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Abstract The Dirichlet distribution provides a tool for modelling data restricted to
the unit simplex S D. It has been used in several disciplines, such as geology, bi-
ology, and chemistry. The drawbacks of this distribution are extensively described
in Aitchison (1986). They refer to its almost completely negative correlation and
strong independence structure. A lot of generalizations were proposed to compen-
sate for this. Among others Monti et al. (2011) proposed a Scaled–Dirichlet distri-
bution as a perturbed random composition with a Dirichlet density. Following the
approach suggested by Campbell and Mosimann (1987), and also studied by Hijazi
and Jernigan (2009), here we propose a new family of regression models based on
the Scaled-Dirichlet distribution. Given a vector of real covariates, s, one consid-
ers the response compositional vector, X = (X1, . . . ,XD) ∈S D, with a conditional
Scaled-Dirichlet distribution with parameters α(s) = (α1(s), . . . ,αD(s)) ∈ RD

+ and
β ∈S D. This model is characterized by the fact that its parameters are linear on s,
i.e. they change with the covariates. Parameter estimation and prediction issues are
explored. An example with real data completes the contribution.
Abstract La distribuzione di Dirichlet é storicamente nota come un modello per
dati composizionali. Svariate sono le discipline in cui tale modello trova appli-
cazione: dalla geologia, alla biologia, alla chimica. I punti di criticitá di questo
modello, descritti estensivamente in Aitchison (1986), sono legati alla struttura
di correlazione negativa tra le sue componenti e alla forte indipendenza compo-
sizionale. In letteratura sono emerse diverse generalizzazioni al fine di compensare
tale mancanza di flessibilitá. Tra le altre, Monti et al. (2011) hanno proposto la
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distribuzione Scaled-Dirichlet, ottenuta come perturbazione di una legge di Dirich-
let. Seguendo l’approccio proposto da Campbell and Mosimann (1987), e altresı́
studiato da Hijazi and Jernigan (2009), si propone una nuova famiglia di modelli
basati sulla legge Scaled-Dirichlet. Dato un vettore di covariate, s , il vettore della
variabile risposta, X = (X1, . . . ,XD) ∈ S D, ha distribuzione condizionata di tipo
Scaled-Dirichlet con parametri α(s) = (α1(s), . . . ,αD(s)) ∈ RD

+ e β ∈S D. Questo
modello é caratterizzato dal fatto che i suoi parametri sono lineari in s. Si affronta il
problema di stima dei parametri e di previsione della variabile risposta. Un esempio
di applicazione con dati reali completa il contributo.
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1 Introduction

Compositional data are vectors of constrained, non-negative data. An appropriate
representation of their sample space is the unit simplex, denoted

S D = {x = (x1, . . . ,xD), xi > 0,
D

∑
i=1

xi = κ} ,

where κ is a constant, usually taken to be one or one hundred. The simplex
(S D,⊕,�,〈·, ·〉a) has a (D−1)-dimensional real Euclidean vector space structure,
where ⊕ and � are the pertubation and the powering operations and 〈·, ·〉a repre-
sents the inner product. The geometry on the simplex is called simplicial or Aitchi-
son geometry (Pawlowsky-Glahn and Egozcue, 2001). For x,x∗ ∈S D, perturbation
is defined as x⊕x∗ = C (x1x∗1, . . . ,xDx∗D), where C (·) denotes the closure operation.
Several disciplines involve compositional data, like e.g. rock compositions in the
geological sciences, household budgets in economics, electorate compositions in
political sciences, blood compositions in medicine. In the literature, also regression
models which relate a compositional response variable with a system of covariates
have emerged, like e.g. the Dirichlet covariate model, which assumes that the re-
sponse variable follows a Dirichlet distribution whose parameters are a log-linear
function of some covariates (Campbell and Mosimann, 1987; Hijazi and Jernigan,
2009; Gueorguieva et al., 2008; Melo et al., 2009). When the response variable is
univariate, expressed as percentage, proportion, fraction or rate, the Dirichlet re-
gression is called Beta regression (Ferrari and Cribari-Neto, 2004). Other options
involve log-ratio transformations of the response variable using normality assump-
tions (Aitchison and Shen, 1980; Aitchison, 1986; Egozcue et al., 2012), or models
based on the generalized Liouville distribution (Rayens and Srinivasan, 1994) .

The structure of this paper is as follows: in Section 2 we revise the Scaled-
Dirichlet distribution (S D) and in Section 3 we describe the proposed Scaled-
Dirichlet Covariate Models for modelling the relationship between a compositional
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response variable and one or more explanatory real variables. Section 4 contains an
illustration of the model with a real data example.

2 Scaled-Dirichlet distribution

A random vector X ∈S D has a Scaled-Dirichlet distribution with parameters α =
(α1, . . . ,αD) ∈ RD

+ and β = (β1, . . . ,βD) ∈S D if its density function is

f (x) =
Γ (α+)

√
D

∏
D
i=1 Γ (αi)

∏
D
i=1(

xi
βi
)αi

(∑D
i=1

xi
βi
)α+

, (1)

where α+ = ∑
D
i=1 αi, and Γ denotes the gamma function. The density (1) is ex-

pressed with respect to the Aitchison probability measure (Pawlowsky-Glahn, 2003).
See Monti et al. (2011) for a large discussion about the reasons and implications to
use the Aitchison measure. This distribution will be denoted X∼S DD(α,β ).

The number of parameters of the model is 2D− 1. The Scaled-Dirichlet distri-
bution can be obtained by normalizing a vector of D independent, scaled, gamma
r.v.s Wi ∼ Ga(αi,βi) , i = 1,2, . . . ,D ; i.e. if X = C (W), with W ∈ RD

+, then
X∼S DD(α,β ) (Monti et al., 2011). The Scaled-Dirichlet distribution can be ob-
tained as a perturbed random composition with a Dirichlet density, indicated by D .
Let X̃∼DD(α) be a random composition defined in S D, and let β ∈S D be a com-
position. The random composition X = β ⊕ X̃ has distribution S DD(α,β ). Thus,
taking into account the algebraic-geometric structure of the simplex, the Scaled-
Dirichlet density is just a translation of a Dirichlet density in the simplex. The ex-
pected value of X∼S DD(α,β ) with respect to the Aitchison measure is

Ea(X) = β ⊕Ea(X̃) , (2)

where Ea(X̃) is the expected value of a Dirichlet composition:

Ea(X̃) = C (eψ(α1), . . . ,eψ(αD)) . (3)

The metric variance of X coincides with the metric variance of a Dirichlet compo-
sition, because this measure of dispersion is invariant under perturbation:

Mvar(X) =
D−1

D
(ψ ′(α1), . . . ,ψ

′(αD)) , (4)

where ψ ′ is the trigamma function.
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3 Scaled-Dirichlet Covariate Models

Following the approach of Campbell and Mosimann (1987) and Hijazi and Jerni-
gan (2009), in order to incorporate in the model the covariate effects, we can re-
parameterize each αi in terms of covariates and regression coefficients via the fol-
lowing log-linear model:

αi j = αi j(s j) = exp{
p

∑
m=0

δimsm
j } , (5)

where s j is the covariate vector recorded on the j-th observed composition ( j =
1, . . . ,n) and δim are the coefficients for the m-th covariate. The parameter δim the-
oretically could vary by component and also the covariates may or may not be the
same set of explanatory variables. We augment each vector s j with 1 as first posi-
tion for notation simplicity. So that, given a sample of size n of compositional ob-
servations distributed identically and independently, i.e. x1, . . . ,x j, . . . ,xn , the log-
likelihood function for the re-parameterized Scaled-Dirichlet, given the covariates s
and ignoring the part that does not involve the parameters, is proportional to

l(β ,δ |x,s) ∝

n

∑
j=1
{logΓ (

D

∑
i=1

exp{
p

∑
m=0

δimsm
j })−

D

∑
i=1

logΓ (exp{
p

∑
m=0

δimsm
j })

−
D

∑
i=1

exp{
p

∑
m=0

δimsm
j } logβi +

D

∑
i=1

exp{
p

∑
m=0

δimsm
j } logxi j

− (
D

∑
i=1

exp{
p

∑
m=0

δimsm
j }) log(

D

∑
i=1

xi

βi
) ,

(6)

Equation (6) could be estimated using the maximum likelihood method via some op-
timization algorithms, e.g. the Newton-Raphson algorithm. The choice of the start-
ing value for the algorithm is of fundamental importance to get fast convergence.
For the Dirichlet regression Hijazi and Jernigan (2009) proposed a method based on
re-sampling from the original data; for each re-sample a Dirichlet model with con-
stant parameters is fitted and the mean of the corresponding covariates is computed.
After that, D models of the form ∑

p
m=0 δimsm

j are fitted by least squares. The fitted
coefficients δ̂im are used as starting values. In the case of the Scaled-Dirichlet covari-
ate model, suitable starting values for the regression coefficients, model diagnostic
and variable selection are topics open for further study.

4 An illustrative example

In this section we apply the Scaled-Dirichlet covariate model to analyze sedimentary
data. The data originally appeared in Coakley and Rust (1968) and were presented
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in Aitchison (1986). They record (sand, silt, clay) compositions at different water
depths at 39 locations within an Arctic lake. The aim of this study is to model the
effect of the depth covariate on the sediment composition. To solve the maximiza-
tion problem defined in Eq. (6) we used the BFGS algorithm implemented in R
in the optim routine (R Core Team, 2014). To compute the parameters standard er-
rors, the Hessian resulting from the optimization process was used. As starting point
β = C (1, . . . ,1) was fixed, and for δ the estimates were obtained fitting a simple
Dirichlet regression:

log(αi j(s j)) = δi0 +δi1s j i = 1,2,3 .

The estimated parameters and their standard error are given in Table 1 and the
fitted models (see Equation 2) are shown in Figure 1. For space constraints we do

Table 1 Maximum likelihood estimates of Scaled-Dirichlet covariate model

Parameter Estimate S.E.

δ10 -0.601 0.369
δ11 -0.009 0.007
δ20 -1.005 0.365
δ21 0.004 0.006
δ30 -1.474 0.341
δ31 0.011 0.006
β1 0.257 0.232
β2 0.428 0.357

not report the residual diagnostic plots and the comparison with other regression
models, such as the Aitchison log-ratio approach or the normal model (Egozcue
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Fig. 1 Estimated conditional means of the three components for the Arctic Lake example.
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et al., 2012); but the Scaled-Dirichlet covariate model looks promising and could
be an alternative to existing models. It is a natural generalization of the Dirichlet
Covariate model studied by Hijazi and Jernigan (2009), that takes into account the
particular algebraic-geometric structure of the simplex.
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