Smooth random effect distribution in joint
models with an application to cardiomiopathy
data.

Effetti casuali smooth nei modelli congiunti con
applicazione a dati sulle cardiomiopatie.

Sara Viviani

Abstract Longitudinal studies often entail non Gaussian primary responses. If in-
dividuals prematurely leave the study, potential non-ignorability of the missingness
process may occur. A joint model for the primary response and a time-to-event may
represent an appealing tool to account for dependence between the two processes.
As an extension to the generalized linear mixed joint models, recently proposed,
and based on Gaussian latent effects, we assume that the random effects follow a
smooth, P-spline based density. To estimate model parameters, we adopt a two-step
conditional Newton-Raphson algorithm. Since the maximization of the penalized
log-likelihood requires numerical integration over the random effect, which is often
cumbersome, we opt for a Pseudo-Adaptive Gaussian quadrature rule to approxi-
mate the model likelihood. We discuss the proposed model by analyzing an original
dataset on dilated cardiomyopathies.

Abstract Gli studi longitudinali spesso sono soggetti al problema del dropout.
Qualora il processo che genera i dati mancanti risulti non ignorabile, é neces-
sario un modello congiunto che prenda in considerazione la dipendenza tra risposta
longitudinale e tempo all’evento. Nel presente lavoro viene proposta un’ esten-
sione del modello lineare generalizzato congiunto, utilizzato per risposte longitu-
dinali non Gaussiane e tempi di sopravvivenza, sotto ’assunzione di effetti casu-
ali normali. Si assume che gli effetti casuali (condivisi) seguano una distribuzione
smooth, modellata tramite P-splines. Per la stima dei parametri del modello, si uti-
lizza un algoritmo Newton-Raphson condizionato in due passi. La massimizzazione
della verosimiglianza penalizzata richiede un’integrazione numerica, risolta con
una quadratura Pseudo adattiva. Il modello viene discusso tramite [’analisi di un
dataset originale sulle cardiomiopatie dilatative.
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1 Introduction

In this paper, we propose a new version of the joint model for a longitudinal re-
sponse with distribution in the exponential family and a time-to-dropout. We relax
the Gaussian assumption upon the random effect distribution and introduce a set of
shared random effects following a smooth, spline-based distribution, see De Boor
(1978) and Eilers and Marx (1996). Ghidey et al. (2004) propose a P-spline based
distribution for random effects in linear mixed models. Using a similar perspective,
Tsonaka et al. (2006) formulate a shared parameter model to handle non-monotone
non-ignorable missingness with random effects distributed according to a mixture of
Gaussian densities. Rather than using the discrete time representation, we opted to
extend the work of Ghidey et al. (2004) to non Gaussian longitudinal outcomes with
dropout, and propose an original rearrangement of the JM formulation of Wulfsohn
and Tsiatis (1997). In this case, we assume that the linear predictor of the longitu-
dinal process influences the hazard of dropout.

To estimate model parameters, we maximize a penalized likelihood function through
a two-step, Newton-type, algorithm. As the observed data likelihood requires nu-
merical integration over the random effects, in order to reduce the computational
burden, we propose to use the pseudo-adaptive quadrature rule, see Rizopoulos
(2012).

We discuss the behaviour of parameter estimates in the case of binary longitudinal
responses with attrition, and apply the proposed method to an original dataset.

The rest of the paper is as follows. In Section 2 we briefly discuss the joint model
structure in the case of non-Gaussian responses; in Section 3 a smooth version of
random effect distribution is described. In Section 4 the model is applied to an orig-
inal dataset on dilated cardiomyopathies. Section 5 gives some concluding remarks.

2 The model structure

In this Section, we discuss an extension of joint models to handle mixed models
for non-Gaussian responses and smooth random effects in longitudinal studies with
attrition. The proposed parametrization is based on joint modeling a longitudinal
response, with distribution in the exponential family, and a time-to-event process,
assuming that the linear predictor for the longitudinal model at time ¢ influences the
hazard of dropout at the same time.

Let us denote by 7; = min(7;*, C;) the observed failure time for the ith individual,
i=1,...,n, taken as the minimum between the true event time 7;* and the censor-
ing time C;, which may correspond to the end of the follow-up. Let J; be the event
indicator defined by §; = I(T* < C;), where I(-) is the indicator function. The out-
come Y;(¢) is repeatedly observed before T;, and is missing for ¢ > T;; we assume
that the longitudinal process is associated with T;*, i.e the frue event time, but it is
independent of the censoring time C;. We assume Y;(¢) ~ EF(6;(¢)), i.e. that Y;(¢) is
a random variable with distribution in the exponential family and natural parameter
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denoted by 6;(z).
The extension of JMs by Viviani et al. (2013) to non-Gaussian responses, from here
on indicated as GLMJM, have adopted the following model structure:
T
g (mi(1)) = (1) = B~ Xi(t) + b Zi(r) )
hi(l | M,»(t),Wi) = ho(l) exp{‘yTWi + Otmi(t)}.

Here, X;(#) is a p-dimensional vector of predictors measured at occasion ¢ and asso-
ciated to the fixed effects B, Z;(r) is a g-dimensional vector of predictors measured
at the same occasion and associated to the random effects b;, while W; is a row
vector of additional (time constant) covariates used to model the survival process,
associated to the parameter vector ¥. In this context, 4;() represents the hazard of
dropout at time ¢, while k() denotes the baseline risk function, which is typically
left unspecified (Cox, 1972; Andersen and Gill, 1982). As suggested by Hsieh et al.
(2006), adopting a nonparametric baseline hazard in the JM framework may lead to
underestimate the parameter standard errors; for this reason, we consider a Weibull
baseline function, i.e. a baseline risk parametrized as ho(r) = £5~!. The term M;(r)
in the conditioning denotes the history of the true, unobserved, longitudinal process
up to ¢, while m;(t) = g! (BTXi(t) +b] Z;(1)) is the expected value of the longitu-
dinal response at time ¢, and g(+) is the link function.
We propose to modify model (6) as follows:

g (mi(t)) = mi(r) = B"Xi(1) + ] Z(1) @
h,‘(l ‘ Mi(t),wi) = ho(l‘) exp{YTWi + OCT],‘(I)}.

When compared to the standard GLMIM structure, where we assume the expected
value of the response is shared by the longitudinal and the survival processes, this
approach allows to prevent some computational issues. In fact, the expected value
is, in most of the cases, on the exponential scale and, in rare empirical cases, may
take infinite values. Moreover, this may lead to an always increasing risk for each
value of the fitted mean when compared to the baseline risk.

The parameter @ can be seen as non-ignorability parameter, since it gives an es-
timate of the degree of association between the dropout and the longitudinal pro-
cesses.

The survival function corresponding to model (2) is

S(T; | Mi(T), Wiy, 0, &) = exp{—/OTih,-(s)ds} 3)
= exp{/OTi és‘g_lexp{’yTWiJrani(s)}ds} .

Since equation (3) involves an integral over the time which is not analytically
tractable, we approximate it by Gauss-Kronrod numerical integration method, see
Kronrod (1964).
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3 Random Effect distribution

To consider random effects with flexible distribution, we follow the approach pro-
posed by Ghidey et al. (2004). We consider a zero mean bivariate random effect
b; = (b;1,bi,) with covariance matrix D, and adopt the variable change b; = D!/ Zb:f,
where b} are standardized random coefficients. From here on, we will denote by
C = D'/, We assume that b} take values on a square [—m,m] x [—m, m], and rather
than adopting a parametric distribution for b;, we define a semi-parametric distribu-
tion as a finite mixture of bivariate Gaussian densities. As it is well known, this dis-
tribution may be used to fit, mimicking a Kernel-based centers approach, a wide va-
riety of continuous distributions. We assume that the means are component-specific,
say iy, j=1,....J,and fy, I =1,..., L. To allow for varying degrees of distance
from the homogeneous model, we allow for different number of components, J and
L, in each dimension. We fix profile-specific standard deviations, 7; and 7, for the
first and the second profile, respectively, and, following Ghidey et al. (2004), we
define them as functions of corresponding means:

Tli%(#l, Hi 1), j=1,...,J
%(sz M2—1), [=1,...,L

According to these model assumptions, the random effect distribution is a mix-
ture of Gaussian densities:

iV (Chj, CDC), @)

HMN

-1

where the weights cj; = exp{a;i}/Xi_; Lk _ | exp{awn} are transformed spline co-
efficients, under the sum constraint Z§:1 Yi i cji=1,and Dy = diag(t},73).

The smooth density in (4) is a mixture with (J X L) components, where component-
specific means and variances are fixed in the grid [—m,m] X [—m,m].

Parameter estimation, as usual in nonparametric models, is based on specify-
ing a penalized likelihood function, see among others Eilers and Marx (1996). The
penalty terms are typically introduced to balance smoothness, pursued through a
high number of knots, and robustness, in order to avoid overfitting while maintain-
ing a good fit to the adopted distribution. Let us define the overall parameter vector
by @ = (B,&,7,,a), where a = {a;;}, j=1,...,J, [ =1,...,L. The penalized
log-likelihood for the JM follows:

_ L & exp{aﬂ}
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where A; and A, are the penalty terms, and AKX, q = 1,2, are k-th order difference
operators representing the k-th order discrete derivatives in Tibshirani (2013). We
follow the suggestion of Ghidey et al. (2004), and choose k = 3, since for a large
number of basis, the smooth density converges in distribution to a Gaussian as A —
0o, A = (A1,42).

The integral over the random effect space in (5) needs to be numerically evaluated
(J x L) times, each one weighted by the corresponding ¢ ;. The standard procedure
in JMs is to approximate the integral through the following finite sum:

/ Flbir,bia) (T3, &ilbiy bia) £ (i) by by =
Z fYilbit = by, ,bip = by, ) f(T;, 8i|bit = by, ,bip = by, ) f(byy,b1,),

(—m,m)x (—m,m)

where (t1,12) € {1,...,q}, ¢q is the number of chosen discrete points where the in-
tegral is evaluated, and (by,,b;,) € (—m,m) x (—m,m). Since the integrand func-
tion needs to be adapted to the random effect posterior distribution, we opt for
the Pseudo-Adaptive Gaussian (PA) rule, see Rizopoulos (2012) and Viviani et al.
(2013), which looks for a better approximation with a substantial lowering of the
computational complexity. In fact, the PA method computes the integrand by scal-
ing and centring the random effect distribution only once, at the beginning of the
optimization algorithm, leading to a faster fitting.

Estimation algorithm (not presented here) is a two-step conditional maximization
Newton-Raphson procedure. Penalty terms are chosen through an ad hoc AIC for-
mulation.

4 Dilated cardiomyopathy data

In this Section, an application to an original data set about patients with dilated
cardiomyopathy is presented.

Dilation of the left ventricular is known to lead to hearth failure, and in many
cases an ethiological basis cannot be identified (Merlo et al., 2011). The goal of
this study is to compare patients with mild dilation of the left ventricular (Mildly
Dilated CardioMyopathy or MDCM) with respect to patients with a general dilation
of unrecognized ethiology (Idiopatic Dilated CardioMyopathy or IDCM). MDCM
patients are generally believed to be at a slightly lower risk (e.g., Keren et al. (1990)),
but the physiological reasons are still unrecognized.

Data refers to a study conducted in the cardiovascular department of “Ospedali
Riuniti” in Trieste, Italy. The patients (n = 659) were enrolled at the first treatment
for dilated cardiomyopathy, and then followed-up after 6 months, 1, 2, 3, 4, 6 and
10 years. At the end of the study, 25% of the patients had complete records, with a
total of 212 events (32%).
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The longitudinal outcome of interest is the New York Hearth Association (NYHA)
functional classes, which places patients in one of four categories based on how
much they are limited during physical activity related to the heart failure. Dropout
occurs due to cardiovascular death, and it can be easily expected that the two pro-
cesses are related as patients with a higher NYHA class are at higher risk of death.

We model the longitudinal outcome conditionally on an intercept, the visit oc-
casion, the age at baseline and the indicator of MDCM. As for the survival model,
we let the hazard of dropout depend on the gender indicator (1 for males). The joint
model can be written as follows:

{g (mi(t)) = (Bo+bio) + (B1 + bi1)ti + PoMCDM; + B3Age; ©)

hi(t | Mi(t), W;) = ho(r) exp{v1Gender; + am;(t)}.

A shared subject-specific random intercept and a random slope (referred to the
visit occasion ¢;) are included. The random effects are modeled through a mixture of
Gaussian bases, weighted by transformed P-spline coefficients. For what concerns
the spline settings, we fix J = L = 5 over the square [—4,4] x [—4,4], while the
penalty terms are set to A; = 3 and A, = 4, as suggested by the AIC computation
(see the previous Section).

Table 1 shows parameter estimates for the longitudinal and the survival sub-
models, comparing a MAR model, a GLMJM and the proposed smooth version.

Longitudinal
MAR GLMJM GLMJM smooth
Intercept| -0.600* -0.593* -0.566 *
(0.1304) (0.0041) (0.0384)

4 -0.001 -0.001% -0.002%
(0.0006) (0.0001)  (0.0002)
MDCM | -0.320% -0.316* 0.271%

(0.0777) (0.0013)  (0.0788)
Age 0.016% 0.015% 0.004 *
(0.0027) (0.0011)  (0.0002)

& -0.196* -1.544*
(0.0012) (0.0003)
Survival

Gender | 0.512%  0.496* 0.799%
(0.1724) (0.0001)  (0.0003)

log-lik |—730.5 -338.024 -211.005

Table 1 MDCM data: longitudinal and survival parameter estimates for the MAR, GLMJM and
smooth random effect joint model (standard errors in brackets). The asterisks stand for significant
coefficients.

Parameter estimates are comparable across model specifications. However, the
smooth GLMIM results in a higher log-likelihood.
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5 Discussion

In this paper, we have focused on mixed joint models for discrete outcomes by con-
sidering non Gaussian random effects. In particular, we have assumed that the latent
effects follow a flexible smooth density, defined as a mixture of Gaussian densities
based on P-splines, starting from the parametric approach of GLMJM by Viviani
et al. (2013). Gaussianity of the random effects is a standard assumption for joint
models that may be inappropriate to describe individual-specific sources of hetero-
geneity, and, at the same time, the dependence between the longitudinal and the
survival processes.

An additional change to the GLMJM has been introduced: the longitudinal and the
survival processes have been assumed to share the model response linear predictor,
rather than the expected value of a generalized linear mixed model, to avoid com-
putational issues due to the exponential scale of the expected value.

The application to the MDCM data set suggests that the smooth GLMJIM presents a
more refined prediction, when compared to the MAR and the standard GLMJM.
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