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Abstract In the last decade the development of statistical methods for microarray
data analysis has been object of active research. A crucial problem in this area is
the search for genes that show a differential expression between two or more groups
like, for example, healthy and sick tissues. A huge number of statistical tools has
been proposed for this task, most of which focus on testing equality of means. The
aim of the present work is to introduce a simple quantile-based statistic that can test
differences at different levels of the distribution, and has the desirable property of
invariance with respect to monotone data transformations.
Abstract Nello scorso decennio lo sviluppo di metodi statistici per l’analisi di dati
di microarray è stato oggetto di crescente interesse. Un problema cruciale in questo
campo è l’identificazione di geni che mostrano una differente espressione tra due o
più gruppi, come ad esempio tra tessuti sani e malati. Un grande numero di stru-
menti statistici è stato proposto per questo compito, la maggior parte dei quali ha
l’obiettivo di testare un’ipotesi di uguaglianza tra medie. Lo scopo del presente la-
voro è di introdurre una statistica semplice basata sui quantili, in grado di testare
differenze a diversi livelli della distribuzione, e che gode della proprietà desider-
abile di invariata rispetto a trasformazioni monotone dei dati.

Key words: microarray, differential expression, bootstrap

Lorenzo Maragoni
Department of Statistical Sciences University of Padua, 241 Via Battisti, Padova 35121 (Italy)
e-mail: maragoni@stat.unipd.it

Monica Chiogna
Department of Statistical Sciences University of Padua, 241 Via Battisti, Padova 35121 (Italy)
e-mail: monica@stat.unipd.it

1



2 Lorenzo Maragoni and Monica Chiogna

1 Differential Expression in Microarray Studies

In microarray experiments, the expression of large number of genes is measured
over a few replicates. Situations where tens of thousands of genes are sampled over
a few tens of biological or technical replicates are not infrequent. In this setting, the
experimenter’s goal is usually to identify a small subset of genes that show differen-
tial expression between two groups of replicates, such as between healthy and sick
tissues, or different arms of a clinical trial. The selected genes will then be the object
of further biological analysis, impractical or impossible to be done over the origi-
nal whole set of genes. The choice of appropriate statistical tools in the field of gene
expression analysis is of crucial interest, and attempts in this direction have been nu-
merous and diverse. Since comparison of two groups is at the core of the problem,
classical t-statistics and many subsequent modifications have been object of partic-
ular interest. Modifications have often aimed at artificially increasing some of the
smallest variances, which might have happened by chance and lead to false positives
in the search for differentially expressed genes. Among the most notable examples,
the SAM procedure introduced a stabilization factor for experimental variability [1],
while a few hierarchical models provide a broad Bayesian framework for inference
[2] [3]. The research on the topic is still very active, and both modifications of the
above methods and original solutions have been proposed. For a comparison of dif-
ferent alternatives we refer, for example, to [4] and [5]. In the following, we will
build a simple approach based on quantile comparison to identify differentially ex-
pressed genes. To the best of our knowledge, not many attempts at using the tools
of quantile regression, as introduced by [6], have been made in the area of microar-
ray data analysis, being one of the few examples [7]. One of the key aspects of the
approach is related to the invariance property of quantiles, which guarantees that
testing hypotheses on different scale will yield the same results. This property is
not shared by the mean estimator, but is instead a key aspect in a field where data
transformation is often a routine operation. Moreover, quantile comparison allows
to test differences on different aspects of the distribution of the data, not only at its
center. Since the concept of “differential expression” has not a rigid definition, quan-
tile inference might then be useful in opening new possibilities for microarray data
analysis, a field where the relationship between statistical and biological aspects is
complex and constantly in evolution. In Section 2 we will propose a novel statistic
for testing differential expression and study its most prominent features. In Section
3 we will provide some simulation results, and we will provide a brief conclusion in
Section 4.

2 A Simple Proposal

Let XA
j ∼ fXA

j
and XB

j ∼ fxB
j

be two absolutely continuous random variables, model-
ing expression data for gene j = 1, . . . , p in samples A and B, respectively. Assume
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Y A
j = g(XA

j ) and Y B
j = g(XB

j ), where g(·) is a strictly monotone function and let
Y A

j ∼ fY A
j

and Y B
j ∼ fY B

j
. Let also ξU (τ) denote the quantile τ ∈ (0,1) of the random

variable U , and n = nA +nB the total sample size. We wish to test the hypothesis:

H0
j : ξXA

j
(0.5) = ξXB

j
(0.5), j = 1, . . . , p,

or more in general the hypothesis:

H0
j (τ) : ξXA

j
(τ) = ξXB

j
(τ), j = 1, . . . , p.

Before proceeding, we highlight the consistency with respect to transformations,
a fundamental property of quantiles:

ξY A
j
(τ) = ξY B

J
(τ) ⇐⇒ ξg(Y A

j )
(τ) = ξg(Y B

j )
(τ),

for any strictly monotone function g(·). This implies that testing on the original
scale is equivalent to testing on the transformed scale, while this would in gen-
eral not be true while testing equality of means, due to Jensen’s inequality. Now
let XA

j1, . . . ,X
A
jnA

and XB
j1, . . . ,X

B
jnB

be simple random samples of size nA and nB re-
spectively, independent from each other, generated from fXA

j
and fxB

j
. The proposed

statistic QT (τ) is then based on a raw difference between quantiles, namely

ξ̂XA
j
(τ)− ξ̂XB

j
(τ) (1)

where ξ̂XK
j
(τ) is the sample quantile of level τ for sample K ∈ {A,B}. Since the

asymptotic distribution of the estimator ξ̂XK
j
(τ) is [6]:

√
nK(ξ̂XK

j
(τ)−ξXK

j
(τ))∼̇N(0,ω2

XK
j
), ω

2
XK

j
= τ(1− τ)/ f 2

XK
j
(ξXK

j
(τ)),

for K ∈ {A,B}, then an estimate of the density function would be necessary to
properly Studentize the quantity (1) as in [8]. Several choices would be available for
this task, such as the usual kernel estimator [9] and the bootstrap estimator [10], but
they all can be computationally intensive. Therefore, in analogy with mean-based
statistics, we will compare the quantity in (1) to a suitable measure of variability,
following a structure similar to the one of a Student’s t. In order to compute this mea-
sure, we make the assumption of equal populations implicit in the classic Student’s
t statistic. Under this hypothesis, and assuming nA = nB, we choose as a measure of
variability the quantity

ξ̂XP
j
(1− ε)− ξ̂XP

j
(ε) (2)

where ε ∈ (0,1) and P denotes the pooled sample. The choice of pooling the
samples seems reasonable (under nA = nB) since the two populations are assumed
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to have the same distribution and therefore the same variability. Therefore we define
our pseudo-Studentized statistic as the ratio of quantities (1) and (2):

QTj(τ) =
ξ̂XA

j
(τ)− ξ̂XB

j
(τ)

ξ̂XP
j
(1− ε)− ξ̂XP

j
(ε)

. (3)

Based on this statistic, we can provide a p-value via resampling (for example
bootstrap) or via its asymptotic distribution, which we will derive in the next sub-
section. After possible corrections, for example due to multiple testing if p is large,
genes whose p-value exceeds a prefixed threshold can then be candidates for differ-
ential expression.

2.1 Asymptotic distribution of QT (τ)

Under mild assumptions on fXA
j

and fXB
j
, it is possible to prove asymptotic normality

of QT (τ). First, we will show that, because of independence of the two samples,
the quantity (1) is asymptotically normal. In fact, if the sample sizes converge at a
comparable rate, i.e. if nA/nB→ c 6= 0, then:

(ξ̂XA
j
(τ)− ξ̂XB

j
(τ))− (ξXA

j
(τ)−ξXB

j
(τ))∼̇N(0,ω2

XA
j
/nA +ω

2
XB

j
/nB).

Second, we will show that the quantity (2) converges in probability, applying the
Cramér and Wold device, which reduces the convergence of multivariate distribution
functions to the convergence of univariate distribution functions, to the asymptotic
joint distribution of quantile estimators. The resulting distribution is:

√
n
(
(ξ̂XP

j
(1− ε)− ξ̂XP

j
(ε))− (ξXP

j
(1− ε)−ξXP

j
(ε))

)
d−→ N(0,σ2

F),

where

σ
2
F =

ε(1− ε)

fXP
j
(ξXP

j
(1− ε))2 +

ε(1− ε)

fXP
j
(ξXP

j
(ε))2 −

(1− ε)2

fXP
j
(ξXP

j
(ε)) fXP

j
(ξXP

j
(1− ε))

and fXP
j

is the density function for the pooled sample. The result implies conver-
gence in probability:

ξ̂XP
j
(1− ε)− ξ̂XP

j
(ε) = ξXP

j
(1− ε)−ξXP

j
(ε)+op (1) .

Asymptotic normality of QTj(τ) now can be proven by Slutsky’s Theorem. Pro-
vided that ξXP

j
(1− ε)−ξXP

j
(ε) 6= 0, one has that, under H0

j (τ):

QTj(τ)∼̇N
(
0,ω2

j
)
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where

ω
2
j = (ω2

XA
j
/nA +ω

2
XB

j
/nB)/(ξXP

j
(1− ε)−ξXP

j
(ε))2.

Therefore, if nA and nB are sufficiently large, one can use the asymptotic distribu-
tion to compute p-values for testing H0

j (τ). However, the above mentioned problem
of density estimation would persist. In this case, since a proper Studentization is
not available and therefore results of [8] do not apply, we can compute p-values
via bootstrap resampling, although no guarantee exists that the unconditional type I
error levels are matched. In the next section we will test the performance of QT (τ)
with a bootstrap p-value in two small simulation studies.

3 Simulation Studies

We have conducted several simulation studies to test the performances of QT (τ). We
report results obtained in two simple settings: as a first study we simulate p = 1000
genes from XA

j ∼ N(0,1) and XB
j ∼ N(0,1), and as a second study we simulate

p = 1000 genes from XA
j ∼ exp(1) and XB

j ∼ exp(1). We perform both studies for
n̄ = nA = nB ∈ {5,10,100} and compare the estimated type I error obtained using
the true density function and the one obtained via bootstrap with the nominal one,
fixed to α = 0.05. In the first example we use τ = 0.9, and in the second one we use
τ = 0.5, while we let ε ∈ {0.10,0.25,0.45}. Results for the two studies are reported
in Table 1 and Table 2, respectively.

Table 1 Estimated type I error for standard Normal distributions (τ = .9,α = 0.05).

ε n̄ = 5 n̄ = 10 n̄ = 100 n̄ = 1000

0.45 α̂(τ) 0.270 0.156 0.066 0.059
α̂boot(τ) 0.100 0.021 0.037 0.058

0.25 α̂(τ) 0.018 0.069 0.050 0.060
α̂boot(τ) 0.097 0.022 0.033 0.058

0.10 α̂(τ) 0.070 0.028 0.044 0.058
α̂boot(τ) 0.102 0.017 0.038 0.055

4 Conclusions

From these preliminary studies, the use of QT (τ) seems promising. The obtained
bootstrap type I errors do not look far from the expected ones for a sufficiently large
n̄, and further modifications could be implemented for refining the method and pos-
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Table 2 Estimated type I error for standard Exponential distributions (τ = .5,α = 0.05).

ε n̄ = 5 n̄ = 10 n̄ = 100 n̄ = 1000

0.45 α̂(τ) 0.220 0.090 0.035 0.049
α̂boot(τ) 0.013 0.010 0.026 0.048

0.25 α̂(τ) 0.026 0.031 0.044 0.053
α̂boot(τ) 0.013 0.011 0.028 0.047

0.10 α̂(τ) 0.110 0.068 0.042 0.054
α̂boot(τ) 0.015 0.013 0.031 0.050

sibly achieving a faster convergence. The adequate performances of the statistic, to-
gether with the ability to study differences far from the mean and with the invariance
property of quantiles might proposeQT (τ) as a valuable integration or alternative to
current popular methods for detecting differential expression in microarray data.
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