
Mixed hidden Markov models for quantiles

Maria Francesca Marino and Nikos Tzavidis

Abstract We propose a mixed hidden Markov model for continuous longitudinal
data, in a quantile regression perspective. Time-constant and time-varying random
parameters are added in the quantile regression model to account for time-invariant
and dynamic unobserved factors affecting the variable of interest. A nonparametric
maximum likelihood approach is applied to solve the numerical integration problem
typically arising in the mixed model framework. Parameter estimates are then ob-
tained by means of an EM algorithm, easily derived by exploiting the forward and
backward variables defined in the so called Baum-Welsh recursion.
Abstract Si propone un modello hidden Markov misto per risposte longitudinali
continue, in una prospettiva di regressione quantile. Per tenere conto di fattori non
osservati che possono influenzare la variabile risposta, il predittore lineare include
coefficienti casuali a struttura variabile e costante nel tempo. Per approssimare
l’integrale che definisce la funzione di verosimiglianza, é adottato un approccio
basato sulla stima di massima verosimiglianza nonparametrica della distribuzione
dei coefficienti casuali tempo costanti. Le stime dei parametri sono derivate utiliz-
zando un algoritmo di tipo EM, in cui si sfruttano le variabili backward e forward
definite nella recursione di Baum-Welsh.
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1 Introduction

In the statistical literature, quantile regression [12] has become a quite popular and
established technique for the analysis of data. When compared with the standard
(mean) regression, it offers a thorough description of the response variable dis-
tribution in terms of a given number of observed covariates. When dealing with
longitudinal data, dependence between observations coming from the same individ-
ual has to be properly taken into account to avoid bias in the parameter estimates.
Mixed effects models are typically used in that context. By adopting such a model
structure, we assume the existence of unobserved heterogeneity (unmeasured co-
variates) determining the association between longitudinal measurements: contin-
uous, individual-specific, random coefficients are added in the regression model
to capture this heterogeneity. In the quantile regression framework, two main ap-
proaches have been developed to deal with longitudinal data: distribution-free and
likelihood based methods. The former include, among others, the weighted GEE
approach [19] and the penalized quantile regression estimators [11, 15, 8, 7]. The
latter are based on the introduction of a parametric distribution for the response
variable, in order to derive inference in a maximum likelihood framework. Most
of the proposals are based on the asymmetric Laplace distribution [9, 20, 23, 16]
which represents a computationally convenient alternative because of its direct cor-
respondence with the quantile loss function. [9] and [10] consider either Gaussian
or asymmetric Laplace distributed random parameters; this assumptions allow to
solve the numerical approximation problem, typically observed in the mixed model
framework, in a Gaussian quadrature perspective.
In some cases, the assumption that unobserved heterogeneity does not evolve with
time can, however, be too restrictive: the response variable can be influenced by
unobserved factors having their own dynamics and biased parameter estimates can
be obtained by considering a standard mixed effect model. In such a context, [6]
suggests to introduce a hidden Markov chain to describe the temporal evolution of
a random intercept, to account for response variability due to time-varying omit-
ted covariates. By postulating an asymmetric Laplace distribution for the response
variable, maximum likelihood parameter estimates are obtained by means of an EM
algorithm. Here, we aim at extending the idea of [6] by considering a mixed hid-
den Markov models (see, for a thorough description [21]), where time-constant and
time-varying sources of unobserved heterogeneity are jointly modelled. Temporal
dynamics are captured by the hidden Markov chain, while time-constant unobserved
behaviours are described by a nonparametric estimate of the random effect distribu-
tion (see eg [1, 2]). Firstly introduced in the mixed hidden Markov models frame-
work by [22], the NPML approach allows to relax any parametric assumption about
the random effect distribution, offering great flexibility and avoiding possible bias
in the parameter estimates caused by misspecification of such a distribution.
The plan of the paper is as follows. In section 2 the mixed quantile regression model
is introduced. In sections 3 and 4 we describe the linear quantile mixed hidden
Markov model and the proposed EM algorithm to derive maximum likelihood esti-
mates. Last section contains concluding remarks and outlines future developments
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2 Mixed models for quantile linear regression

Let Yit denote a continuous longitudinal response recorded on i = 1, ...,n individ-
uals at times t = 1, ...,Ti and let us assume we are interested in analysing how a
given set of observed covariates influence its distribution. In a quantile regression
framework, a convenient parametric assumption for the response variable is repre-
sented by the asymmetric Laplace distribution as it allows to derive inference about
model parameters in a maximum likelihood perspective (see [9, 20, 10], for refer-
ences). For a given quantile τ , the three-parameter asymmetric Laplace distribution
is characterized by the following density function:

τ(1− τ)

σ
exp
{
−ρτ

(
yit −µit(τ)

σ

)}
, (1)

where ρτ(u) = u{τ− I(u < 0)} indicates the quantile loss function while µit(τ) and
σ represent the location and the scale parameters, respectively.
In the longitudinal data literature, association between observations coming from
the same individual is usually taken into account via the introduction, in the model
specification, of individual-specific random parameters; these parameters are meant
to capture all the potential sources of unobserved heterogeneity (i.e. unobserved
covariates) determining the dependence between subsequent observations. The re-
sulting model is known, in the literature, as random or mixed effect model [14].
Let bi be a random parameter vector, with density fb(·); the basic assumption be-
hind mixed effect models is that, conditional on the random effects, the observations
coming from the same individual are no longer dependent. This is a form of condi-
tional independence (sometimes referred to as local independence) which leads to
the following expression:

fy|b(yit | yit−1, ...yi1,bi) = fy|b(yit | bi).

Based on these considerations, the joint conditional distribution of the longitudinal
sequence, for a generic unit i, can be obtained as

fy(yi | bi;τ) =
Ti

∏
t=1

fy|b (yit | bi;τ) =

[
τ(1− τ)

σ

]Ti

exp

{
−

Ti

∑
t=1

ρτ

(
yit −µit(bi;τ)

σ

)}

where, µit(bi;τ) is the τ-th location parameter as a function of fixed and random
effects. Following [9] and [10], parameter estimates can be obtained by maximizing
the following observed likelihood function

L(·) =
n

∏
i=1

∫
B

Ti

∏
t=1

fy(yi | bi) fb(bi)dbi. (2)

In many cases the above integral has not a closed form solution and it has to be
numerically approached. Two main proposals are available in order to solve such a



4 Maria Francesca Marino and Nikos Tzavidis

problem. [9] and [20] suggest the application of a Monte Carlo EM algorithm to ob-
tain parameter estimates, while [10] suggest the application of a Gaussian quadra-
ture scheme. However, both methods are based on the introduction of parametric
assumptions for the random coefficients vector: these can not directly assessed and,
thus, a more flexible approach could result more appealing.

3 Mixed hidden Markov models for quantile linear regression

Mixed effect hidden Markov models (mHMMs) extend the idea behind mixed mod-
els by assuming the existence of two different sources of unobserved heterogene-
ity affecting the variable of interest: some unobserved features can have a time-
invariant effect on the response, while some others can affect it in a dynamic way.
In these contexts, time-constant and time-varying latent variables can be included in
the model specification in order to account for such sources of random variation.
Let {Sit}, i = 1, ...,n, t = 1, ...,Ti be a homogeneous, first order, hidden Markov
chain, taking values in the finite set S = {1, ...,m}. Let us assume that all the
individual share the same initial probability vector δ = (δ1, ...,δm) and the same
transition probability matrix Q = {qhk}. More specifically, for a given unit i,
δh,h = 1, ...,m represents the prior probability of being in state h at the first time
occasion, while qhk,h,k = 1, ...,m represents the probability of observing a transi-
tion from state h at time t−1 to state k at time t.
Moreover, let bi be a time-constant, individual-specific, random vector with density
fb(·), as defined in section 2. Mixed hidden Markov models are based on the fol-
lowing main assumptions. The random vector bi and the hidden process {Sit} are
independent as they are meant to capture different sources of unobserved hetero-
geneity; the distribution of the response variable, at a given time occasion, is defined
conditional on the hidden state occupied at the same time and the (time-constant)
individual-specific random effects bi. After conditioning on bi and sit , longitudi-
nal observations are no longer dependent. Based on these hypothesis the following
expression holds:

fy|b(yit | yi1:t−1,si1:t ,bi) = fy|b(yit | sit ,bi)

where yi1:t−1 represents the history of the response, for the i-th subject, up to time
t−1 and si1:t is the individual sequence of states up to time t.
In order to derive maximum likelihood estimates, let us assume the response vari-
able is distributed according to an asymmetric Laplace distribution whose location
parameter, for a given quantile τ , is defined through the following regression model

µit (Sit = h,bi;τ) = x′itβ h(τ)+ z′itbi. (3)

The basic idea of the above model is the following: the effects of omitted covariates
on the response variable could be either time-constant or time-varying. These effects
are summarized by the individual-specific random coefficients bi and by the state-
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specific parameters β h(τ) and the associated (latent) Markov structure, respectively.
To simplify the notation, in the following, the dependence on the quantile τ will be
omitted whenever clear from the context.
As standard in the hidden Markov model literature, the marginal distribution of
the whole sequence of hidden states can be derived by exploiting the Markovian
property of the hidden chain, thus leading to

fs (si;δ ,Q) = fs (si1)
Ti

∏
t=2

fs (sit | sit−1) . (4)

Based on such modelling assumptions, the following expression for the likelihood
function can be, easily, derived:

L(·) =
n

∏
i=1

∫
B
∑
si

{
Ti

∏
t=1

fy|sb(yit | sit ,bi)δsi1

Ti

∏
t=2

qsit−qsit

}
fb(bi)dbi (5)

The above integral has to be numerically approached since it can not be solved an-
alytically. As previously highlighted, different approaches can be adopted to this
aim; in the present context we will focus on the nonparametric maximum likelihood
approach [13]. Introduced in the mHMM framework by [22], such a method allows
to relax any kind of parametric assumption on the random effect distribution, offers
a great flexibility and allows overcome problems due to misspecification of the ran-
dom effect distribution.
The random effect distribution fb(·) is approximated via a discrete distribution on
G ≤ n support points [13, 17, 18]. Let us suppose this discrete distribution puts
masses πg on locations bg, i.e. pg = Pr(bi = bg),∑g πg = 1,g = 1, ...,m. The likeli-
hood function (5) is then approximated via

L(·) =
n

∏
i=1

G

∑
g=1

∑
si

{
Ti

∏
t=1

fy|sb(yit | sit ,bg)δsi1

Ti

∏
t=2

qsit−qsit

}
πg (6)

where fy|sb(yit | sit ,bg) is the conditional distribution of the response variable, for
a generic unit i being, at time t, in the hidden state sit and belonging to the g-th
component of the finite mixture. The number of mixture components G is treated
as fixed and estimated via model selection techniques (see e.g. [4]), while locations
and masses are treated as unknown and estimated together with the remaining model
parameters, in a mixed HMM framework.

4 Computational details

Even if the likelihood (6) can be directly computed, it is cumbersome to maximize
because of the presence of a multiple summation over all possible sequence of hid-
den states si. To overcome the problem, parameter estimation can be performed by
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means of the EM algorithm. Introduced by [5], it is frequently used in the presence
of latent variables, because of its robustness and ease of application.
Let ui(h) = I [Sit = h] be the indicator variable for the i-th subject in the h-th state at
time t and let uit(h,k) = I [Sit−1 = h,Sit = k] be equal to 1 if the i-th subject moves
from the h-th state to the k-th at time t. Moreover, let ηi(g) = I[bi = bg] be an
indicator variable equal to one if the i-th unit comes from the g-th mixture compo-
nent. Parameter estimation starts from the definition of the following complete data
log-likelihood

`c(·) ∝

n

∑
i=1

{ m

∑
h=1

ui1(h) logδh +
Ti

∑
t=2

m

∑
h,k=1

uit(h,k) logqhk +
G

∑
g=1

ηi(g) logπg

−Ti log(σ)−
Ti

∑
t=1

m

∑
h=1

G

∑
g=1

[
uit(h)ηi(g)ρτ

(
yit −µit(Sit = h,bg;τ)

σ

)}
. (7)

At each step of the EM algorithm, the E step require the computation of the posterior
probabilities for the indicator variables uit(h),uit(h,k) and ηi(g), given the observed
data and the current parameter estimates. As usually done in the hidden Markov
model framework, such a computation can be greatly simplified by considering the
well known forward and backward variables, as in the Baum-Welsh algorithm [3].
Adapted to the present framework, forward variables, ait(h,bg), are defined as being
the joint density of the longitudinal measures up to time t, for a generic individual
ending up in the h-th state, conditional on the g-th mixture component:

ait(h,bg) = f [yi1:t ,Sit = h | bg] . (8)

As observed by [3], these terms can be recursively computed through

ai1(h,bg) = δh fy|sb
[
yi1 | Si1 = h,bg

]
(9)

ait(h,bg) =
m

∑
k=1

ait−1(k,bg)qkh fy|sb
[
yit | Sit = h,bg

]
.

The backward variables, bit(h,bg), are similarly defined and represent the probabil-
ity of the longitudinal sequence from occasion t + 1 to the last observation, condi-
tional on being in the h-th state at time t and the g-th mixture component:

bit(h,bg) = f
[
yit+1:Ti | Sit = h,bg

]
. (10)

As for the forward variables, also backward variables can be derived recursively:

biTi(h,bg) = 1 (11)

bit−1(h,bg) =
m

∑
k=1

bit(k,bg)qhk fy|sb
[
yit | Sit = k,bg

]
,
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where Ti represents the last measurement occasion for the i-th unit. For a detailed
description of the general form and the properties of the Baum-Welsh algorithm, see
the seminal paper by [3] and the reference monograph by [24].
Computation of the expected complete data log-likelihood, given the observed data
and the current parameter estimates, leads to the following expression

Q(·) =
n

∑
i=1

{ m

∑
h=1

ûi1(h) logδh +
Ti

∑
t=2

m

∑
h,k=1

ûit(h,k) logqhk ++
G

∑
g=1

η̂i(g) logπg

−Ti log(σ)−
Ti

∑
t=1

m

∑
h=1

G

∑
g=1

[
η̂i(g)ûit(h | g)ρτ

(
yit −µit(Sit = h,bg;τ)

σ

)}
, (12)

where ûit(h), ûit(h,k) and η̂i(g) represent the expected values of the correspond-
ing binary variables previously introduced; these are computed with respect to the
posterior marginal distribution of the hidden Markov process and the finite mixture,
respectively. All of these quantities can be easily obtained by exploiting the forward
and backward variables (9) and (11), according to

ûit(h) =
∑g ait(h,bg)bit(h,bg)πg

∑h ∑g ait(h,bg)bit(h,bg)πg

ûit(h,k) =
∑g ait−1(h,bg)qhk fy|sb (yit | Sit = h,bg)bit(k,bg)πg

∑hk ∑g ait−1(h,bg)qhk fy|sb (yit | Sit = h,bg)bit(k,bg)πg
.

ηi(g) =
∑

m
h=1 aiTi(h,g)πg

∑
G
g=1 ∑

m
h=1 aiTi(h,g)πg

Furthermore, ûit(h | g) indicates the conditional posterior probability of being in
state h at time occasion t, for a generic unit i belonging to the g-th mixture compo-
nents and is computed as

uit(h | g) =
ait(h,g)bit(h,g)πg

∑
m
h=1 ait(h,g)bit(h,g)πg

.

The M-step of the EM algorithm require the maximization with respect to model
parameters. Closed form solutions can be found for those parameters related to the
hidden Markov process and for the prior probabilities of the finite mixture. The
former are obtained by means of the following expressions

δ̂h =
∑

n
i=1 ûi1(h)

n
, q̂hk =

∑
n
i=1 ∑

Ti
t=1 ûit(h,k)

∑
n
i=1 ∑

Ti
t=1 ∑

m
k=1 ûit(h,k)

j,k = 1, ...,m (13)

while the latter are estimated as

π̂g =
1
n

n

∑
i=1

η̂i(g) g = 1, ...,G. (14)
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Longitudinal parameters, β ’s and b’s, are simultaneously estimated; defining Ψ =
(β 1, . . . ,β m,b1, ...,bg) as the set of longitudinal model parameters, the correspond-
ing update is obtained as the solutions of the M-step equations

∂Q(·)
∂Ψ

=
n

∑
i=1

Ti

∑
t=1

m

∑
h=1

G

∑
g=1

η̂i(g)ûit(h | g)ρτ

(
yit −µit(sit ,bg;τ)

σ

)
= 0 (15)

Similarly, the scale parameter is updated via the following expression

σ̂ =
1

∑
n
i=1 Ti

Ti

∑
t=1

m

∑
h=1

G

∑
g=1

η̂i(g)ûit(h | g)ρτ (yit −µit(h,bg;τ)) (16)

The E and the M steps are alternated repeatedly until the difference between two
subsequent likelihoods is lower than a fixed constant ε > 0, that is

`(r+1)− `(r) < ε.

Once the algorithm has reached the convergence for a given number of mixture
components, parameter estimates are computed for different values of G: a formal
comparison between penalized likelihood criteria associated to estimated models
allows to identify the best number of mixture components.

5 Conclusions and further developments

We propose a mixed hidden Markov model for conditional quantiles in a longi-
tudinal data framework. Such a model has, at least, a twofold aim. On one hand,
time-constant and time-varying unobserved heterogeneity, determining the depen-
dence between longitudinal observations, are jointly taken into account. On the other
hand, it offers a complete overview on the effect that observed covariates have on the
response variable distribution, correcting the potential bias on parameter estimates
coming from possible outlier observations. We adopt a non-parametric maximum
likelihood approach to obtain parameter estimates in an expectation-maximization
perspective. Parametric distributional assumptions on the random effect are relaxed
in order to avoid misspecification of such component and obtain a higher flexi-
bility: since locations are completely free to vary over the corresponding support,
extreme departures from the basic (homogeneous) model can be, easily, accommo-
dated. Moreover, both the Markovian and the finite mixture process allow to clas-
sify subjects in clusters with common value of the random parameters: in health
sciences, this results particularly useful as sample units can be divided in groups
characterized by similar propensity to the event of interest. A comparison of pa-
rameter estimates obtained via the NPML approach and the Gaussian quadrature
rule proposed by [9, 10], which should be properly extended to deal with mixed
HMM models, can be explored. Furthermore, in our development we have consid-
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ered continuous response variables. An extension to categorical data could be of
great interest as well.
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