
A note on semivariogram
Una nota sul semivariogramma

Giovanni Pistone and Grazia Vicario

Abstract Variograms are usually discussed in the framework of stationary or in-
trinsically stationary processes. We retell here this piece of theory in the setting of
generic Gaussian vectors.
Abstract Si parla normalmente di variogrammi nell’ambito di processi stazionari
o intrinsecamente stazionari. Qui riesponiamo questa parte di teoria nel caso di
vettori gaussiani generici.
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1 Introduction

In this paper we discuss some preliminary items on variograms as defined by Math-
eron [5], see the modern exposition in [2, Ch. 2], [1, Ch. 2], [3, Ch.1], [4]. We
touched previously into this topic in the course of applied research, see [6, 7]. Our
goal now is to rework the basics in order to prepare for a nonparametric Bayes ap-
proach to Kriging.
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2 Variogram of a normal vector

We consider first generic Gaussian vectors and we intend to specialize our assump-
tions later on.

Definition 1. Assume Y ∼Nn(µ,Σ), Σ = [σi j]
n
i, j=1. The variogram of Y is the n×n

matrix Γ = [γi j]i, j=1...n with

2γi j = Var(Yi−Yj) = (eeei− eee j)
′
Σ(eeei− eee j) = σii +σ j j−2σi j.

The matrix Γ can be written

Γ =
1
2
(
vdiag(Σ)111′+111vdiag(Σ)′

)
−Σ =

1
2
(
diag(Σ)111111′+111111′ diag(Σ)

)
−Σ

where 111 is the unit column vector and vdiag(Σ) = diag(Σ)111 is the diagonal of Σ as
a column vector. Recall that 1

n 111111′ is the orthogonal projector on Span(111).
The variogram matrix has the following basic properties.

Proposition 1. The variogram Γ is symmetric with zero diagonal and it is condi-
tionally negative definite.

More precisely, the quadratic form of

Σ =
1
2
(
vdiag(Σ)111′+111vdiag(Σ)′

)
−Γ

is
ααα
′
Σααα = (ααα ·111)(ααα ·vdiag(Σ))−ααα

′
Γ ααα,

hence ααα · 111 = 0 implies ααα ′Σααα = −ααα ′Γ ααα , in particular Γ is negative definite con-
ditionally to ∑ j α j = 0. A symmetric matrix which has zero diagonal and is condi-
tionally negative definite is called a variogram matrix. The variogram matrix carries
n(n−1)/2 degrees of freedom (df), while the diagonal of Σ carries n df. Together,
Λ and Γ form a proper parameterization of Σ .

Proposition 2. The mapping from a positive definite Σ to a positive diagonal Λ and
a variogram matrix Γ defined by

Σ 7→
(

diag(Σ) ,
1
2
(vdiag(Σ)111′+111vdiag(Σ)′)−Σ

)
= (Λ ,Γ ) (1)

is injective and its inverse

(Λ ,Γ ) 7→ 1
2
(Λ111111′+111111′Λ)−Γ =

1
2
(vec(Λ)111′+111vec(Λ)′)−Γ . (2)

is defined on all Λ , Γ positive diagonal and conditionally negative definite, respec-
tively, and satisfying

ααα ·111 = 1⇒ ααα ·vec(Λ)≥ ααα
′′′
Γ ααα. (3)
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Proof. Let Λ and Γ be generic positive diagonal and conditionally negative definite,
respectively. Then for a generic ααα = ααα0 + ᾱ111, with ααα0 ·111 = 0 and ᾱ = 1

n ααα ·111, we
have

ααα
′
[

1
2
(Λ111111′+111111′Λ)−Γ

]
ααα = nᾱ ααα ·vec(Λ)−ααα

′′′
Γ ααα

=

{
−ααα0Γ ααα0 ≥ 0 if ᾱ = 0,
ααα ·vec(Λ)−ααα ′′′Γ ααα if nᾱ = 1.

ut

If det(Σ) 6= 0, similar formulæ are obtained by considering the correlation matrix

R = diag(Σ)−1/2
Σ diag(Σ)−1/2 ,

viz
Γ =

1
2
(vec(Σ)111′+111vec(Σ)′)−diag(Σ)1/2 Rdiag(Σ)1/2 .

This formula is sometimes preferred because both Γ and R carry the same number
of degrees of freedom.

Given a variogram matrix Γ , Eq. (3) is a quadratic programming problem. Here,
we do not discuss it in full generality, but we move to consider the case where the
variance is constant, as it is common in many applications.

Proposition 3. If the variance is constant, diag(Σ) = λ In, Eq.s (1) and (2) become

Σ 7→
(
λ ,λ111111′−Σ

)
= (λ ,Γ ), (λ ,Γ ) 7→ λ111111′−Γ ,

respectively, and the existence condition becomes

λ ≥max
{

ααα
′′′
Γ ααα
∣∣ααα ·111 = 1

}
. (4)

The knowledge of the support of the parameterization with λ and Γ is crucial in
the choice of a coherent apriori distribution.

Let us discuss first the case n = 2. We have[
σ σ1,2

σ1,2 σ

]
=

[
λ λ − γ

λ − γ λ

]
, γ ≥ 0,

and we need the sign of

det
[

λ λ − γ

λ − γ λ

]
= λ

2− (λ − γ)2 = γ(2λ − γ),

which is positive if λ ≥ γ/2. This shows existence and shows that there is a restric-
tion on λ which is worthwhile to investigate further. The condition in (4) involves
the lower bound maxα 2α(1−α)γ = γ/2.

Assume now n = 3, that is
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σ1,2 σ σ2,3
σ1,3 σ2,3 σ

=

 λ λ − γ12 λ − γ13
λ − γ12 λ λ − γ23
λ − γ13 λ − γ23 λ

 ,
with Γ conditionally negative definite. We have to assume λ > γ12/2 and moreover
we need the sign of

det

 λ λ − γ12 λ − γ13
λ − γ12 λ λ − γ23
λ − γ13 λ − γ23 λ ,

=

−2γ12γ13γ23 +λ
(
−γ

2
12 +2γ12γ13− γ

2
13 +2γ12γ23 +2γ13γ23− γ

2
23
)
≥ 0.

The solution of such algebraic inequalities is difficult in general, but we see that the
admissible values of λ form a semi-infinite interval. In this and other similar cases,
we can use a symbolic software such as Sage [9] to help with the algebra.

We now change our point of view to consider the same problem from a differ-
ent angle. We can associate the variogram with the state space description of the
Gaussian vector. This is of use, for example, when a simulation is required.

Proposition 4. Given a variogram matrix Γ , the matrix

Σ0 =−(I−
1
n

111111′)′Γ (I− 1
n

111111′)

is symmetric and positive definite. If Y0 ∼ Nn(0,Σ0), then its variogram is Γ and it
is supported by Span(111)⊥.

Proof. The matrix Σ0 is symmetric and positive definite because for a generic vector
ααα the vector (I− 1

n 111111′)ααα is orthogonal to 111, hence

ααα
′
Σ0ααα =−ααα

′(I− 1
n

111111′)′(−Γ )(I− 1
n

111111′)ααα ≥ 0.

Also eeei− eee j ∈ Span(111)⊥, so that

(eeei− eee j)
′
Σ0(eeei− eee j) =

(eeei− eee j)
′(I− 1

n
111111′)′(−Γ )(I− 1

n
111111′)(eeei− eee j) =

− γii− γ j j +2γi j = 2γi j.

As 111′(eeei−eee j) = 0, then 111′(I− 1
n 111111′)′(−Γ )(I− 1

n 111111′)111 = 0, the distribution of Y0 is
supported by the space 111⊥. ut

Let us derive some other equivalent expression for Σ0. The h-th element of
diag(Σ0) is

eee′hΣ0eeeh =−eee′h(I−
1
n

111111′)′Γ (I− 1
n

111111′)eeeh =−(eeeh−
1
n

111)′Γ (eeeh−
1
n

111)
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hence
diag(Σ0) =−∑

h
eeeheee′h(I−

1
n

111111′)′Γ (I− 1
n

111111′)eeeheee′h

and also

diag(Σ0)111111′ =−∑
h

eeeheee′h(I−
1
n

111111′)′Γ (I− 1
n

111111′)eeeh111′

111111′ diag(Σ0) =−∑
h

111eee′h(I−
1
n

111111′)′Γ (I− 1
n

111111′)eeeheee′h.

Let us compute the (i, j) element.

eee′i diag(Σ0)111111′eee j =−eee′i(I−
1
n

111111′)′Γ (I− 1
n

111111′)eee j

eee′i111111′ diag(Σ0)eee j =−eee′j(I−
1
n

111111′)′Γ (I− 1
n

111111′)eee j.

The previous computation are of use in the analysis of the variogram of Σ0,

1
2
(diag(Σ0)111111′+111111′ diag(Σ0))+(I− 1

n
111111′)′Γ (I− 1

n
111111′)

The following is an additive decomposition of a generic Gaussian vector into a
term whose variance is that obtained in the previous proposition and a Gaussian
vector proportional to 111.

Proposition 5. Let Y ∼ Nn(µ,Σ) with variogram Γ . Let Y0 = (I− 1
n 111111′)Y be the

projection of Y onto 111⊥. As vec(Σ)111′(I − 1
n 111111′) = 0, then the variance of Y0 is

Σ0 = (I− 1
n 111111′)Σ(I− 1

n 111111′) = −(I− 1
n 111111′)Γ (I− 1

n 111111′). We can write Y = Y0 +Z,
where each component of Z is 1

n ∑ j Yj.

3 Variograms and stationarity: final remarks

Let G be an additive topological locally compact group e.g., Z or R with the or-
dinary sum x+ y. A centered Gaussian random process (Y (x))x∈G is stationary if
Cov(Y (x),Y (y)) = Cov(Y (x− y),Y (0)) =C(x−y). The autocovariance function C
is positive definite, that is ∑

n
i j=0 αiα jC(xi− x j) ≥ 0, n ∈ N, x1, . . . ,xn ∈ G, α ∈ Rn.

The process is intrinsically stationary if Var(Y (x)−Y (y))=Var(Y (x− y)−Y (0))=
2γ(x−y). The variogram function γ is conditionally negative definite, i.e. the matrix
Γ = [γ(xi− x j)]

n
i, j=1, n ∈ N, x1, . . . ,xn ∈ G, is conditionally negative definite, as in

Prop. 1.
We plan to discuss, in a paper to come, the existence of an intrinsically stationary

process Y given a conditionally negative definite function and we want to charac-
terize specific classes of variogram functions e.g., those which are increasing (if an
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order is available) and bounded as x→ ∞. Increasing and bounded variograms are
considered especially adapted to Geostatistics. In fact, D.G. Krige himself assumed
that the variance of the difference between values measured in two locations is in-
creasing with the distance between the locations, while the covariance vanishes. In
the stationary case, these assumptions are still valid; therefore, we can use the re-
sults of the previous section, together with a further characterization of variograms,
which is based on the following theorem.

Proposition 6 ([8, Th. 6.1.8]). Let γ : G and f (0) ≥ 0. Then γ is conditionally
negative definite if, and only if, for all finite sequence x1, . . . ,xn, the matrix A =
[γ(xi− x j)− γ(xi)− γ(−x j)]

n
i, j=1 is negative definite.

Proof. If the matrix A is negative definite and ∑i αi = 0, then

0≥
n

∑
i, j=1

αiα j(γ(xi− x j)− γ(xi)− γ(−x j)) =
n

∑
i j=1

αiα jγ(xi− x j)

Viceversa, from generic x1, . . . ,xn, α1, . . . ,αn, define xn+1 = 0 and αn+1 = −∑i αi,
then write the condition for conditional negativity. ut

Finally, in this setting one must take advantage of the harmonic representation of
positive definite functions.
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4. Gneiting, T., Sasvári, Z., Schlather, M.: Analogies and correspondences between variograms
and covariance functions. Adv. in Appl. Probab. 33(3), 617–630 (2001).
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