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fclust: un pacchetto di R per l’analisi dei gruppi con
approccio fuzzy
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Abstract In this work the R package fclust is introduced. It contains functions to
perform fuzzy clustering analysis. The well-known Fuzzy k-Means algorithm, along
with some variants, is available in the package. The package also contains some
functions for computing fuzzy cluster validity indices.
Abstract In questo lavoro viene proposto il pacchetto di R fclust. Si compone di
funzioni per effettuare una analisi dei gruppi con approccio fuzzy. Il noto algoritmo
k-Medie Fuzzy, assieme ad alcune sue varianti, è disponibile nel pacchetto. Il pac-
chetto contiene anche alcune funzioni per calcolare indici fuzzy per la scelta del
numero di gruppi.
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1 Fuzzy clustering algorithms

Let X be a matrix of order (n× p) whose generic element xi j, i = 1, . . . ,n, j =
1, . . . , p, is the score of the j-th variable on the i-th object. The Fuzzy k-Means
(FkM) algorithm [2] determines the best fuzzy partition of n objects into k clusters
by solving the following minimization problem:
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min
U,H

JFkM =
n
∑

i=1

k
∑

g=1
um

igd2 (xi,hg)

s.t. uig ∈ [0,1] ,
k
∑

g=1
uig = 1,

(1)

where uig is the membership degree of object i to cluster g and hg = [hg1, . . . ,hgr],
the g-th row of the prototype matrix H of order (k× p), is the prototype of cluster
g. The membership degrees uig, collected in the matrix U of order (n× k), indicate
the extent to which an object belongs to a cluster. In order to tune the fuzziness of
the solution, the fuzziness parameter m is introduced. It takes values strictly higher
than 1. When m tends to 1, FkM reduces to the classical Hard k-means.
Although FkM works well in practice, several variants have been proposed in
the literature to improve its performance. A recognized limit of FkM is that it is
able to produce clusters with spherical shape. In case of non-spherical clusters the
Gustafson-Kessel (GK) variant of FkM has been proposed [7]. It replaces the stan-
dard Euclidean distance with a cluster-specific Mahalanobis distance:

d2
V (xi,hg) = (xi−hg)

′
V−1

g (xi−hg) , (2)

being Vg symmetric and positive-definite. It can be interpreted as the covariance
matrix for cluster g. If we simply replace d2 (xi,hg) with (2) in (1) a trivial solution
with Vg = 0, g = 1, . . . ,k would be obtained since the loss function is linear in Vg.
To overcome this problem we must constrain Vg. Gustafson and Kessel [7] suggest
to add volume constraints of the form |Vg|= ρg > 0 with ρg fixed for each g.
The fuzziness parameter m, used in FkM and GK, appears to be an artificial device
without a clear physical meaning. In [10, 11] and [12] an entropic variant of FkM
is introduced, where the fuzzifying role of m is replaced by adding the Shannon
probabilistic entropy as regularization term. It can be interpreted as a measure of
entropy for fuzzy sets taking into account that it is applied to the fuzzy membership
degrees. The optimization problem is

min
U,H

Jent =
n
∑

i=1

k
∑

g=1
uigd2 (xi,hg)+ p

n
∑

i=1

k
∑

g=1
uig loguig

s.t. uig ∈ [0,1] ,
k
∑

g=1
uig = 1,

(3)

where p is a non-negative weighting parameter measuring the degree of fuzzy en-
tropy. The degree of fuzzy entropy p is related to the concept of temperature in
statistical physics [10].
In all of the above algorithms clusters are represented by centroids. The concept
of centroids may be not easy to understand for practioners because centroids are
usually artificial objects. For this purpose, it can be helpful to require that the clus-
ter prototypes must be a subset of the observed objects. Such a subset denotes the
so-called medoids. In this case, the optimization problem can be summarized as:
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min
U,X̄

JFkMed =
n
∑

i=1

k
∑

g=1
um

igd2 (xi, x̄g)

s.t. uig ∈ [0,1] ,
k
∑

g=1
uig = 1,

{
x̄g, l = 1, . . . ,k

}
⊂ {xi, i = 1, . . . ,n} .

(4)

The problem in (4) represents the fuzzy extension of the Hard k-Medoids algorithm
[8, 9]. It is well-known that the Fuzzy k-Medoids algorithm is more robust than the
standard FkM in presence of outliers.
To deal explicitly with outliers, noise handling variants of FkM have also been pro-
posed. For instance, Davé [4] proposes to consider an additional “cluster”, called
noise cluster. If an object is recognized as an outlier, then it is assigned to the noise
cluster with a high membership degree. To do it, the following minimization prob-
lem must be solved:

min
U,H

JNoise =
n
∑

i=1

k
∑

g=1
um

igd2 (xi,hg)+
n
∑

i=1
δ 2

(
1−

k
∑

g=1
uig

)m

s.t. uig ∈ [0,1] ,
k+1
∑

g=1
uig = 1.

(5)

In (5) a penalization term depending on a nonnegative parameter δ 2 is added. Such
a term is related to the sum of the membership degrees of the objects to the noise
cluster, computed as the complement to 1 of the sum of all the membership degrees
to the standard k clusters. A partition with k+ 1 clusters is obtained when solving
(5). The first k standard clusters are homogeneous, whereas the noise cluster con-
taining the outliers is usually not formed by objects with homogeneous features and,
hence, cannot be considered as a cluster in a strict sense.

2 Fuzzy cluster validity indices

In order to choose the number of clusters k a lot of fuzzy cluster validity indices
can be used. The most famous ones are probably the partition coefficient (PC) [1]
and partition entropy (PE) [2]. They are built on the basis of the membership degree
matrix U. Another well-known index is the Xie and Beni (XB) index [13], which
measures both compactness and separation of clusters.
Kaufman and Rousseeuw [9] propose the so-called (crisp) Silhouette (CS). For each
object i, the average distance of that object to all object belonging to the same as-
signed cluster g, aig, and the average distance of object i to all objects belonging to
another cluster f 6= g, di f , are considered. The silhouette of object i is defined as
si =

bi f−aig
max(bi f ,aig)

, where bi f is the minimum distance di f , for all f = 1, · · · ,k, f 6= g.
When cluster contains only a single object i, the silhouette si is put equal to 0. In
general, −1≤ si ≤ 1. CS is the mean of the silhouettes si’s. The optimal number of
clusters k is obtained when CS is maximized. Since CS does not use the member-
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ship degree information, Campello and Hruschka [3] propose a fuzzy variant called
Fuzzy Silhouette (FS). It is defined as

FS =

n
∑

i=1
(uig−ui f )

α si

n
∑

i=1
(uig−ui f )α

(6)

where uig and ui f are the first and the second largest elements of the i-th column of
the membership degree matrix U and α is a weighting coefficient. As for the crisp
version, the optimal number of clusters k is achieved when the index is maximized.

3 The fclust package

The algorithms and cluster validity indices previously recalled are implemented in
the R package fclust [6]. The standard FkM can be run using the function FKM. The
function FKM.ent performs FkM with entropy regularization and the GK variant is
available in the function FKM.gk while the function FKM.gk.ent performs GK
with entropy regularization. The robust algorithms, namely the Fuzzy k-Medoids
and the FkM with noise cluster are implemented in the functions FKM.med and
FKM.noise, respectively.
The cluster validity indices can be computed using the functions PC (partition coef-
ficient PC), MPC (a modification of PC [5]), PE (partition entropy PE) and XB (Xie
& Beni index). The CS and FS indices are implemented in the functions SIL and
SIL.F, respectively.
The function Fclust allows the user to perform an interactive fuzzy cluster-
ing analysis. The argument of the function is an object of class matrix or
data.frame. In the following Fclust is run in order to apply FKM to the dataset
Mc (available in fclust). The data.frame Mc contains data from the McDonald’s
USA Nutrition Facts for Popular Menu Items:

> library(fclust)
> data(Mc)

Prior to run Fclust we delete the last (qualitative) column and normalize the re-
maining ones (the nutrition facts) by dividing them by the serving size (first column
of Mc) which is finally deleted.

> for (j in 2:(ncol(Mc)-1))
> Mc[,j]=Mc[,j]/Mc[,1]
> Mc=Mc[,-c(1,ncol(Mc))]

We run Fclust choosing FkM as clustering algorithm, k equal to 6, m equal to
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1.5, RS (number of random starts) equal to 10, and stand equal to 1 (i.e., the
algorithm is run using standardized data).

> clust=Fclust(Mc)

WELCOME to the interactive Fclust program
Warning: If you insert an object of mode CHARACTER when not
requested, an error occurs and the program stops!

Specify the clustering algorithm:
1: Fuzzy k-means (function FKM)
2: Fuzzy k-means with entropy regularization (function FKM.ent)
3: Gustafson-Kessel-like Fuzzy k-means (function FKM.gk)
4: Gustafson-Kessel-like Fuzzy k-means with entropy regularization
(function FKM.gk.ent)
5: Fuzzy k-means with noise cluster (function FKM.noise)
6: Fuzzy k-medoids (function FKM.med)
1: 1
Read 1 item

Specify the number of cluster k (default =2):
1: 6
Read 1 item

Specify the parameter of fuzziness m: (default =2)
1: 1.5
Read 1 item

Specify the number of random starts RS (default =1):
1: 10
Read 1 item

Specify the convergence criterion conv (default =1e-9):
1:
Read 0 items

Specify the maximum number of iterations maxit (default =1e+6):
1:
Read 0 items

If you want to standardize the dataset before running the
clustering algorithm, specify 1:
1: 1
Read 1 item
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The function Fclust returns the object clust of class fclust. It is a list with
the following components:

> names(clust)
[1] "U" "H" "clus" "value" "cput" "iter" "k" "m" "stand"
"Xca" "X" "call"

clust$U and clust$H hold the membership degree matrix and the centroid
matrix, respectively. clust$clus is a matrix containing the indices of the clus-
ters where the objects are assigned (column 1) and the associated membership de-
grees (column 2). clust$value holds the loss function values for the RS starts.
clust$cput and clust$iter are the vectors containing the computational
times (user times) and the numbers of iterations for the RS starts, respectively.
clust$k holds the number of clusters. clust$m is the parameter of fuzziness.
clust$stand represents the standardization (Yes if stand=1, No if stand=0).
clust$Xca and clust$X hold the data used in the clustering algorithm and the
raw data, respectively. Finally, clust$call is the matched call.
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