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Abstract Environmental numerical models are deterministic tools widely used to
simulate and predict complex systems. However, they are unsatisfying since they
do not provide information about the uncertainty associated with their predictions.
Conversely, uncertainty assessment of model outputs can be useful to guide envi-
ronmental agencies in improving computer models. We propose a Bayesian hier-
archical model to obtain spatially varying uncertainty associated with a numerical
model output. We show how we can learn about such uncertainty through suitable
stochastic data fusion modeling using some external validation data. The model is
illustrated by providing the uncertainty map associated with a temperature output
over the northeastern United States.
Abstract I modelli numerici deterministici sono ampiamente usati per simulare e
prevedere sistemi complessi. Tuttavia, risultano insoddisfacenti in quanto non con-
siderano l’incertezza associata alle loro previsioni. Al contrario, la valutazione
dell’incertezza del loro output potrebbe aiutare a migliorarli. Si propone un modello
gerarchico Bayesiano per ottenere una misura di incertezza associata a tale output
che vari nello spazio tramite un appropriato modello stocastico di data fusion che
impiega dati di validazione. Si illustra il modello con la mappa di incertezza asso-
ciata ad un output deterministico di temperatura per la regione nord-est degli USA.
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1 Introduction

Numerical models are playing an increasing role as tools to understand and pre-
dict complex phenomena such as air pollution or meteorological events. Since com-
puter models are thought under a deterministic framework, they do not provide any
measure of uncertainty associated with their output. However, large sources of un-
certainty in constructing and employing numerical models do exist and it is worth
accounting for such uncertainty.

The Bayesian approach represents a very natural way to account for different
uncertainty sources and several methods have been developed to deal with the un-
certainty analysis in computer models under this perspective [6, 4, 2]. However, not
much has been said about statistical methods for attaching uncertainty to model out-
puts when we do not have information about how such deterministic predictions are
created. Indeed, our proposal builds upon the notion of uncertainty introduced by [3]
when numerical models are unavailable, rather only deterministic outputs at some
spatial resolution are provided. Paper [3] introduces a general Bayesian approach to
associate uncertainties with deterministic interpolated surfaces, using some exter-
nal validation data collected independently over the same spatial domain. Although
numerical models produce deterministic surfaces, the output will not ever be the
“true” value of the process since any model is a simplification of reality. So, given
the truth and the model output, the associated error is not stochastic. But, under suit-
able stochastic modeling, this error can be reinterpreted as a random unknown which
we can infer about using a Bayesian specification within the data fusion setting.

The contribution of the present work is to develop a Bayesian hierarchical model
to provide spatially smoothed uncertainty associated with numerical model outputs,
without information about how they were created. We show how we can learn about
such uncertainty through stochastic data fusion modeling using some external vali-
dating data. We also take into account the change of support problem (COSP) which
arises from the spatial misalignment between the numerical model output (averages
over grid cells) and the validation data (point-level measurements), even if our ob-
jective is not the calibration of the numerical model output.

We apply our Bayesian model to obtain the uncertainty map associated with the
temperature output provided by the Rapid Update Cycle (RUC) weather model over
the northeastern United States (U.S.). The validation data set consists of temperature
measurements collected at monitoring stations operating in the same study region.

2 Data fusion modeling

Let R(Ai) denote the numerical model output over grid cell Ai, (i = 1, . . . , I). First,
we specify a measurement error model for R(Ai) relative to the truth, that is:

R(Ai) = R̃(Ai)+ εr(Ai) (1)
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where R̃(Ai) is the underlying process representing the ‘true’ average value for Ai
and we assume εr(Ai)∼ N

(
0,σ2

r (Ai)
)

independently ∀i = 1, . . . , I. The true average
value R̃(Ai) arises from a Gaussian Markov Random Field (GMRF) equipped with
a conditionally autoregressive structure (CAR), that is:

R̃(Ai) |
{

R̃(Ai′) : i′ 6= i
}
∼ N

(
∑
i′∼i

R̃(Ai′)

wi
,

τ2

wi

)
(2)

where i′ ∼ i identifies the cell Ai′ adjacent to cell Ai and wi is the number of neigh-
bors of cell Ai.

Let V (s j) be the validation data at location s j, ( j = 1, . . . ,n) gathered from inde-
pendent station data over the same region as the output, and Ṽ (s j) denotes the true
value at s j. We specify a spatial measurement error model for V (s j), that is:

V (s j) = Ṽ (s j)+ εv(s j) (3)

where ε ′v = (εv(s1), . . . ,εv(sn)) is a zero-mean Gaussian process equipped with a
spatial exponential correlation function, i.e. εv ∼ N

(
0,σ2

v H(φ)
)

with
(
H(φ)

)
i j =

exp{−φ ||si− s j||}.
Finally, we address the change of support problem between the station data and

the numerical model output by employing the downscaling approach [1, 5] and as-
suming a further measurement error model for Ṽ (s j). Then, for each j = 1, . . . ,n
belonging to grid cell Ai we have:

Ṽ (s j) = R̃(Ai)+ εṽ(s j) (4)

where εṽ(s j) are independent N(0,σ2
ṽ ).

The hierarchical model is completed by the specification of the prior distributions
for all the unknown parameters. Since it is not possible to consistently estimate
the decay and variance parameter in a spatial model with a covariance function
belonging to the Matérn family [8] as the exponential covariance function above, we
fix the decay parameter and we put a prior distribution on σ2

ṽ . We place conjugate
inverse gamma priors IG(aσ ,bσ ), on the variance parameters σ2

v and σ2
ṽ where we

take aσ and bσ according to [3]. The prior distributions for τ2 and τ2
∗ are specified as

independent proper inverse gamma distributions IG(aτ ,bτ) with aτ = 2 and bτ = 1,
implying that these variance components have prior mean 1 and infinite variance.
Finally, a prior distribution for the variances σ2

r (Ai) is needed. The specification of
such prior represents an important step to learn about the uncertainty associated with
model outputs as we clarify in the next section, which starts by illustrating what we
mean by uncertainty when dealing with a deterministic output.
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3 Defining and modeling uncertainty in a model output

Let’s concentrate about the “true” error, say R(Ai)− R̃true(Ai), where R̃true(Ai) is the
true average value for the numerical model output over cell Ai. When this error is
small for a grid cell, it implies small uncertainty associated to the numerical model
prediction. Conversely, if the error is large then we would state high uncertainty for
such cell.

To inform about the true error, we might compare the numerical model output
with the validation data for each grid cell that contains a site, i.e. the observed resid-
ual R(Ai)−V (s j). Then, high “disagreement” between R(Ai) and V (s j) for s j ∈ Ai
suggests high uncertainty in Ai. Conversely, we expect small uncertainty at grid cells
where the disagreement between the numerical model output and the observation is
low. However, the comparison between the average R(Ai) with the point-level mea-
surement V (s j) is unfair because of the different spatial support of the two data
sources. Moreover, the observed residuals are available only for grid cells where
sites lie, while uncertainty should be attached to every grid cell.

To accomplish that, we consider the so-called realized residual, that is

εr(Ai) = R(Ai)− R̃(Ai) (5)

which enables to reinterpret model (1). To further clarify, the true error for R(Ai)
is not known and, as usual within the Bayesian framework, we model unknowns
as random quantities and look at their posterior distributions for inference. Under
the specification above, we take R̃(Ai) as the model for the truth and we look at the
posterior distribution of each realized residual,

[
εr(Ai)|Data

]
.

The posterior variance var (εr(Ai) | Data) provides the desired uncertainty, vary-
ing across grid cells. We can obtain our local uncertainties by composition sampling,
i.e. drawing posterior samples of εr(Ai) and then compute their variance. Equiva-
lently, we compute the desired uncertainties as the posterior means E

(
σ2

r (Ai) | Data
)
.

3.1 Spatial smoothing

Focusing on the posterior variance of the realized residuals (5), we attach higher
uncertainty to grid cells for which we suppose larger differences between the model
output and the true value. In addition, for a large realized residual at grid cell Ai,
we expect a similar behavior in its neighborhood. In this way, we figure out some
spatial smoothness of the uncertainties associated with the model output, based on
the neighborhood structure of the grid cells. We formalize this belief assuming a
CAR process for the logarithm of the latent variances σ2

r (Ai) of (5), that is

log
(
σ

2
r (Ai)

)
|
{

log
(
σ

2
r (Ai′)

)
: i′ 6= i

}
∼ N

(
∑
i′∼i

log
(
σ2

r (Ai′)
)

wi
,

τ2
∗

wi

)
(6)



Quantifying uncertainty associated with a numerical model output 5

where, again, i′ ∼ i identifies the cell Ai′ adjacent to cell Ai and wi is the number of
neighbors of Ai. The logCAR prior model in (6) is analogous to the spatial stochastic
volatility approach [7] to capture spatial clustering in heteroscedasticity. Model (6)
enables the borrowing of strength across grid cells inducing local spatial smoothing
to uncertainty estimates towards their neighboring grid cells.

Along with the prior distributions for all the unknown parameters, the Bayesian
hierarchical model is completely specified. The model is fitted using Markov Chain
Monte Carlo (MCMC) algorithm.

4 Attaching uncertainty to the RUC output

We illustrate the data fusion model of Section 2 by quantifying the uncertainty as-
sociated with the RUC weather model output over the northeastern U.S., according
to the proposal of Section 3. The RUC model (http://ruc.noaa.gov/.RUC) is a re-
gional short-term weather forecast model of the Continental U.S. developed by the
National Centers for Environmental Prediction (NCEP) to serve users needing fre-
quently updated short-term weather forecasts. The RUC is run every hour producing
12-hour forecasts at 13 km spatial resolution.

We consider the daily forecast map on August 7th, 2011 obtained as average of
24 hourly temperature forecasts (◦F) provided by the RUC model from 00:00 to
23:00 on August 7th over the northeastern U.S., see left panel of Figure 1. There are
3,862 RUC grid cells spanning our study region. Moreover, land-based station data
over U.S. is available. Here, we consider 24-hour averages of hourly temperature
collected from 163 stations operating in the study region for the same period (Figure
1, left panel).

We fit model (1) - (4) along with prior specification (6). Posterior summaries
of the unknown parameters are presented in Table 1. The main result of our work
is shown in the right panel of Figure 1 which presents the estimated standard de-
viations deriving from E(σ2

r (Ai)|Data). The figure provides the uncertainty map
associated with the RUC output and reveals the spatial variation of such uncertainty.
We also note, as expected, that higher uncertainties are not associated with higher
temperatures; in fact, we have no reason to believe that larger variances should be
associated with larger responses.

As a conclusion, we have developed a hierarchical model to fuse a deterministic
output and validation data in order to quantify the uncertainty associated with the
model output, allowing for spatially smoothed error variances via a logCAR prior
model. In this way we suggest how to enrich an established deterministic framework
via an uncertainty assessment that may be appreciated by decision makers.
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Fig. 1 Left panel: temperature stations (black dots) and daily RUC output on August 7th, 2011
over Northeastern US. Right panel: estimated standard deviations associated with the RUC output.

Table 1 Posterior summary of model parameters.

Parameters Posterior mean and 95%CI

σ2
v 0.902 (0.283, 2.118)

σ2
ṽ 1.701 (1.231, 2.242)

τ2 0.728 (0.694, 0.764)

τ2
∗ 10.868 (7.428, 14.91)
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