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Abstract The sample covariance matrix performs poorly in situations with outliers
and high dimensionality. Most high-breakdown point estimators of multivariate lo-
cation and scatter cannot cope with datasets with small n/p ratio, where n is the
sample size and p the dimension. In this paper we introduce and discuss an estima-
tor of location and scatter defined as the solution of a system of nonlinear (implicit)
equations. These equations are based on a pseudo-model representation of the un-
derlying probability measure. The latter consists in an improper density function
called “Black Hole Density”. The estimator smoothly trims data points far away
from the center. The robustness of the procedure is based on tunings that have a
straightforward interpretation. For datasets with small n/p ratio, regularization is
provided by a constraint that bounds the condition number of the covariance matrix.
Empirical evidence suggests that the proposed estimator compares well with other
robust location-scatter estimators.

Key words: Robust estimation, multivariate location-scale estimates, improper
density pseudo-model

1 Introduction

Location-scale statistics are basic ingredients of most analysis. Nevertheless estima-
tion in multivariate settings can be tricky because of the strong influence of outlying
observations and/or small n/p ratio, where where n is the sample size and p is the
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dimension of the observed vector. Robust covariance matrix estimation has been
a popular topic in the ’80s and ’90s, whereas recently there has been a growing
interest in the high dimensional setting (n << p). Starting from Maronna’s pioneer-
ing work [12], several robust estimators of multivariate location and scatter have
been proposed with emphasis to symmetric elliptical populations. The list includes:
MVE and MCD ([16, 15]), S-estimates and τ-estimates ([6, 10]), MM-estimates
([18]), SD-estimates ([17, 7]), OGK-estimates ([11]), NNVE estimator by [20], FS
estimates by [13]. These methods offer more resistance to outliers than the classi-
cal sample covariance, some of them are well known for having high break down
point. Unfortunately none of them can cope with small n/p. These days “high-
dimensional” qualifies the case n << p. For covariance matrices, even when n > p,
moderate values of n/p can cause troubles in practice. In particular the spectrum
of the sample covariance is seriously biased unless n >> p. Proposals to solve this
problem includes: shrinkage ([8, 9]), thresholding ([2, 14, 3]), lasso-type penalized
methods ([22, 1]), ML estimation under restrictions on eigenvalues ([21]). These
contributions provide serious improvements over the sample covariance, however
none of them considers the robusteness issue. Some link between dimensionality
and robustness has been established (see [6, 19]). In particular for small n/p there
is no way to achieve good breakdown point behaviour if one is not willing to waive
affine equivariance.
In this paper we outline an estimator of location and scatter defined as the solu-
tion of a system of nonlinear (implicit) equations. These equations are based on a
pseudo-model representation of the underlying probability measure, that is an im-
proper density that we call the “Black Hole Density”. The pseudo density is used
to construct a system of weights that reduce the influence of points away from the
center in a data-dependent way. The robustness is controlled by tunings that have a
simple interpretation. The user can decide whether to regularize the solution with
a constraint that in practice bounds the condition number of the covariance matrix.
Therefore the proposed estimator always provides well conditioned estimates. In
the final section of this paper we report some empirical experience that suggests the
potential of the proposed method.
The paper is organized as follows: in Section 2 we introduce the black hole pseudo
model, in Section 3 we defined the proposed estimator final remarks are given.

2 The black hole pseudo density

We begin with some notations and definitions. Let x be a vector in Rp with p > 1,
let xk the generic element of x for k = 1,2 . . . , p. The ith observed vector is xTi =
(xi1,xi2, . . . ,xip) for i = 1,2 . . . ,n. X∈ Rn×p denotes the matrix with generic element
X[i,k] = xik with i = 1,2 . . . ,n and k = 1,2 . . . , p. Xn = {x1,x2, . . . ,xn} denotes the
observed sample. For a random vector x ∈ Rp, with expectation µ and covariance
matrix Σ , the squared Mahalanobis distance of a point x to µ is given by
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d2(x; µ,Σ) := (x−µ)TΣ
−1(x−µ).

Define the Gaussian β -ellipsoid as the set

Eβ (µ,Σ) :=
{

y ∈Rp : d2(y; µ,Σ)≤ qp(β )
}
,

where qp(β ) is the quantile function of a χ2
p distribution computed at β . If the

previously defined random vector x has a Gaussian law, then Pr(Eβ (µ,Σ)) = 1−β .
Finally φ(x; µ,Σ) denotes the density function of the p–variate Normal distribution
at x.
We want to handle situations where Xn is generated from a “Gross Error Model”

P = (1−α)F +αU, (1)

where F is a symmetric elliptical distribution mainly responsible for the “regular”
observations and U produces observations inconsistent with F called outliers or
noise. α is the expected proportion of points sampled from U . Regular points are
not the points sampled under F , but rather points that lie in a particular region de-
fined relatively to F . We are interested in situations where the regular region has
a shape that can be well approximated by a Gaussian ellipsoid. In other words the
reference model for F is the Gaussian distribution. The following distinction be-
tween regular and outlier region is inspired to the work of [5]. Fix β , x is regular
if x ∈ Eβ (µ,Σ), a point x ∈Rp \Eβ (µ,Σ) is an outlier. The goal is to construct an
estimator for µ , and Σ so that points in the outlier region do not affect estimates.
The proposed estimator in Section 3 is based on a pseudo-density representation
of (1). Before to introduce it we fix additional notations. Fix β1 < β2 and take
qp(β1),qp(β2).

w(t) :=


0 if t < qp(β1),
1
2

[
1+ 2t−qp(β2)−qp(β1)

qp(β2)−qp(β1)
+ 1

π
sin
(

π
2t−qp(β2)−qp(β1)

qp(β2)−qp(β1)

)]
if qp(β1)≤ t ≤ qp(β2);

1 if t > qp(β2).

(2)
Define

φβ1(Σ) := (2π)−
p
2 det(Σ)−

1
2 exp

(
−

qp(β1)

2

)
,

which gives the value of the Gaussian density on the border of Eβ1(µ,Σ). Define the
“improper black hole density” (IBHD) as

h(x; µ,Σ) := φβ1(Σ) w
(
d2(x; µ,Σ)

)
, (3)

Features of h(·) are: (i) h(·) = 0 for x ∈ int(Eβ1(µ,Σ)); (ii) h(·) is an improper
density because h(·) = φβ1(Σ)> 0 for x∈Rp \Eβ2(µ,Σ); (iii) it increases smoothly
from 0 to φβ (Σ) going from the border of Eβ (µ,Σ) to the border of Eβ1(µ,Σ). Once
h(·) touches Eβ1(µ,Σ) stays at φβ (Σ) forever. Therefore h(·) puts zero mass on
points in Eβ1(µ,Σ) creating a “black hole” where we expect that points are typically
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sampled under the regular component. Based on (3) define

ψ(x;θ) := (1−α)φ(x; µ,Σ)+αh(x; µ,Σ) (4)

with θ = (α,µ,vec(Σ)) and 0 ≤ α < 1. ψ(·) is interpreted as an improper density
representation of P where α is a measure of the “global” weight of the nonregular
component. The pseudo model (4) is used to define a “local measure” of the weight
of the regular component at x:

τ(x;θ) :=
(1−α)φ(x; µ,Σ)

ψ(x; µ,Σ)
. (5)

At point x the quantity 1−τ(x,θ) measures the weight of the nonregular component
relative to the overall density approximated by ψ(x;θ).

3 Estimator

Define the matrix S(θ) ∈Rp×p

S(θ) :=
1

n(1−α)

n

∑
i=1

τ(xi;θ) (xi−µ)(xi−µ)T.

Let l1(θ) ≥ l2(θ), . . . ,≥ lp(θ) be the ordered eigenvalues of S(θ), and L(θ) =
diag(l1(θ), l2(θ), . . . , lp(θ)). Let G(θ) be the matrix of normalized eigenvectors as-
sociated to diag(L(θ)) so that S(θ) = G(θ)L(θ)G(θ)T holds. Fix γ ≥ 1 and define

lk(m,θ) :=


m if lk(θ)< m,

lk(θ) if m≤ lk(θ)≤ γm,

γm if lk(θ)> γm.

(6)

for k= 1,2 . . . , p and m> 0. Furthermore, define the unique solution of the following
one dimensional convex program

m∗(θ) := argmin
m>0

p

∑
k=1

lk(θ)
lk(m,θ)

+ log lk(m,θ). (7)

Let L∗(θ) = diag(l1(m∗(θ),θ), l2(m∗(θ),θ), . . . , lp(m∗(θ),θ)). We say that the
vector of parameters θ = (α,µ,vec(Σ)) solves the “Black Hole Equations” if the
following system of equations holds:

α− 1
n ∑

n
i=1(1− τ(xi;θ)) = 0,

µ− 1
n(1−α) ∑

n
i=1 τ(xi;θ) xi = 0,

Σ −G(θ)L∗(θ)G(θ)T = 0.

(8)
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Let Θr denote the set of solutions to (8). For α > 0 members of Θr are robust can-
didate approximations to the µ and the Σ we are looking for. Observations outside
Eβ1(µ,Σ), will have less or no impact on µ and Σ since the corresponding τ(·) will
be small. The role of γ is to regularize the covariance matrix in high-dimensional
settings or more generally when the ratio n/p is modest. In the oracle case sup-
pose one knows that P is an uncontaminated normal distribution and sets α = 0,
then one can show that: (i) if γ =+∞, then Θr contains a unique solution that coin-
cides with MLE, moreover the resulting Σ is invertible for n≥ p+1, (ii) if γ <+∞

then Θr contains a unique solution that coincides with the MLE under a condition
number constraint studied in [21] (similar constraints have been used in cluster anal-
ysis based on Gaussian mixtures, see [4] and references therein). The resulting Σ is
invertible even for n < p+1. However, apart from the oracle case one cannot gen-
erally expect that (8) has a unique solution. Therefore, within Θr we look for the
solution that produces that best approximation to a Gaussian β1−ellipsoid. Define

Wt,n(θ) :=
1

n(1−α)

n

∑
i=1

τ(xi;θ) 1
{

d2(xi; µ,Σ)≤ d2(xt ; µ,Σ)
}
, (9)

where Wt,n(θ) is the a weighted distribution function of the squared Mahalanobis
distances according to weights τ(·). Let D(P1,P2) be the Kuiper distance between
distributions P1 and P2, let χ2

p(t) be the distribution function of a χ2
p at t, then our

final estimator for θ is found by solving the following optimization problem:

θn := argmin
θ∈Θr ,α≤α

D(Wi,n(θ), χ
2
p(d

2(xi; µ,Σ))) (10)

The restriction α ≤ αmax is needed in order to guarantee existence when γ = +∞.
However, αmax = 0.5 will just implement the familiar condition in robust statis-
tics that we expect that no more than 50% of the observations are produced by the
outlier component of P. The rational of θ n can be understood by noting that D(·)
measures the lack of Gaussianity for the points in Eβ1(·). Notice that the robustness
of the estimator is controlled by β1,β2. While β2 does not impact results too much,
β1 is crucial and can be set by simple arguments inspired by [5]. In fact we may
require that for an uncontaminated normal sample Xr

n Pr{Xr
n ∈ Eβ j(µ,Σ)}= 1−π j,

the latter can be achieved by taking β j = (1−π j)
1
n for j = 1,2. In our experiments

π1 = 10% and π2 = 5% always produced satisfactory results.

Existence, robustness, computational issues and other theoretical properties of
(10) will be discussed in future papers. Extensive numerical experiments have
shown that the proposed estimator performs well compared with other robust al-
ternatives. Numerical experiments have been conducted with observation sampled
from highly correlated normal distributions with varying dimensions, various types
and levels of contamination. Numerical results will be also discussed in future pub-
lications.
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