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Abstract Copy number variants (CNV) are chromosomal aberrations resulting in
DNA segments having an abnormal number of copies. The problem of detecting
CNVs has received a lot of attention and several methods have been developed to
infer CNVs from high-throughput array-based technologies. There is also a strong
interest in identifying associations between CNVs and biological functions. These
analyses are commonly done in two stages, by first inferring the CNV calls and us-
ing them in the analysis as if they were the true copy numbers. Another commonly
used procedure performs the association analysis using the normalized raw inten-
sity measurements. These approaches have several limitations. Here, we propose a
hierarchical Bayesian model that handles both the CNV detection and association
analysis in a unified manner, by integrating array CGH and gene expression data
collected on the same set of subjects. We specify a measurement error model that
relates the gene expression levels to the latent copy number states, which in turn are
related to the observed surrogate fluorescence intensity measurements via a hidden
Markov model. Latent selection indicators that exploit the dependencies between
copy number states at adjacent chromosomal locations are incorporated into the
model. Model fitting and posterior inference are accomplished via MCMC stochas-
tic search techniques. We demonstrate the performance of the method on simulated
data and illustrate its application on a genomic study.
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Abstract Le variazioni nel numero di copie (CNV) sono aberrazioni cromosomiche
che portano ad un numero di copie anormale nei segmenti di DNA. Il problema
dell’identificazione di tali variazioni ha ricevuto grande attenzione, tanto che sono
stati proposti molti metodi per la loro identificazione sulla base di dati derivanti da
tecnologie basate sugli arrays. Di grande interesse è anche l’identificazione delle
associazioni fra le variazioni nel numero di copie e le funzioni biologiche. Tali anal-
isi vengono, di solito, fatte in due fasi: innanzitutto si identificano gli stati latenti
delle CNV e si usano, poi, questi ultimi nelle analisi, come se fossero il vero nu-
mero di copie. Un’altra procedura, usata comunemente, si basa sull’analisi di as-
sociazioni utilizzando misure di intensità grezze normalizzate. Tali approcci hanno
molte limitazioni. In questo lavoro proponiamo un modello Bayesiano gerarchico
che gestisce simultaneamente l’identificazione delle variazioni nel numero di copie
e l’analisi di associazione, tramite l’integrazione dei dati array CGH e di espres-
sione genica raccolti sugli stessi individui. Abbiamo definito un modello con errore
di misura, che collega i livelli di espressione genica al numero di copie latenti i
quali, a loro volta, sono legati, tramite un hidden Markov model, alle misurazioni
di intensità di fluorescenza. Nel modello sono incorporati indicatori latenti di se-
lezione, che sfruttano la dipendenza esistente tra gli stati latenti del numero di copie
fra due locazioni cromosomiche adiacenti. L’adattamento del modello e l’inferenza
a posteriori sono realizzate attraverso l’utilizzo di tecniche MCMC di ricerca sto-
castica. Il buon funzionamento del modello è dimostrato su dati simulati e viene,
inoltre, presentata un’applicazione su di uno studio di genomica.

Key words: Bayesian hierarchical models, copy number variation, gene expres-
sion, hidden Markov models, measurement error, variable selection

1 Introduction

Copy number variants (CNV) represent DNA fragments having an abnormal num-
ber of copies. It is believed that some CNVs have no obvious phenotypic conse-
quence or are merely related to normal phenotypic variations, while others may
influence phenotypic outcomes.

The problem of detecting CNVs has received a lot of attention. Several methods,
most of which rely on hidden Markov models (HMM) [4, 10], have been proposed.
Another question of interest is the identification of CNVs associated with biolog-
ical functions and complex human diseases. Commonly used procedures use the
normalized continuous fluorescence intensity measurements without inferring copy
numbers and asses their association with the outcomes of interest using univariate
tests or simple linear regression models with multiple testing correction [10]. More
recently, multivariate methods have been developed, as in Monni and Tadesse [6]
who proposed a stochastic partitioning method to identify sets of correlated gene
expression levels and sets of chromosomal aberrations that jointly modulate mRNA
transcript abundance in the co-expressed genes. Using the raw measurements has
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the advantage of bypassing the need to infer copy number states, but the high noise
in the signal intensities may lead to the identification of a large number of false pos-
itives [2]. The other widely used approach performs the analysis in two steps by first
estimating the copy number states then using these as true states in the association
analysis. Determining the underlying CNV state provides insight into the biological
mechanisms, but using the estimated copy numbers as if they were the true states ig-
nores the uncertainty in the estimation process and can introduce bias. Methods that
incorporate the uncertainty in copy number estimation into the association analysis
have recently been proposed [1, 9].

In this work, we present a unified method to simultaneously infer CNV and iden-
tify significant associations between copy number states and gene expression levels.
This is achieved by specifying a joint distribution of the gene expression and CGH
data, which is factored into the product of conditionally independent submodels: an
outcome model that relates the gene expression levels to latent copy number states,
and a measurement model that relates these latent states to the observed surrogate
CGH measurements using a first order HMM. Latent variable selection indicators
are introduced to identify CNVs associated with gene expression levels, and selec-
tion priors that account for the spatial dependence between adjacent DNA segments
are specified. Further details of the model, its implementation, and its performance
on simulated and real data can be found in Cassese et al. [3].

2 Model Formulation

Let Yig denote the expression measurement for gene g (g = 1, . . . ,G) and Xim be the
normalized log2 fluorescence intensity ratio for the m-th CGH probe (m = 1, . . . ,M)
in sample i (i = 1, . . . ,n). The M CGH probes are considered ordered according to
their chromosomal locations, and probes m and m+ 1 are viewed as being “adja-
cent”. The observed CGH intensities, Xim, are treated as surrogates for the unob-
served copy number state, ξim, which can be in one of four possible states (1=loss,
2=neutral, 3=gain, 4=multiple gains).

2.1 Measurement error model via HMM

We consider a nondifferential measurement error, such that conditional on the latent
state ξξξ , the observed surrogate contains no additional information on the response
YYY , i.e., f (YYY |ξξξ ,XXX) = f (YYY |ξξξ ) [8].

The outcome model relating the expression level of gene g to the latent copy
number states ξξξ is specified using a linear regression model

Yig = µg +ξξξ iβββ g + εig, εig ∼N
(
0,σ2

g
)

i = 1, . . . ,n g = 1, . . . ,G (1)
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The measurement model relating the surrogate XXX to the latent ξξξ is defined in
terms of the emission distributions of a HMM

Xim|(ξim = j) iid∼N
(
η j,σ

2
j
)

j = 1, . . . ,4 (2)

and the dependence between the states of adjacent probes is captured by a first order
Markov model

P
(
ξi(m+1)|ξi1, . . . ,ξim

)
= P

(
ξi(m+1)|ξim

)
= aξimξi(m+1)

(3)

where AAA = (ah j) is the matrix of transition probabilities (h, j = 1, . . . ,4). The initial
probabilities for each state are assumed equal to the stationary distribution πA.

2.2 Prior specification with spatial dependence

In order to identify the CGH aberrations that affect gene expression levels, we in-
troduce a (G×M) matrix RRR of binary elements, rgm, that are used to specify a
spike-and-slab prior on the regression coefficients [5]

βgm|rgm,σ
2
g ∼ rgm ·N

(
0,cβ σ

2
g
)
+(1− rgm) ·δ0 (4)

where δ0 is a point mass at 0. We take conjugate normal-gamma priors for the inter-
cepts, µg, and the residual precisions, σ−2

g .
Contiguous regions with the same non-neutral copy number state are likely to

correspond to the same DNA aberration, and thus likely to jointly affect the expres-
sion level of a gene. We, therefore, assume a priori that the selection of a probe at
location m depends on the copy number states and the selection status of its adjacent
probes {m−1,m+1}. We represent this dependent association structure as follows:

π
(
rgm|rg(m−1),rg(m+1),ξξξ ,π1

)
= γm

[
π

rgm
1 (1−π1)

1−rgm
]
+

2

∑
j=1

ω
( j)
m I{rgm=rg(m+(−1) j)}

γm =
α

α + s(m−1)m + sm(m+1)
π1 ∼ Beta(e, f ) (5)

ω
(1)
m =

s(m−1)m

α + s(m−1)m + sm(m+1)
ω

(2)
m =

sm(m+1)

α + s(m−1)m + sm(m+1)

s(m−1)m =
1
n

n

∑
i=1

e1− dm
D −1

e−1
I{ξim=ξi(m−1)}

where dm is the distance between probes {m− 1,m}, D is the total length of the
chromosome, and ω

( j)
1 = ω

( j)
M = 0 ( j = 1,2). The hyperparameter α is a positive

scalar that controls the relative strength of the dependence between adjacent probes.
As α → ∞,γm→ 1, which corresponds to the independent prior.
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We complete the prior specification by defining Dirichlet priors for the rows of
the transition matrix AAA, and truncated normal-gamma priors for the mean and preci-
sion parameters of the emission distributions.

2.3 Posterior inference

Our main interest lies in the estimation of the association matrix, RRR, and the copy
number states, ξξξ . After integrating out µg,βββ g,σ

2
g , the marginal likelihood reduces

to a t-distribution. The model is fit via MCMC by iterating the following steps:

1. Update RRR using a Metropolis algorithm by randomly selecting ng genes and
proposing for each gene a change in the inclusion status of a probe using an
add/delete/swap move.

2. Update ξξξ using a Metropolis-Hastings algorithm by randomly choosing a column
and proposing new states for a subset of its elements using the current values of
the transition matrix.

3. Update the emission distribution parameters, η j and σ2
j , using Gibbs sampling.

4. Update the transition probability matrix, AAA, using a Metropolis algorithm.

Inference for the elements of RRR is performed by calculating their marginal pos-
terior probabilities of inclusion (PPI) from the MCMC output. Those with marginal
PPI passing a Bayesian false discovery rate (FDR) threshold are selected as having
a significant association [7]. For each individual i, the copy number state for probe
m is estimated by the mode of the posterior distribution of ξim.

3 Simulation Studies

We studied the performance of the model on various simulated datasets. We present
the results from two scenarios: one with no spatial dependence structure in the asso-
ciation between markers and genes; the second with dependence created by making
clusters of adjacent probes associated with the same gene expression. The model
successfully recovered the true gene-CNV associations. Overall, lower α values
lead to less false negatives and more false positives. For scenario 1, stronger a priori
dependence structures (i.e., smaller α) result in an increased number of erroneous
decisions, since such structures are not present in the data. For scenario 2, dependent
priors provide fewer erroneous decisions and the independent prior (α = ∞) shows
the worst performance, since it does not use the information from adjacent probes.
As a general guideline, moderate values of α give an appropriate compromise be-
tween false positives and false negatives.

We compared the results from our proposed unified method to single stage ap-
proaches that focus solely on CNV detection or solely on association analysis using
the raw measurements. Our method yielded fewer misclassified CNV calls com-
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pared to the former and it detected substantially fewer spurious associations com-
pared to the latter.

4 Application to NCI-60 data

We applied the method to the NCI-60 cancer cell line panel using pathway-based
scores for the gene expression data and focusing on CGH probes mapping to chro-
mosome 8. Our results identified potential links between CNVs and the transcrip-
tional activity of target pathways. Four pathway components were selected as those
with the highest number of associations. In particular, connections of six genetic
mutations with Arginine metabolism, and 18 genetic mutations with the expres-
sion of genes involved in Glycosylphosphatidylinositol anchor metabolism and Por-
phyrin metabolism were identified. We searched for putative upstream regulators
of all genes involved in these pathways and of genes corresponding to the selected
CNVs, and found four putative upstream regulators that consisted of the well-known
oncogenes MYC and p53, PPAR and SOD1. These findings support the hypothesis
that the associations we have identified may represent genes implicated in cancer.
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