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Abstract The notion of statistical depth have recently been extended to the case of
multivariate functional data. Its definition involves the choice of proper weights, av-
eraging the univariate functional depths of each component. The choice of weights
is crucial and must be carefully done according to the problem at hand. We de-
scribe a procedure that, starting from data, allows to compute a set of weights which
are suitable for classification based on depths. These weights incorporate informa-
tion on distances between covariance operators of the sub-populations. We show the
validity of our strategy through a case study in which we perform supervised classi-
fication on ECG traces referring to both physiological and pathological subjects.
Abstract Recentemente la nozione di misura di profondità statistica è stata estesa al
caso di dati funzionali multivariati. La definizione richiede la scelta di un insieme di
pesi con cui mediare le profondità univariate delle componenti. Nel seguito descriv-
iamo una procedura che, a partire dai dati, permette di calcolare un insieme di pesi
opportuni per una classificazione basata sulle profondità. Questi pesi incorporano
informazioni sulla distanza degli operatori di covarianza delle sottopopolazioni del
dataset. L’approccio viene validato attraverso un’applicazione alla classificazione
supervisionata di segnali ECG, sia riferiti ad uno stato fisiologico che patologico.

Rachele Biasi
Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milano (Italy)
e-mail: rachele.biasi@mail.polimi.it

Francesca Ieva
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1 Introduction

In recent years the model of functional data has been increasingly applied to the
description of processes occurring within a broad set of fields, such as medicine,
biology and engineering (see, e.g., the monograph [7]). Due to the difficulty, in
practice, of assessing distributional hypotheses regarding functional data, a leading
role is played by nonparametric techniques. In this paper we focus on depth mea-
sures, a classical tool of nonparametric multivariate analysis, expressing the central-
ity versus outlyingness of an element with respect to the entire sample, thus inducing
a global ordering on the dataset. Starting from original definitions for multivariate
data, in [4, 5] authors have built an analogous definition for the univariate functional
case. A possible extension to multivariate random functions has been proposed in
[2], where the overall depth of the multivariate functional variable is given by a
weighted mean of the univariate depths in each dimension. Indeed, weights must be
chosen accordingly to some prior knowledge on the problem at hand, and no golden
rule is available so far. In this paper we address the problem of determining a set of
weights from which to construct depth measures that are suitable for classification
purposes. In particular, we will show an expression for the weights which directly
involves the distances between covariance operators of the two populations, thus is
completely data-driven.
We will apply this procedure to the supervised classification, through logistic regres-
sion on multivariate functional depths, of a dataset composed of ECG traces both
physiological and pathological, and show that considerable results can be obtained
in terms of classification power.

In Section 2 we recall the definition of multivariate functional depth. In Section 3
we describe the construction of weights starting from several possible distances
between covariance operators. In Section 4 we show the application to ECG signals.

2 Multivariate depth measures

We recall the definition of depth for multivariate functional data as it is introduced
in [2]. Let X be a stochastic process taking values in the space C (I;Rh) of con-
tinuous functions f = ( f1, ..., fh) : I→ Rh, where I is a compact interval of R. The
multivariate depth measure is defined as:

MBDJ
n(f) =

h

∑
k=1

pk MBDJ
n,k( fk), pk > 0 ∀ k = 1, ...,h,

h

∑
k=1

pk = 1 (1)
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where for each function fk ∈ F ⊂ C (I;R), k = 1, ...,h, and MBDJ
n,k( fk), the (mod-

ified) univariate functional depth as it is defined in [4, 5], measures the proportion
of I where the graph of fk belongs to the envelopes of the j-tuples ( fi1;k, ..., fi j ;k),
j = 1, . . . ,J, extracted from F , i.e:

MBDJ
n,k( fk) =

J

∑
j=2

(
n
j

)−1

∑
1≤i1<i2<···<i j≤n

λ̃{E( fk; fi1;k, ..., fi j ;k)},

where E( fk; fi1;k, ..., fi j ;k) := {t ∈ I,minr=i1,...,i j fr;k(t)≤ fk(t)≤maxr=i1,...,i j fr;k(t)}
and λ̃ is the Lebesgue measure normalized with respect to λ (I). Statistical prop-
erties of the depth measure defined in (1) as well as inferential tools based on this
concept are detailed in [2]. In the following we fix J = 2 in (1), to have a lighter com-
putational burden. This is motivated by the robustness of ranks induced by depths,
which is assessed in a study conducted in [1], thanks to an efficient implementation
within a parallel environment.

3 Weighting strategy for multivariate functional depths

The set of weights {pk} defining the depths in (1) must be chosen carefully depend-
ing on the application at hand. We recall that our purpose is to perform supervised
classification of signals belonging to two populations with different covariance op-
erators. We focus on one population, and think it is generated according to X, a
stochastic process with law PX taking values on the space L2(I;Rh) of square inte-
grable functions. Let µl(t) = E[Xl(t)], for each t ∈ I, denote the mean function of
the l−component Xl(t), for 1 ≤ l ≤ h, then µX(t) := E[X(t)] is the mean function
of X. The covariance operator VX of X is a linear, compact operator from L2(I;Rh)
to L2(I;Rh) acting on a function g as follows:

(VXg)(s) =
∫

I
VX(s, t)g(t)dt, (2)

where the kernel VX(s, t) is defined by

VX(s, t) = E[(X(s)−µX(s))⊗ (X(t)−µX(t))], s, t ∈ I

with ⊗ an outer product in Rh. VX(s, t) is a h× h matrix, whose elements will be
denoted as V kq

X (s, t), for k,q = 1, ...,h.
Populations will correspond to two different stochastic processes, say X and Y, with
covariance operators VX and VY respectively. In order to enhance classification,
we aim at building weights incorporating information on the difference in covari-
ance operators, i.e. distances between blocks of VX and VY. Thus, let us denote by
d(V,W ) a (pseudo)-distance between two operators V and W . We define for each
k = 1, . . . ,h the quantity dk = ∑

h
q=1 d(V kq

X (s, t),V kq
Y (s, t)).
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Then, our proposal for the weights is

pk =
dk

∑
h
j=1 d j

. (3)

We explicitly remark that, through this definition of weights, we are taking into
account not only the distances between intra-component covariance operators, but
also the distance between inter-component ones.
We chose the distance d among those proposed in [6], after proper extensions to
semi-definite (i.e. not only positive-definite) operators, as blocks V k,q

X with k 6= q
are:

•−L2 distance

dL(V,W ) =

√∫
I

∫
I
(v(s, t)−w(s, t))2dsdt, (4)

where v(s, t) and w(s, t) are the kernels of the operators V and W respectively.
•− Spectral distance

dS(V,W ) = |λ1|, (5)

where |λ1| is the first eigenvalue of the difference operator V −W .
•− Frobenius distance

dF(V,W ) = ‖V −W‖F =
√

trace(V −W )∗(V −W ). (6)

where T ∗ indicates the adjoint of T .
•− Square root pseudo distance

dR(V,W ) = ‖|V |
1
2 −|W |

1
2 ‖F , (7)

|T |
1
2 is such that |T |

1
2 vk = |λk|

1
2 vk; {vk}k and {λk}k are the sequences of eigen-

functions and eigenvalues of T .
•− Procrustes pseudo distance

dP(V,W ) = dP(|V |, |W |) = infR∈O(L2(I))‖L1−L2R‖F , (8)

where O(L2(I)) is the space of all unitary operators on L2(I) and L1 and L2 are
such that V = L1L∗1 and W = L2L∗2.

4 Application to ECG signals

In this section we apply the procedure previously described to the computation of
MBDs (with distance-driven weights) of a dataset of ECG signals, and perform a
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supervised classification via logistic regression, in order to distinguish the healthy
from the pathological traces (we considered the pathology of Left Bundle Branch
Block, LBBB). As basic statistical unit, we consider the 8-variate ECG record de-
fined by leads I, II, V1, V2, V3, V4, V5 and V6. We model the label as a Bernoulli
random variable Yi, taking value 1 if LBBB is diagnosed, and 0 otherwise.
We analyse ECG traces from PROMETEO (PROgetto sull’area Milanese Elettrocar-
diogrammi Teletrasferiti dall’Extra Ospedaliero) database, containing also an auto-
matic diagnosis, established by the commercial Mortara-Rangoni VERITAS

TM
al-

gorithm, which we want to reproduce.
The dataset is constituted of ECG traces of n = 149 subjects, among which 101 are
physiological and 48 are affected by LBBB. Before the analysis, data have been de-
noised and registered through landmarks, in order to separate amplitude variability
from phase’s one (for further details on this procedure, see [3]).
To compute the MBDs, we randomly chose 50 ECGs from the physiological traces
to be used as a reference group, then we compute the ranks of the remaining 51
physiological and 48 LBBB traces with respect to them. The procedure has been
repeated 20 times to avoid bias selection in the choice of the reference group.
We performed the analyses on our case study considering all the (pseudo) distances
introduced in Section 3. The results are quite robust with respect to the choice of dis-
tance, and we will present the results obtained with the Procrustes pseudo-distance,
which is the best performing (we report in Tab. 1 the weights computed with this
choice of distance).

Lead V2 V3 V1 V4 V5 V6 I II
Weights 0.1722 0.1607 0.1385 0.1357 0.1132 0.1104 0.0872 0.0821

Table 1 Weights induced by the Procrustes pseudo-distance, to be inserted in (1).

We carry out a Wilcoxon rank sum test on MBDs, to assess their ability to express
the difference between the two populations of samples. The p-value over all the 20
cases is always less or equal to 3.02∗10−12, thus supporting the belief that evidence
for the difference among the two population exists and is significant.
We use the MBDs within a logistic regression model for the prediction of the label
variable Yi ∼ Be(pi):

θi = β0 +β1MBDi, θi = logit(pi), ∀i = 1, . . . ,n. (9)

The predictors have great statistical significance, since their p-values are both less
than 10−6. The confusion matrix obtained comparing the true and the estimated
labels of the patients is reported in Table 3. We set the threshold for the classification
carried out by the logistic model equal to 0.5.
At the end of the 20 runs of our analysis we obtain a sensitivity (mean ± stan-
dard deviation) of (84.48±2.29)%, specificity of (89.80±1.87)% and a correct
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Parameter Estimate Std. Error p-value
β 0 (Intercept) 11.484 2.483 3.75*10−06

β 1 (MBD) -46.268 9.619 1.51*10−06

Table 2 Estimates, standard errors and p-values for the parameters of the logistic model 9.

Normal LBBB
Classified as Normal 47 8
Classified as LBBB 4 40

Table 3 Confusion matrix for the classification via logistic model based on MBDs.

classification rate of (87.22±1.58)%. We conclude that considering the distances
between covariance operators could be a good method to produce multivariate func-
tional depths that are able to emphasize, within classification procedures, differences
in populations characterized by different covariance operators.
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