Kalman Filter for Estimating Bivariate GMRFs
on Regular Lattice

Il Filtro di Kalman per la Stima di Modelli Spaziali
Condizionali Bivariati su Lattice Regolare

Luigi Ippoliti, Richard Martin and Luca Romagnoli

Abstract Bivariate conditional autoregressive CAR models are wideskd classes
of multivariate spatial models. In this paper, we consideirtmaximum likelihood
estimation which, under general boundary conditions, aampioblematic. As in
time series analysis, it will be shown that the Kalman filtesyides an alternative
and a computationally efficient solution for computing tikelihood.

Abstract | modelli autoregressivi condizionali costituiscono uasse di modelli
ampiamente usati nell’ambito dell'analisi di dati spaziasservati su reticolo rego-
lare. In questo lavoro, utilizzando una specificazione bata, si considera il prob-
lema della stima di massima verosimiglianza che, per céowiizli bordo generali,
risulta problematica dal punto di vista computazionalen@onell’analisi delle se-
rie temporali, anche in questo ambito, sfruttando la natricarsiva del modello,
dimostreremo che la verosimiglianza@essere calcolata in maniera efficiente me-
diante il filtro di Kalman.
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1 Introduction

Large amounts of essentially-continuous spatial data sseciated with the nodes
or interiors of a regular rectangular lattice. Exampledude pixellated images
which occur in many different applications, regularly-sded spatial data, and
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many agricultural field trials. Different types of models/adeen proposed for an-
alyzing such data. Here, we consider stationary Gaussiadittmnal autoregressive
(CAR) models, also known as Gauss-Markov random fields - GBIRWe assume
the GMRFs are defined on an infinite regular rectangulacitiind applied to data
on a complete finite lattice.

The paper is concerned with maximum likelihood - ML - paraenetstimation
of bivariate GMRFs. As discussed in Rue and Held (2005) thekMaproperty
of a GMRF makes it possible to employ numerical methods farspmatrices to
construct fast algorithms operating on the precision maS8pecifically, if we are
prepared to assume toroidal boundary conditions for aégtthen ML estimation
is relatively straightforward. However, for alternativeumdary conditions the im-
plementation can be problematic.

Most of the difficulties can be overcome by exploiting theedirconnection be-
tween the non-zero pattern of the precision matrix and thekMeproperties of the
GMREF. As discussed by Lavine (1999) and Moura and BalramZ)LB9 using the
recursive structure of the GMRF, and its associated sfaeesrepresentation, the
Kalman filter constitutes an alternative, quick, and an iefficmethod of param-
eter estimation. In this paper, we shall show that for sonrarpaterizations this
approach is especially useful for estimating bivariate GMR

The format of our paper is as follows. In section 2 we begin bgfly review-
ing the univariate GMRF model, its ML parameter estimatiod &s state-space
formulation. Section 3 introduces the bivariate GMRF. Imtioalar, we discuss a
specific parametrization for which the joint distributi@obtained as the product of
the conditional and marginal distributions assumed to beaniate GMRFs. Here,
when the eigenvalues of the precision matrix are not knoiw,shown that the use
of the Kalman filter offers a computationally efficient sadut for computing the
likelihood. Section 4 concludes the paper with a discusefaihe methodological
proposal.

2 Univariate Gauss-Markov random fields

Suppose that, v andz are two-dimensional vectors, and assume {hxét).t ZZ}

is a second-order stationary random field on the regulaangectar lattice, with
mean zero, autocovariance functiBa(v) = Cov{x(t),x(t +v)}, and autocorrela-
tion functionry (V) = R((V)/02, wherea? = Ry(0). Provided the sum is finite, the
autocovariance generating function - acgf xa$

K@= R(v)2', zeC?
uez?

wherey |Ry(V)| < 0 andz’ = 2;*Z?. Stationarity ensures that the acgf always exists
for |2 = 1, where|z| = /(Z2). The spectral density function - sdf - vfs defined
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here asfy(A) = I(€?) = T R(V)EYA = 3 Ry(V)cogVA), whereA e (—m, 1%
with its integral being 2m)?02. The inverse relationship is

R(V) = (211) 2 / & £ (A)dA.
Let

Az)=- Y ajz

jesy
be a finite symmetric Laurent series witly = —1 and satisfyingA(z) = A(z* 1),
i.e.aj=a_jforall j, whereS; is a finite subset aZ? containing neighbours of the
origin. Thust + S, is the set of neighbours of siteThe order of the neighbourhood
set is denoted by, and is defined sequentially by the maximum distance between
the origin and a point irs,. Hence, the first-ordem(= 1) neighbours of a site are
those 4 sites which are adjacent to it; and the second-osrighinours p = 2) are
these plus the 4 diagonally adjacent sites.

Let [x(t)[-] = [x(t)[x(t— j) : j € Z2\{0}] denotex(t) conditional on the values
at all other sites. Then, under normality, the conditionabsegression CARY) or
Gauss-Markov random field of order is defined by the conditional mean and the
constant conditional variance

EV@H={§fMG—D,VWV@H=VWMGH=§,
j€
whereaj = a_j forall j and

n(t) =x(t) —EX{)[]
is the interpolation error process. Then

AL)X(t)=n(t), teZz? (1)

whereL is a shift operator on an index, such thax(t) = x(t — j), andlx(2) =
12, i.e. the interpolation erraq (t) is uncorrelated with alk's exceptx(t). We call
A(2) reflection-symmetric if thexj are equal for all sign changes on the and
completely-symmetric if they are also equal for all perntiotss of j. Hence, we
referto a CARp) as reflection-symmetric, RS-CAR), or completely-symmetric,
CS-CARp), ifits A(2) is.

2.1 The likelihood function

Consider anN x M) lattice . with n = NM sites and lek(t), t € . c Z?, be
the process observed at sitgst;),i =1,...,N;j = 1,...,M. The observed vector

is thus written ax = [x{,xg,...,me,wherexi = [x(ti,tl),x(ti,tz),...,x(ti,tM)}T.
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Following equation (1), by using a lexicographic order fog sites and stacking the
observations in thén x 1) vectorx, a non-causal representation of the GMRF can
be written as

Ala)x=n, (2)

whereA(a) is then x n potential matrixwith entries equal to 1 along the principal
diagonal,—aj if the sitest andt — j are neighbours, and zero otherwise. From
equation (2) it readily follows that~ N(0,72A*(a)), n ~ N(0,72A(a)) and the
negative log-likelihood oKk is

1
212
The ML fit of the model can be found by maximizing the likelittbover the
valid parameter space to ensure the stationarity conditiongeneral, the parame-
ter space where thee can take values is defined by the positive definite conditfon o
the covariance matrix. Hence, in practice, optimizatiomtoa either over the covari-
ance matrixRy = t2A(a), or the precision matrixRy %, positive definite and the
constraint that all the eigenvalues are positive is eqeivab positive definiteness.

Animportant part of model specification and estimationn®fe the choice of the
boundary conditions. Except for the torus assumption ghelt for different bound-
ary conditions is non-stationary - variances are no longastant, and correlations
at a given lag depend on the sites involved. Also, althoughetlare computation-
ally fast algorithms for first-order and reflection-symniesecond-order GMRFs
with non-toroidal boundary conditions, computation is exgive. The use of the
band Cholesky decomposition 8! can be used to simplify the problem (see,
Rue and Held, 2005; sec 2.3-2.4). However, for very largeés the algorithm can
be computationally demanding.

1
L(a,12|x) = gmg(zmxz) +SIA@)] + XA

2.2 The recursive structure of a finite GMRF

By following Moura and Balram (1992), it is shown that the uesive formula-
tion intrinsic to a non-causal GMRF leads to a state-spgm@sentation which can
greatly facilitate the computation of the likelihood. Thépresentation is obtained
using a Riccati equation and is written as

Xi = FiXit1+Gig, 1<i<N-1
XN = GNEN, 3

whereG; andrl™; are parameter matrices obtained through the Cholesky dezom
sition of A(a), andE [gix;j] =0, for j <.
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It can be immediately recognized that equation (3) repitssetbackward” state-
space row model for a noise-free GMRF. Hence, as in time semalysis, the
Kalman filter (Hamilton, 1994; p. 372) can be used to evaluatersively the like-
lihood for parameter estimation. In fact, &t ; = E[)q|%+l} the least-squares
forecast of the state vectar conditional on the information observed up to row
i+1 and letZ;;,,; denote the corresponding mean squared error matrix. Then, t
conditional distributionx;| 2i 1, is Gaussian with mea;,; and covariance ma-
trix 2,4, thatis

f(xi| Zi+1) O Zijial2exp{ (% —?i\m)TZﬁH(Xi —Xijis1) ), i=1...,N. (4)

From (4) the sample log-likelihood is thus obtained as
N
L(a,Ti|x) = leogf(mlz%u),
i=

which can be maximized numerically with respect to the unkmparameters?
anda.

3 Bivariate GMRFs

In recent years, multivariate spatial models have beengmrag be an effective
tool for analyzing spatially related multidimensional @atrising from a common
underlying spatial process. Bivariate GMRF models have loeginly developed in
the fields of medicine and public health to study the regiqadlerns of multiple
diseases (see, for example, Kim et al. 2001). Applicatioitis @nvironmental data
are instead considered by Sain et al. (2011).

Suppose that, = (yT xT)T denotes a second-order stationary zero mean bivari-
ate GMRF of ordemp represented in variable order (i.e. alivalues for variable
and then for variabl®). Let

D= iz <| - %ax,jw<i>> , E=5 <| - Zpay,,-w<i>>
Tx i€ Ty i€

and

F=Bl- 5 a;w,
je
whereW ) is the incidence matrix for neighbours corresponding tontieelel pa-
rameter matrice) = R;! = Quy, E = Ry} = Qyy andF = R,R; 1 = —Q,,!Qyx.
Then, the covariance and the precision matrices of the glistitibution can be writ-
ten as



6 Luigi Ippoliti, Richard Martin and Luca Romagnoli

E —EF

R E-l-FDFT FD 1
u —FTED+FTEF|"

v — D-1ET D1 and RJV:L = qu =

and their determinants can be computefRas| = |D~1| [E~1| and|Qu,| = |Qyy| |Qxyl-

4 Simplifying the computational complexity

In general, under general boundary conditions and for &lprthe computation of
the determinant is expensive. However, if we consider tise aawhich one of the
two variables, say, is assumed to be a predictoryfthe joint distribution can be
written through the specification of simpler conditionatlanarginal forms, that is
f(u) = f(y|x)f(x). In fact, since the conditional distribution gfx is multivariate
normal with mearu,,, = Fxand nonsingular covariance matRy x = Q;yl, it turns
out that the negative log-likelihood can be writtenla@|u) = L(0]y.x) + L(0|x),
or equivalently,

1 1 .
L(B]u) = log(2m) — 5-10g(|Qu| [Qxyl) + 5 (X"Quyx+9"Qn¥)  (5)

where@ is the set of all model parameters ane y — Fx. Note that the likelihood
has been scaled byt for convenience.

Since the conditional and the marginal distributions appsaunivariate GM-
RFs, the log-likelihood in (5) can be computed for generatieiparameterizations
throughL(8|y.x) andL(0|x) which, in turn, can be evaluated by the Kalman filter
as in section 2. The performance of the Kalman filter estimatibbe assessed in a
complete experimental study in the extended version ofdtiisle.
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