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Abstract With the advent of the targeted therapy era in oncology, prognostic and
predictive gene signatures are becoming increasingly important in clinical research
and even in clinical practice. We investigate an approach to develop a gene signa-
ture as treatment modifier in a phase III clinical trial. We propose to apply first a
permutation procedure in a survival model that controls the family-wise error rate at
a pre-specified level. Only if the global test is significant, a classifier can be devel-
oped for predicting the treatment effects for future patients. We present the results
of a simulation study with 100 candidate biomarkers in a relatively small clinical
trial and compare different permutation tests to control the type I error.
Sommario Con l’avvento delle terapie mirate in oncologia, i profili genici pro-
gnostici e predittivi stanno diventando sempre più importanti sia nella ricerca che
addirittura nella pratica clinica. Presentiamo un approccio per sviluppare profili
genetici che modificano l’effetto del trattamento. Proponiamo qui di applicare per
prima cosa una procedura di permutazione in un modello di durata che controlli il
tasso di errore globale ad un livello fissato. Solo se il test globale é significativo, si
può sviluppare un classificatore per predirre gli effetti del trattamento per i pazienti
futuri. Presentiamo uno studio di simulazione con 100 marcatori candidati in uno
studio clinico relativamente piccolo e compariamo diversi test di permutazione per
controllare l’errore di tipo I.
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1 Introduction

With the advent of the targeted therapy era, molecular signatures have an increasing
role in anticipating the prognosis of patients (prognostic biomarkers) or predicting
how they respond to specific treatments (predictive biomarkers or effect modifiers)
[11, 2]. After the assessment of the analytical and the clinical validity of a gene sig-
nature in several independent patient cohorts, one must consider to design a clinical
trial to establish its clinical utility [4, 13], which can be defined as

evidence of improved measurable clinical outcomes, and its usefulness and added value to
patient management decision-making compared with current management without genetic
testing

accordingly to the Evaluation of Genomic Applications in Practice and Prevention
Initiative [13]. Gene signatures must be tested within a clinical trial to evaluate their
utility as prognostic factors or their predictiveness as treatment modifiers, i. e. their
ability to discriminate patients who will benefit from the treatment from the others.

More and more frequently, in phase III randomized clinical trials several biomark-
ers are tested as candidate predictors of the treatment effect. Of note, as a gene signa-
ture is not known beforehand, these tests are in the context of exploratory analyses,
unless the study has been designed in a 2-stage adaptive way [3]. Recently, Michiels
et al. proposed a permutation approach for global interaction tests (GITs) to control
the type I error when there is correlation among the biomarkers [7]; we review these
methods in Section 2. With next-generation sequencing techniques provide panels
of at least 100 cancer genes in retrospective analyses of clinical trials are available.
In Section 3, we extend the previously proposed permutation approach to a higher
dimensional setting by exploring the added value of a ridge regression and a vari-
able selection using Akaike’s Information Criterion (AIC [1]). In the present study
we consider only DNA sequencing of mutations (e. g. exome sequencing), so we
restrict ourselves to the case of binary biomarkers.

2 Global interaction tests for gene signatures as treatment
modifiers

In all-comers clinical trials, many candidate biomarkers (k) are often tested as possi-
ble treatment-effect modifiers. Rothwell et al. [10] put forward that the only reliable
statistical approach for assessing the predictiveness of biomarkers is to test for in-
teraction between a subgroup and the treatment effect acknowledging the need for
pre-specification of subgroups. We assume a time-to-event outcome and that the
test for interaction is for a multiplicative effect on a relative scale. In order to con-
trol the family-wise type I error, accounting for dependence structures, Michiels et
al. [7] proposed five different permutation tests, using single-biomarker statistics
and composite statistics based on treatment-by-biomarker interactions in a Weibull
accelerated failure time (AFT) model [8, 5]. We consider here three of these tests:
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Max-Single Wald (MSW), Sum-Single Wald (SSW), and Composite Difference
(CD). The first two tests (MSW, SSW) are based on k biomarker-specific models,
each containing three factors: the treatment, the biomarker, and their interaction. The
Wald statistics for the interactions in the biomarker-specific models are computed
and their maximum (MSW) or their sum (SSW) across the biomarker-specific mod-
els is taken. On the other hand, the idea behind the CD test is to define a scaled linear
combination of all the k biomarkers — the composite biomarker score — combin-
ing the individual interaction signals. It is based on the parameters of the interaction
effects of a full model with 2k+1 factors: the treatment, the k biomarkers, and the
k interactions. The CD statistic is the absolute difference in two concordance prob-
abilities, the concordance probability that a randomly chosen control patient will
outlive a treated patient for positive biomarker minus the same concordance proba-
bility for negatvie biomarker score. Permutations rearrange the patients only within
each treatment group. For the permutation tests to be valid the data does not need to
follow a Weibull distribution.

Michiels et al. [7] showed that the three tests provided an appropriate control
of the global type I error under the null scenarios, but the CD test was slightly too
conservative when there was just one prognostic biomarker. Under the alternative
scenarios, the MSW test was optimal, followed by the SSW, when there was one
truly treatment-modifying biomarker. The SSW or CD statistics were optimal when
there were two or three independent treatment-modifying biomarkers.

Based on the permutation GITs, a 2-step strategy for developing a signature from
many candidate treatment-effect modifying biomarkers in a phase III trial can be
devised. First, a GIT (either MSW, SSW, or CD) is performed to control the type I
error at a pre-specified level. Only if the GIT is significant, a gene signature can be
developed in a second step; to this end, AFT models can be used and a resampling
procedure such as cross-validation could be employed to estimate treatment effects
in biomarker-defined patient subsets [6]. The application of the AFT model to the
full development data provides a classifier for future patients [12].

3 Extension of the global interaction tests to a higher
dimensional setting

With next-generation sequencing techniques, the number of candidate biomarkers
is usually very high, dangerously close or even greater than the number of events
typically observed in clinical trials. The high number of interactions to test can com-
promise the performances of the GITs or even make them infeasible, notably those
based on full models (CD). In such scenarios, reduction of the dimensionality of the
problem is needed. We considered two solutions: penalization and preselection.

A huge literature exists on penalized regression for time-to-event data; the sim-
plest solutions consist in models with L2 (ridge) [15] or L1 (least absolute shrinkage
and selection operator, LASSO) [14] penalties, but more complex extensions are
available [16, 17]. Since our primary interest was the control of global type I error
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and not the variable selection per se, we explored the added value of ridge regres-
sion when fitting a Weibull AFT model with 2k+1 variables before calculating the
CD test (denoted as L2+CD). The L2 penalties were chosen by minimum AIC over
a grid of plausible values.

The other way that we considered for simplifying the problem was computing the
GITs after a preselection of the most relevant biomarkers. We adopted a stepwise
model selection based on the minimum AIC, starting from the model containing
only the treatment effect. The effects of the biomarker and of their interactions with
the treatment were added or dropped iteratively, under three constraints: the treat-
ment effect could not be removed; each biomarker effect could be removed provided
that its interaction with the treatment was not in; the interaction of a biomarker with
the treatment could be added provided that its main effect was in. In the final chosen
model, we calculated the GITs using the parameter estimates of the retained interac-
tion effects and their estimated variances (AIC+SSW, AIC+MSW, and AIC+CD).

Table 1 Description of the 5 treatment by true biomarker scenarios used in simulation study. B-:
active Biomarker-negative; B+: active Biomarker-positive; ρρρ === 111: Exponential times; ρρρ === 111...222555:
Weibull times.

Median survival time Average censoring
(years) probability

Scenario Control Treatment Control Treatment

B- B+ B- B+ ρρ ρ
== =

11 1

ρρ ρ
== =

11 1.. .
22 255 5

ρρ ρ
== =

11 1

ρρ ρ
== =

11 1.. .
22 255 5

(1) Complete null 1.0 1.0 1.0 1.0 0.10 0.06 0.11 0.06
(2) One prognostic active
marker, strong effect size

0.6 1.2 0.9 1.8 0.09 0.05 0.18 0.13

(3) One treatment-modifying
active biomarker, strong effect
size

0.8 0.8 0.8 1.6 0.06 0.03 0.15 0.10

(4) Five treatment-modifying
active biomarkers, medium ef-
fect size

0.8 0.8 0.8 1.2 0.06 0.03 0.35 0.32

(5) Five treatment-modifying
active biomarkers, medium ef-
fect size, correlation = 0.5 by
10

0.8 0.8 0.8 1.2 0.06 0.03 0.35 0.32

We performed a simulation study to investigate, in the presence of 100 candidate
biomarkers, the performance of the GITs and the impact of penalization or prese-
lection. We considered a metastatic setting with median survival time (mst) of about
one year. We first present the case of n = 300 patients, 150 per treatment arm, then
we double the sample size to n = 600 patients, 300 per arm. We generated survival
times via exponential (ρ = 1) and then with Weibull (ρ = 1.25, i. e. increasing risk)
random variables. Assuming 3-year uniform accrual and 2-year follow-up, we gen-
erated independent censoring as uniform times between 2 and 5 years.
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We simulated 100 binary biomarkers with prevalence of 1/2 by truncation of
normal multivariate random variables. Biomarkers were independent of each other
in all but one scenario, in which correlation of the underlying normal random vari-
ables was specified for 10-biomarker blocks. Table 1 describes the five scenarios. In
the complete null scenario, neither the treatment nor the biomarkers had any effect.
In the second null scenario, 99 biomarkers had no effect as in the complete null sce-
nario, whereas one strong prognostic biomarker doubled the mst and the treatment
increased by 50% the mst; none of the biomarkers interacted with the treatment.
In the alternative scenario 3 there was one activating biomarker, i.e. the treatment
had no effect except for patients with one specific biomarker positive, whose mst
was doubled. The fourth scenario was similar to the third, but with five activating
biomarkers, the benefit of each being smaller (+50% of mst). The last scenario was
as the fourth, with the addition of correlation (0.5 for the underlying normal vari-
ables) within random blocks of 10 biomarkers. The censoring proportions (last four
columns of Table 1) ranged between 3 and 35%.

We evaluated the GITs in terms of their empirical rejection probabilities and
p-values. We simulated 250 trials per scenario and we computed the GITs in 500
independent permutations within each treatment arm, without moving any patient
from an arm to the other. We estimated the p-values as the proportion of permuta-
tions for which the test statistic was greater than for the data prior to permutation.
Strictly speaking, this approach tests the broader hypothesis of neither main nor in-
teraction effects, but it is particularly sensitive to the presence of interaction effects;
indeed, permutation tests are not able to test for interaction only [9].

We provide the power estimates at a significance level α = 0.05, that is the pro-
portion of the 250 datasets for which the null hypothesis is rejected at a 5% level
(Tab. 2-3 for ρ = 1 and ρ = 1.25, respectively; Fig. 1). Of note, if the rejection
probability of a test is actually 0.05, then the exact 95% confidence interval for
its empirical rejection probability over 250 repetitions is (0.024, 0.080). However,
permutation tests can have biased power estimates [9]. Hence, we computed unbi-
ased estimates of the mean p-values as the average of the p-values across the 250
replications (Tab 4-5; Fig. 2).

Under the complete null scenario 1, the empirical power of all the GITs was
almost always within the exact 95% confidence interval computed for an actual
rejection probability of 0.05; the mean p-values were all close to 0.50.

In the presence of one prognostic biomarker (null scenario 2) the CD test was
more conservative, notably with n = 600, with rejection probabilites less than
0.02 and mean p-values between 0.60 and 0.70; neither penalization nor preselec-
tion (L2+CD or AIC+CD) could alleviate this issue appreciably. The SSW and
AIC+MSW tests also had empirical rejection probabilities significantly different
from 0.05 with n = 600 and ρ = 1, but their mean p-values were reassuring.

In the three alternative scenarios, the power of the GITs was generally quite low
with n = 300 and ρ = 1 (3 to 40%); the mean p-values were greater or equal to
0.17 and reached or exceeded 0.50 sometimes. When the sample size was higher
(n = 600) or the risk increased along time (ρ = 1.25), the power of all the GITs
was sensibly higher, up to 0.93, with mean p-values ranging from 0.02 to 0.52. In
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Table 2 Results of the simulation study with n=300 and n=600, and ρ = 1. Rejection probabilities
for the 5 scenarios. SSW: Sum Single Wald statistic; MSW: Maximum Single Wald statistic, CD:
Composite Difference statistic, L2+CD: Composite Difference statistic in an L2-penalised model
(ridge), AIC+SSW: Sum Single Wald statistic after AIC selection, AIC+MSW: Maximum Single
Wald statistic after AIC selection, AIC+CD: Composite Difference statistic after AIC selection

ρ = 1 Test

Rejection probabilities L2 AIC AIC AIC
+ + + +

SSW MSW CD CD SSW MSW CD

S
ce

na
ri

o

1 n=300 0.06 0.03 0.05 0.06 0.06 0.05 0.04
n=600 0.05 0.05 0.07 0.07 0.04 0.03 0.07

2 n=300 0.05 0.05 0.01 0.00 0.03 0.05 0.01
n=600 0.02 0.05 0.01 0.01 0.04 0.02 0.02

3 n=300 0.12 0.30 0.07 0.05 0.09 0.23 0.23
n=600 0.28 0.69 0.14 0.28 0.38 0.75 0.69

4 n=300 0.16 0.14 0.09 0.03 0.14 0.16 0.13
n=600 0.44 0.42 0.18 0.29 0.50 0.47 0.36

5 n=300 0.40 0.31 0.07 0.17 0.11 0.16 0.24
n=600 0.80 0.70 0.25 0.57 0.48 0.48 0.51

Table 3 Results of the simulation study with n=300 and n=600, and ρ = 1.25. Rejection probabil-
ities for the 5 scenarios. SSW: Sum Single Wald statistic; MSW: Maximum Single Wald statistic,
CD: Composite Difference statistic, L2+CD: Composite Difference statistic in an L2-penalised
model (ridge), AIC+SSW: Sum Single Wald statistic after AIC selection, AIC+MSW: Maximum
Single Wald statistic after AIC selection, AIC+CD: Composite Difference statistic after AIC se-
lection

ρ = 1.25 Test

Rejection probabilities L2 AIC AIC AIC
+ + + +

SSW MSW CD CD SSW MSW CD

S
ce

na
ri

o

1 n=300 0.05 0.04 0.07 0.04 0.08 0.07 0.04
n=600 0.06 0.05 0.09 0.07 0.02 0.04 0.06

2 n=300 0.06 0.04 0.00 0.00 0.06 0.04 0.02
n=600 0.06 0.03 0.00 0.00 0.04 0.04 0.03

3 n=300 0.26 0.60 0.10 0.07 0.12 0.42 0.41
n=600 0.48 0.93 0.23 0.39 0.68 0.94 0.84

4 n=300 0.30 0.31 0.09 0.10 0.19 0.22 0.26
n=600 0.64 0.62 0.39 0.49 0.78 0.74 0.68

5 n=300 0.61 0.50 0.12 0.20 0.18 0.22 0.34
n=600 0.90 0.84 0.48 0.76 0.74 0.72 0.74

mailto:federico.rotolo@gustaveroussy.fr
mailto:stafan.michiels@gustaveroussy.fr


Global interaction tests for predictive gene signatures. 7

Table 4 Results of the simulation study with n=300 and n=600, and ρ = 1. Unbiased estimate of
mean p-value for the 5 scenarios. SSW: Sum Single Wald statistic; MSW: Maximum Single Wald
statistic, CD: Composite Difference statistic, L2+CD: Composite Difference statistic in an L2-
penalised model (ridge), AIC+SSW: Sum Single Wald statistic after AIC selection, AIC+MSW:
Maximum Single Wald statistic after AIC selection, AIC+CD: Composite Difference statistic after
AIC selection

ρ = 1 Test

Mean p-values L2 AIC AIC AIC
+ + + +

SSW MSW CD CD SSW MSW CD

S
ce

na
ri

o

1 n=300 0.50 0.49 0.49 0.47 0.51 0.52 0.48
n=600 0.48 0.53 0.48 0.50 0.51 0.52 0.48

2 n=300 0.51 0.53 0.66 0.64 0.53 0.54 0.63
n=600 0.52 0.54 0.70 0.70 0.55 0.56 0.64

3 n=300 0.39 0.28 0.50 0.50 0.37 0.31 0.32
n=600 0.22 0.10 0.35 0.24 0.15 0.07 0.08

4 n=300 0.32 0.36 0.49 0.52 0.35 0.36 0.36
n=600 0.15 0.18 0.29 0.22 0.13 0.15 0.17

5 n=300 0.17 0.24 0.45 0.38 0.33 0.31 0.27
n=600 0.05 0.06 0.25 0.13 0.11 0.12 0.11

Table 5 Results of the simulation study with n=300 and n=600, and ρ = 1.25. Unbiased estimate of
mean p-value for the 5 scenarios. SSW: Sum Single Wald statistic; MSW: Maximum Single Wald
statistic, CD: Composite Difference statistic, L2+CD: Composite Difference statistic in an L2-
penalised model (ridge), AIC+SSW: Sum Single Wald statistic after AIC selection, AIC+MSW:
Maximum Single Wald statistic after AIC selection, AIC+CD: Composite Difference statistic after
AIC selection

ρ = 1.25 Test

Mean p-values L2 AIC AIC AIC
+ + + +

SSW MSW CD CD SSW MSW CD

S
ce

na
ri

o

1 n=300 0.52 0.52 0.51 0.51 0.48 0.49 0.49
n=600 0.48 0.52 0.48 0.49 0.50 0.51 0.51

2 n=300 0.48 0.51 0.68 0.71 0.57 0.57 0.68
n=600 0.48 0.47 0.78 0.74 0.54 0.53 0.62

3 n=300 0.27 0.15 0.46 0.52 0.31 0.21 0.20
n=600 0.13 0.02 0.31 0.19 0.06 0.02 0.03

4 n=300 0.21 0.25 0.38 0.49 0.28 0.26 0.23
n=600 0.08 0.09 0.17 0.12 0.05 0.06 0.07

5 n=300 0.10 0.15 0.42 0.39 0.24 0.23 0.17
n=600 0.02 0.03 0.16 0.06 0.05 0.06 0.06
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the presence of only one strongly predictive biomarker (scenario 3), the MSW and
the AIC+MSW tests preformed the best, but also the AIC+CD test had competi-
tive power. The SSW and MSW tests were the best in the case of five predictive
biomarkers (scenario 4), together with their preselection counterparts AIC+SSW
and AIC+MSW; these latter were appreciably better with large datasets (n = 600).
The CD test had generally poor power in alternative scenarios as compared to the
other tests, with mean p-values that were often the highest. Even though penaliza-
tion seemed able to improve its performances for the larger sample size, minimum
AIC stepwise preselection increased substantially its power.

AIC preselection was able to improve the power of the SSW and MSW tests pro-
vided that enough data was at hand (n = 600). This result suggests that in the case of
few observations and many candidate biomarkers (n = 300), stepwise selection does
not select the right biomarkers, yielding to possibly wrong conclusions. Neverthe-
less, results in the last scenario (5) suggest that a strong correlation pattern between
active and inactive biomarkers can compromise the correctness of preselection.

Globally, in the alternative scenarios doubling the sample size (n = 600) made
the mean p-values of all the tests about 2.6-fold smaller and their power was on
average 3.4 times higher than for n = 300.

4 Conclusion

Clinical trials are more and more often designed for testing gene signatures as treat-
ment effect modifiers. A safe gatekeeping approach consists in two steps: first, a
GIT is run to control the overall type I error at a prespecified level; only if the GIT
is significant, the selection of the most plausible effect modifyiers is undertaken. If
many biomarkers are expected to be truly associated with differential treatment effi-
cacy, the SSW or MSW tests may be the preferable choice. In the present paper we
studied the tests with a high number of bimarkers (100) and we explored the added
value of ridge penalization and of preliminary AIC variable selection. We showed
that AIC preselection can improve the performance of these GITs, while ridge penal-
ization did not show any advantage, globally. Present research focuses on improving
the power of GITs, on extending them to the case of continuous biomarkers, as in
RNA sequencing (gene expression), and to develop approaches that combine the
inference step and the variable selection step.
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