the matrix corresponding to that diagonal block of the mean
conditional Fisher information matrix that corresponds to the mth group. Combining
(1) with ‖rm

β
‖2

p{µ(β )} = 〈rβ ,rm
β
〉p{µ(β )} = cos{ρm(β )}‖rβ‖p{µ(β )} ‖rm

β
‖p{µ(β )}, we

have

‖rm
β
‖p{µ(β )} = cos{ρm(β )}‖rβ‖p{µ(β )} = (2)

=
√

PN∂m`(β )T{PNImm(β )}−1PN∂m`(β ) =

√
ωm(β )

N
, (3)
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where ωm(β ) is the Rao’s score test statistic for the mth group and ρm(β ) is the
angle between rβ and rm

β
at p(y; µ(β )). Expression (2) generalizes the univariate

differential geometric characterization of the signed Rao’s score test statistic given
in [1] and shows that

√
ωm(β )/N is based on two essential elements on which any

variable selection method should be based, namely, an invariant measure that can
be used to locally rank the G groups of predictors, i.e. cos{ρm(β )}, and a global
measure of goodness of fit, i.e. ‖rβ‖p{µ(β )}.

Since ‖rβ‖p{µ(β )} is equal for any group, using expression (2) and (3), we say that
the mth and the nth group of predictors satisfy the generalized group equiangularity
condition when √

ωm(β )

N
=

√
ωn(β )

N
. (4)

As suggested by [8], when the groups have different sizes, condition (4) can be
substituted with its weighted version obtained using ωq(β )/|q| instead of ωq(β ).
Using the Cholesky square root of PNImm(β ), denoted by {PNImm(β )}1/2, condition
(4) can be rewritten by using the Euclidean norm of the transformation

ζm(β ) = {PNImm(β )}−1/2PN∂m`(β )/
√
|m|. (5)

The group dglars method computes the solution curve, denoted by β̂ (γ), finding
a sequence of G transition points, denoted by 0≤ γ(G) ≤ . . .≤ γ(1), such that for any
γ ∈ (γ(q+1);γ(q)] the active set ˆA contains q groups and the following conditions are
satisfied:

‖ζm(β̂ (γ))‖ =
γ

N
, ∀m⊂ ˆA , (6)

‖ζn(β̂ (γ))‖ <
γ

N
, ∀n⊂ ˆA c. (7)

When γ = γ( j), with j = 2, . . . ,G, the condition

∃n⊂ ˆA c : ‖ζn(β̂ (γ
( j)))‖= ‖ζm(β̂ (γ

( j)))‖, ∀m⊂ ˆA , (8)

is satisfied and a new group is included in ˆA . Assume that ˆA = {a, . . . ,q} and de-
fine ζ ˆA (β̂ ˆA (γ)) = (ζ T

a (β̂ ˆA (γ)), . . . ,ζ T
q (β̂ ˆA (γ)))T and v ˆA = (0,vT

b , . . . ,v
T
q )

T , where
a identifies the intercept term and vm = ζm(β̂ ˆA (γ(q)))/‖ζm(β̂ ˆA (γ(q)))‖. Then, as a
consequence of conditions (6) and (7), for any γ ∈ (γ(q+1);γ(q)] the group dglars es-
timator is the Z-estimator implicitly defined by the following system of estimating
equations

ζ ˆA (β̂ ˆA (γ))− γ

N
v ˆA = 0, ∀γ ∈ (γ(q+1);γ

(q)], (9)

while β̂ ˆA c(γ) = 0. The previous system shows that in our setting the intercept is not
penalized but the method can be easily extended to the case in which is penalized or
to GLMs defined with no intercept term. The definition of the group dglars method
implicitly assumes that we are working in a setting in which it is possible to compute
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the MLE of the model defined by all the G groups. It is easy to see that the proposed
method can also be defined in a high-dimensional setting, i.e. p� N, simply by
using a value larger than γ(G) as the last value of the sequence of transition points.

Using the differential geometrical structure of a GLM with grouped predic-
tors the proposed group dglars method can be described as follows: let β̂a =
argmaxβa `(βa) be the starting point of the proposed solution curve, i.e. the MLE
of the intercept term. Then ‖rm

β̂a
‖p{µ(β̂a)} can be used to locally rank the G groups.

Suppose that the group of predictors, identified by the set b, is the first to be included
in the active set, thus ˆA = {a,b}. Then the solution curve β̂ (γ) = (β̂a(γ), β̂

T
b (γ))T

is such that r
β̂ (γ) is always orthogonal to ∂a`(β̂ (γ)), while the direction is defined

by rb
β̂ (γ)

. The curve continues as defined above until γ(2), for which exists a new

group of predictors, say c, that satisfies condition (4). Then c is included in ˆA and
the curve β̂ (γ) = (β̂a(γ), β̂

T
b (γ), β̂ T

c (γ))T is such that ‖ζb(β̂ (γ))‖ = ‖ζc(β̂ (γ))‖.
The proposed method proceeds as previously described until the last value of the
transition points.

3 Computational Aspects

The predictor-corrector method proposed in [1] can be extended to compute the
solution curve implicitly defined by the group dglars method. The basic idea under-
lying the predictor-corrector algorithm is to trace a curve that is implicitly defined
by a system of non-linear equations, by generating a sequence of points satisfying
a chosen tolerance criterion. Differentiating system (9) with respect to γ it is easy
to see that, for any γ ∈ (γ(q+1);γ(q)], we can approximate the value of the non-zero
elements of the solution curve at γ−∆γ by

β̃ ˆA (γ−∆γ) = β̂ ˆA (γ)− ∆γ

N

{
∂ζ ˆA (β̂ ˆA (γ))

∂β ˆA

}−1

v ˆA ,

where ∂ζ ˆA (β̂ ˆA (γ))/∂β ˆA is the Jacobian matrix of ζ ˆA (β̂ ˆA (γ)) and ∆γ ∈ (0;γ −
γ(q+1)]. We use β̃ (γ−∆γ) for the predictor step of the proposed predictor-corrector
algorithm. In literature there are different methods to compute the step size ∆γ . In
our algorithm we approximate the step size that will change ˆA . In according with
condition (8), a change in the active set occurs when

∃n⊂ ˆA c : ‖ζn(β̂ ˆA (γ−∆γ))‖= ‖ζm(β̂ ˆA (γ−∆γ))‖, ∀m⊂ ˆA . (10)

Using the approximation ‖ζn(β̂ ˆA (γ−∆γ))‖ ≈ ‖ζn(β̂ ˆA (γ))‖−dγ‖ζn(β̂ ˆA (γ))‖∆γ,

and observing that ‖ζm(β̂ ˆA (γ−∆γ))‖= γ−∆γ , for any m⊂ ˆA , condition (10) can
be aproximated as
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∃n⊂ ˆA c :

∣∣∣∣∣‖ζn(β̂ ˆA (γ))‖−
d‖ζn(β̂ ˆA (γ))‖

dγ
∆γ

∣∣∣∣∣≈ γ−∆γ.

This leads to the following approximation of the step size

∆γ ≈ min
n⊂ ˆA c

+

{
γ−‖ζn(β̂ ˆA (γ))‖

1−d‖ζn(β̂ ˆA (γ))‖/dγ
;

γ +‖ζn(β̂ ˆA (γ))‖
1+d‖ζn(β̂ ˆA (γ))‖/dγ

}
.

4 Conclusion

In this paper we have extended the differential geometrical framework used to de-
fine the dglars to a GLM with grouped predictors. The proposed approach allows us
to explore the sparse structure of a GLM specified by predictors with a group struc-
ture. This implies that the proposed geometrical setting can easily be extended to
other models, such as the model based on the quasi-likelihood function or the Cox’s
proportional hazard model. We have shown the role of the Rao score test statistic in
the equiangularity condition and we have also proposed a new efficient algorithm
that can be used to compute the solution curve.
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