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Abstract The idea underlying modal clustering is to associate groups with the re-
gions around the modes of the probability density function underlying the data. This
correspondence between clusters and dense regions in the sample space is here ex-
ploited to discuss a possible extension of modal clustering to the analysis of social
networks. Such extension, albeit non trivial, seems particularly appealing: concep-
tually, the notion of high-density cluster fits well the one of cluster in a network,
where groups are usually regarded as collections of individuals with dense local
ties in their neighborhood. Additionally, modal clustering often resorts to graph the-
ory for the operational detection of clusters, which is another condition that seems
particularly appropriate to deal with relational data.
Abstract I metodi di raggruppamento basati sul riconoscimento delle mode as-
sociano i gruppi con le regioni dello spazio campionario attorno alle mode della
funzione di densità sottostante i dati. In questo lavoro si discute una possibile esten-
sione di tali metodi all’analisi delle reti sociali. Benché non immediata, tale esten-
sione appare promettente: concettualmente, la nozione di cluster quale regione ad
alta densità si adatta naturalmente alle reti sociali, dove i gruppi sono tipicamente
definiti come sottoinsiemi di individui fortemente interconnessi. Un altro aspetto che
rende i metodi di clustering basati sulle mode particolarmente adatti ad essere ap-
plicati alle reti sociali è che, per la concreta individuazione dei gruppi, viene fatto
ampio uso di strumenti presi in prestito dalla teoria dei grafi.
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1 Introduction

It is often of interest, in the analysis of social networks, to detect the possible ex-
istence of clusters of actors in particular regions of a network. Depending on the
nature of relationships in the network, this tendency of individuals to interact may
be driven by a natural attraction among similar subjects, namely homophily, or be-
cause of other mechanisms, such as popularity, ranking or social influence. All these
attachment mechanisms are often undisclosed to the researcher, in particular when
additional information is unavailable or when he has to deal with large complex net-
work structures (i.e., million of nodes, non-trivial tie formation processes and high
overall density). A common approach to reveal – at least in an exploratory way –
this tendency to interact is to detect clusters of nodes.

Intuitively, the concept of a cluster in networks is typically associated with a
locally dense set of nodes (see, among others, [6]). Similarly to the problem of
clustering non-relational data, the lack of a precise definition of cluster in social
networks has lead to the proliferation of methods for their partitioning. Among
these, some are explicitly designed to handle network data: spectral clustering [3],
for instance, hinges on graph theory results and measures network connectivity
via eigen-analysis. Blockmodeling [4] is another approach to network clustering,
mainly based on finding a suitable permutation of a network matrix so that adjacent
subjects can be regarded as equivalent, somehow, according to their social role in
the network. Recently, a huge variety of network-based clustering techniques have
been developed under the heading community detection, especially in the physics
community, based on node centrality measures, flow models, random walks, resistor
networks, optimization (see, for instance, [7]). Further clustering methods for social
networks are natural adjustments of methods designed for non-relational data. Pop-
ular methods as complete or single-linkage clustering, for instance, have found an
obvious counterpart in the analysis of social network by simply replacing the con-
cept of distance with that of geodesic distance.

The current work follows the latter route and discusses the extension of the so
called modal approach for clustering non-relational data to the network framework.
The idea underlying modal clustering is to associate clusters with the regions around
the modes of the density underlying the observed data, namely clusters correspond
to dense regions in the space. This idea of high-density cluster fits well the one of
network cluster conceptually. Additionally, modal clustering often resorts to graph
theory for the operational detection of clusters.

After a brief review of modal clustering, in the following sections we discuss the
extension of such approach to network data and illustrate it on a real data network.

2 Modal clustering

Modal clustering, in principle, delineates a class of methods for grouping non-
relational data defined on a continuos, topological space. It builds on the concept
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of clusters as “regions of high density separated from other such regions by regions
of low density” [5, p. 205]. Formally, the observed data are supposed to be a sample
from a multidimensional random variable with unknown probability density func-
tion f , and clusters are associated with the maximum connected regions around the
modes of f . Any section of the density, at a level k, identifies a level set, namely the
region with density above k. When f is unimodal, there is no clustering structure,
and the level set is connected for any choice of k. Conversely, when f is multimodal,
the identified level set may be connected or not, depending on k. If disconnected,
the level set is formed by two or more connected components, corresponding to the
regions around the modes of f which are formed by the section at the k level.

Clustering is performed by varying the level which identifies the contour sets
and thus giving rise to a hierarchical structure, called cluster tree, where each leaf
corresponds to a mode of the density function. Figure 1 illustrates these notions for
a simple bivariate example.

Operationally, clustering involves two main choices: first, a density estimator is
required and this is typically selected among the nonparametric methods. Second,
for each threshold k it is to establish if a the associated level set is connected. Since
there is no obvious method to identify connected sets in a multidimensional space,
graph theory may come to this aid. Thus, a suitable graph is built on the sample
points and the connected components of the subgraphs induced by the selected level
sets are then easily detected. A key matter becomes to suitably set the edges of this
graph. In [1], for instance, a Delaunay triangulation is adopted; in [8], the minimum
spanning tree associated to the nearest neighbor estimate of the density underlying
the data is built.

Some of the main strengths of the modal approach to clustering already arise
from this short summary. On one hand, there exists a precise notion of clusters,
corresponding to a specific characteristic of the probability distribution underlying
data; this entails that the problem of clustering, typically regareded as ill-posed just
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Fig. 1 A sample simulated from three subpopulations and the associated contour set at a level k
(left plot). The threshold k defines a section of the trimodal density function (central plot) and
identifies two connected regions. On the right, the cluster tree indicates the number of connected
components for each k as well as the total number of clusters, corresponding to the leaves.
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because of the lack of a formal definition, is somehow circumscribed; it also follows
that the number of clusters is an intrinsic property of the clustering structure and its
determination is itself an integral part of the estimation procedure. Additionally, this
cluster notion is not specifically binded to a particular shape and is then, in principle,
close to a “natural grouping of data. The use of flexible distributions or, even, of a
nonparametric estimator to model the data, allows to maintain this flexibility.

2.1 Extending modal clustering to network data

Cluster definition as high-density regions suggests a natural counterpart in social
network analysis, where clusters are often referred to as sets of actors with dense
relationship patterns. Clearly, one has to take into account the inherent limitation of
network data, which are not defined in a continuous, topological space as required
by modal clustering and whose properties can be established in geodesic terms only.
In particular, we have to give up a probabilistic notion of density, and intend it in a
less formal way, reflecting some intuitive meaning of cohesiveness.

In the current analysis, we regard to social networks as an undirected graph G =
{V,E} consisting of a set VG = {v1, . . . ,vn} of nodes (the actors of the network) and
a set EG of edges, representing relations between pairs of nodes. In the light of this,
we migh be tempted to borrow from graph theory the concept of density and akin
notions. Density of a subgraph H ⊆ G is defined as the proportion of all possible
edges of H which are actually present. In fact, the idea of measuring locally dense
nodes by means of network (or subnetwork) density can be misleading. On one
hand, this measure is not discriminant enough for clustering purposes, i.e. density
can be equal in rather different node configurations. On the other hand, density
definition as node-wise measure is arbitrary as it cannot be defined in a unique
manner on the individual nodes. For instance, one could set H = H (v) as the
subgraph formed by the nearest neighbors of v or focus on the single node v and
reducing to the notion of degree (i.e., the number of relations incident with v).

An alternative set of candidates to quantify local density would be represented
by measures of connectivity or measures of centrality, which evaluate, somehow,
the position as well as the prominence of each node in a network.

It is worthwhile to observe that the choice of a density measure is not inconse-
quential in terms of cluster interpretation and different choices might entail a dif-
ferent concept of cluster. For instance, the concept of node degree and, especially,
the one of eigenvector centrality – the latter used also in some community detection
algorithm [7] – account for the rate of activity and, respectively, the popularity.

Given the network G = {V,E}, once that a measure of density δ : V 7→ R+∪{0}
is selected, clustering of the actors is performed by following any standard method
of modal clustering, with the further benefit that the connected components associ-
ated to the high-density level sets may be identified as the connected components of
the induced subgraphs. The following scheme, for instance, is a suitable adaptation
of [1]:
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1. Compute the density of the relationships of each actor: δ (v1), . . . ,δ (vi), . . . ,δ (vn).
Clusters will be formed around the modal actors, namely actors with the densest
relationship patterns.

2. For 0 < k < maxi δ (vi) :

• Determine the level set Vk = {vi ∈ V : δ (vi) ≥ k}, and define Gk ⊂ G as the
subgraph induced by Vk. Subgraph Gk is formed by removing from G all the
nodes not in Vk and and all edges with at least one node among them.

• Find the connected components of Gk, namely the union of connected pairs
that share at least one node (many standard algorithms are available).

3. Build the cluster tree. The cluster tree is a hierarchical structure that associates
each level k to the number of connected components of Gk. The total number of
leaves corresponds to the number of clusters.

The described way of proceeding gives usually rise to a number of initial clusters,
while actors with low-density relationship patterns that do not univocally pertain to
a mode are left unallocated. Depending on the aim of clustering and on subjects-
matter considerations, part, or, all of these actors may be either left unallocated or be
assigned to the initial cluster for which the ratio between the two highest densities,
conditional to the group, is maximum.

3 Numerical illustration and discussion

In this section, we show an illustration of the proposed technique on the well-known
Zachary Karate Club data [9], describing the network of friendships between 34
members of a karate club at a US university in the 1970. We neglect information
about the strength of the interactions between actors, which would give rise to a
weighted network, and consider the adjacency matrix only. A useful feature of this
data set is that, during the period of observation, the club split into two factions,
due to a dispute between the administrator and the head teacher. Thus, a true cluster
membership of the actors is known and can be used as a benchmark to evaluate
clustering methods. Figure 2 shows the Zachary Karate Club network and highlights
the two factions.

The clustering method described above has been applied on the data by selecting
the degree as a measure of local density of the actors. For comparison, two further
methods for clustering networks have been applied, namely one approach based on
community detection [7] and a k−cores algorithm [2]. Results are dispalyed on the
right side of Figure 2. Performance of the two considered alternative methods is
quite unsatisfactory. In both cases four clusters are identified instead of the two.
Additionally, cluster composition is homogeneus with the true partition only for the
community detection approach. Conversely, modal clustering can identify the true
factions well and this result holds also for different measures of local density (not
reported for brevity).
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Modal clustering K-cores
1 2

faction 1 1 15
faction 2 18 0

2 4 6 8
faction 1 1 4 5 6
faction 2 0 7 7 4

Community detection
1 2 3 4

faction 1 7 0 9 0
faction 2 0 12 0 6

Fig. 2 Zachary Karate Club data: network with the two factions highlighted with different col-
ors (left); number of actors cross-classified by true partitions and partitions obtained by modal
clustering and some alternatives (right).

To conclude, the application of modal clustering to social networks is appealing
both conceptually, as the notion of high-density cluster fits well the one of cluster
in a network, and operationally, because modal clustering often resorts to graph
theory tools. An inherent limitation of network data is that they are not defined in a
continuous space as required by modal clustering. Thus, a formal notion of density
has to be relaxed and intended, for instance, in terms of strenght of relationships
between actors. A first exploration of these ideas has shown promising results. A
deeper insight is certainly needed, in order to compare different local measures of
density as well as taking into account directional networks and the possible presence
of covariates for each actor.
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