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Abstract Multiple Frame Surveys are tools for dealing with imperfect sampling
frames, difficult to sample populations and other complex sampling situations. How-
ever they are challanging with respect to estimation of population parameters. Since
they have been introduced in the sixties, several estimators have appeared in the
literature, derived under different approaches. This lack of homogeneity as well as
their complex structure tricky to implement, with no easy formulae available for
variance estimation, can limits the use of a multiple frame design despite its practi-
cal appealing. In this paper a review is given at both the selection and the estimation
stage of a Multiple Frame Survey, with the purpose of unifying and simplifying the
main available methods.

Key words: Generalized Horvitz-Thompson estimation, Imperfect Sampling Frames,
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1 Introduction

A basic assumption in conventional survey sampling is the availability of an up-to-
date list recording all and only the individuals eligible for the survey, each identified
by a label and assigned a positive probability to be selected in the sample. This per-
fect list wholly covering the target population is used as a frame for sample selection.
Perfect frames are seldom the case in modern practice, under and over-coverage be-
ing usual examples of frame imperfection that can also occur jontly. Multiple frame
surveys are tools for dealing with imperfect frames by avoiding costly and error-
prone screenings aming to recover an utilizable sampling frame out of an imperfect
one.
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2 Multiple Frame Surveys

In a multiple frame survey a collection of two or more lists of units are used in
combination for sample selection. Lists may be singularly partial and overlapping
each other at an unknown extent. However their union, though possibly unknown,
is believed to offer an adequate coverage of the target population.

Multiple Frame (MF) surveys can be convenient even if a complete population
list did exist, a typical example being the availability of a total-coverage area-frame,
usually expensive to sample for requiring local visits, supported by one (or more)
available list-frame cheaper to sample. An efficient MF design combines the avail-
able frames, by under-sampling from the expensive complete area-frame and over-
sampling from the cheaper partial list-frame. Indeed, this was the motivational-
example when multiple frame surveys were first proposed: they can result in a con-
siderable reduction of survey costs versus a conventional unique-frame survey, by
achieving at least the same accuracy of the final estimates . In recent literature MF
surveys are often suggested for improving population coverage and response rate
beside controlling survey costs which may vary significantly among frames. More-
over, a multiple frame survey could offer greater precision and flexibility than a
conventional unique-frame survey. For instance in surveying complex phenomena
on complex populations, modular sampling frames can help to better capture differ-
ences and subgroups. as well as allowing for mixing different sampling designs and
different data collection modes. See [4] for a comprehensive account of sampling
designs for elusive, hidden and rare populations.

In contemporary applications the potential of using MF appears even more
promising. For instance in a web survey both the population coverage and the se-
lection bias might be controlled by using multiple web sites simultaneously for data
collection, each targeting different segments of the study population. MF have been
suggested for implementing multivariate stratified sampling design in multipurpose
surveys [19] and the use of MF estimators has been proposed for cross-population
comparisons in a big (official) data context [5].

On the other hand, MF estimation is challenging. It essentially means combining
data from two or more frames with unknown overlapping, i.e dealing with increased
inclusion probabilities in the final sample and with potential, un-identified data du-
plications, for units appearing in more than one frame. Since the seminal Hartley’s
papers in late sixties [3], several multiple frame estimators have appeared in the
literature, derived under different approaches to estimation (Section 4). This lack
of homogeneity can make it difficult for practical users to compare and select the
best suited method for the problem at hands. In addition, as a direct consequence
of the complexity of a multiple frame setup, available MF estimators have usually a
complex structure tricky to implement, with no easy formulae available for variance
estimation. This can limits the use of a MF design despite its practical appealing.
In this paper a review of MF is given with the purpose of unifying and simplify-
ing the main available methods, introducing a simplified notation (Section 2) and
discussing both selection (Section 3) and estimation stage (Section 5).
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2 A Simplified Multiple Frame Notation

Hartley’s pioneering papers dealt with the simple case of 2 frames, known as Dual
Frame surveys (DF henceforth) and introduced the popular notation which combines
capital letters A and B to denote overlapping frames and lowercase letters to denote
non-overlapping domains a,ab and b generated by the two frames, as shown in
the left panel of Figure 1. Several papers both improving Hartley’s estimators and
introducing new DF estimators followed, usually with a mere mention about the
possibility to generalize them to any number of frames (MF henceforth). The DF
notation indeed becomes quickly un-useful as the number of frames increases, as
for 3 frames shown in the right panel of Figure 1.

Fig. 1 Typical 2-frames (DF)
and 3-frames (MF) survey
setup
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Lohr and Rao first gave a MF notation in 2006 [9], allowing for showing esti-
mators formulae in a closed form and for applying linearization or resampling for
variance estimation. However, their notation might be complex to understand for
relying on index sets and block matrices, and for not being related with the famil-
iar DF notation. We reckon that an essential initial step for a simplified and unified
account to MF surveys would be a simplified indexed notation, naturally extending
the familiar alphabetical DF notation. This is depicted in Figure 2. First notice that
since frames are in fact subsets (possibly improper) of the target population U , i.e.
A
⋃

B = U , a natural indexed DF notation would denote frame A by subset U1 and
frame B by subset U2 so that

⋃Q
q=1 Uq =U with Q = 2. Next notice that each frame

is partitioned into a fixed number of domains (possibly empty): A = a(A)
⋃

ab(A)
and B = b(B)

⋃
ab(B) with ab(A)≡ ab(B). Thus a natural indexed DF notation for

domains would be U1 =U1(1)
⋃

U2(1) and U2 =U1(2)
⋃

U2(2).

Fig. 2 From the alphabetical
DF notation to an indexed MF
notations
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In the following we will refer to the general Q-frames case with Q ≥ 2. Let
U1 · · ·Uq · · ·UQ be the collection of frames available for the survey; each frame Uq
is partitioned into Dq ≤ 2Q−1 non empty domains Ud(q), where q = 1 · · ·Q and d =
1 · · ·Dq.

3 A Unified Theoretical Setup

In order to deal with imperfect frame, it is usually suggested to implement some
form of indirect selection. When a complete frame perfectly representing the tar-
get population is not available, a working selection list easier to acquire might be
used instead, based on a known linkage pattern between target and selection units.
Popular examples are Network sampling [17], also known as Multiplicity or Snow-
ball sampling as a link-tracing design for surveying rare or elusive populations, and
Indirect sampling [6] suggested for social and economic surveys lacking of a sam-
pling frame directly representing all the target population units. In Figure 3 a typical
example is depicted. In a survey on small children a complete list of the target popu-
lation is difficult to acquire; instead a list of households is available and can be used
as an indirect sampling frame. Since not all the householders listed are also parents
and parents may live in separate houses, selection units might be either linked to the
target units according to a one-to-one pattern, or to a many-to-one pattern or not be
linked at all.

Fig. 3 Example of linkage
rule between an indirect
selection list and a target
population for which a direct
list is unavailable

Target population:  

Small children 

Indirect Selection frame:   

Households list including parents 

☺ 

☺ ☺ 

☺ 

☺ 

☺ 

☺ ☺ 

☻ 
☻ 

☻ 

☻ 
☻ 

☻ 
☻ 

☺ 

☻ ☻ 

Linkage rule 

☺ 

☺ 

☺ 

☺ 

☺ 

☻ 
☻ 

☻ 
☻ 

☻ 

☻ 

Both indirect and multiple frame selection can be referred to a unique theoretical
layout. Figure 4 gives an illustration of the conventional (unique) perfect frame setup
versus the imperfect frame set up. When a perfect sampling frame is available, the
conventional label-linkage between population units and the observable study values
applies, i.e. there is a one-to-one linkage rule between the target population U and
the study variable y as given by labels k = 1 · · ·N.

When imperfect frames occur, the direct one-to-one linkage rule is missed due
to some sort of sampling device entering the picture for selection purposes. This
sampling device may be any available list of units indirectly related to the target
units, as in the indirect sampling example in Figure 3. When the sampling device is



Multiple Frame Surveys: a simplified and unified review 5

Population −→U = {1 · · · k · · ·N} U = {1 · · · k · · ·N}
l l l ↑ ↑ ↑

Study variable −→ y = {y1 · · ·yk · · ·yN} Sampling Device
↓ ↓ ↓

y = {y1 · · ·yk · · ·yN}

Fig. 4 Perfect frame setup versus imperfect frame setup

a collection of Q ≥ 2 sampling frame, possibly partial and overlapping each other,
we have a MF survey. The linkage pattern between the target population and the
sampling device may be complicated to a different extent, for instance one-to-many
or many-to-many as for the indirect sampling example in Figure 3. In a MF survey,
it is one-to-one within each frame and many-to-one between frames. The linkage
pattern consents the actual data collection and it is crucial at the estimation stage.
Whatever complex, however, it is completely described by a linkage matrix whose
entries define the linkage rule betweeen target units (included in U) and selection
units (included in the selection device). In a MF setup this is a N×Q matrix with
population units on the rows and frames on the columns, whose entries are (non-
random) Frame Membership Indicators 1k∈Uq , i.e. non-random observable variable
for every population k∈

⋃Q
q=1 Uq≡U and every frame Uq taking on value 1 if k∈Uq

and 0 otherwise (3)

(U1 · · · Uq . . . UQ)

Fig. 5 MF Linkage Matrix

1
...
k
...
N


1k∈Uq =

{
1 if k ∈Uq
0 otherwise



Relevant definitions can be derived from the linkage matrix, such as domains
(see for instance Figure 2) which are formed by the collection of units with equal
raws in the linkage matrix. Frame sizes Nq are given by the sum of each column.
The sum of each raw gives the number of frames every population units belong into
and is known as unit multiplicity mk = ∑

Q
q=11k∈Uq ∀k ∈

⋃Q
q=1 Uq ≡U

Multiplicity, first introduced in the contest of Network sampling [17], will be
largerly used in the following sections as the basic tool for a systematic treatment to
MF estimation, which we will refer to as multiplicity approach [14].
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4 MF Estimators: Toward a Simplified and Unified View

In a MF survey, data are generally collected by selecting independently a sample in
each of the frames used in the survey and MF estimation essentially means combin-
ing such data. Figure 6 gives a hystorical glance of the main MF estimators appeared
in the literature, derived under different theoretical approaches.

 

Fig. 6 Hystorical development of Multiple Frame estimators and estimation approaches

MF surveys have been first introduced by Hartley, essentially focused on DF
case (Q = 2) and simple random sampling (SRS) in each frames; he proposed a
unbiased linear combination of customary Horvitz-Thompson (HT) domain estima-
tors under an optimal approach, i.e. minimizing the estimator variance, successively
improved by Lund [10] and by Fuller and Burmeister [2] who intorduced an eu-
ristic maximum likelihood (ML) argument for SRS and a regression DF estimator
for general sampling designs. Optimal estimators depend on unknown population
variances and covariances that must be estimated from sample data. Beside being
computationally demanding, this also leads to an approximate optimality in prac-
tice that motivated sub-optimal approaches. In the eighties an approach inspired by
the stratified design, based on pulling together the Q frame samples into a unique
sample was introduced. Bankier [1] focused on the induced inclusion probabilities
system so that the usual HT estimator applies. His estimator has the advantage to
be easily generalized to any number of frames but requires extra information at the
estimation stage in order to identify and eliminate any duplication in the pulled sam-
ple. He also empirically showed that efficiency gains can be reached by performing
a Raking Ratio adjustment to the knonw frame sizes Nq, later analitycally studied by
Skinner [18]. Bankier named this approach single-frame, which might be confusing
in a MF setup as opposed to the conventional unique-frame setup. For this reasons
the term combined-frames has been proposed [16] as opposed to the separate frame
approach of the optimal estimators above. A second unbiased combined DF frame
estimator, not requiring de-duplication of the final sample but based on the inclu-
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sion probability from all frames, was introduced by Kalton and Anderson under
SRS [4]. In the nineties Skinner and Rao proposed a Pseudo-Maximum Likelihood
(PML) estimator for complex designs, which guarantees a unique set of weights not
depending on the study variable in multiporpose surveys [20]. Then Lohr and Rao
first tried a systematic treatment of the problem, including variance estimation via
resampling, for DF estimation in 2000 [8] and for MF estimation in 2006 [9], by
developping a first MF notation as already mentioned in section 2. Singh and Wu
introduced a Modified Regression DF estimator able to catch the design effects when
different sampling designs are used in each frame [16]. A multiplicity MF estimator
has been introduced in 2007 [11] based on fixed weights, with the main advantages
of i) being very simple to implement for any number of frames; ii) requiring limited
frame membership information to be collected; and iii) offering simple closed for-
mulae for unbiased variance estimation. A Pseudo-Empirical Likelyhood (PEL) DF
estimator and a multiplicity-based PEL estimator applying to MF were proposed in
2010 [13]. A unified and simplified approach to MF estimation based on multiplic-
ity is given in Singh and Mecatti (2011). A Generalize Multiplicity-adjusted class
of HT estimators is derived (GMHT), which i) applies to any number of frames; ii)
allows for exact variance estimation derived straightforward from usual HT theory;
and iii) has the potential of including all the main estimators previoulsy derived un-
der different methods (provided that not requiring de-duplications so that with the
exception of Bankier’s HT estimator). Current work is focusing on further gener-
alizing GMHT class via regression, either optimal or sub-optimal, in a GMHT-reg
class of MF estimators [12] [15].

5 Multiplicity-Adjusted Multiple Frame Estimation

In the following sub-sections a sketch of a unified and simplified view to MF estima-
tion is given, as derived by the natural HT approach in survey sampling estimation,
according to the multiplicity approach. We focus on the conventional MF estimation
problem with the total Y = ∑

N
k=1 yk of a quantitative survey characteristic y as the

population parameter to be estimated. We consider the general MF case of Q ≥ 2
independent frame samples with unknown overlapping and selected under possibly
different designs. Then, three main issues have to be handled at the estimation stage:
1) data are independent with respect to the parent overlapping frames but not with
respect to the disjoint domains into which each frame sample can be partitioned (see
Figure 2); 2) units appearing in more than one frame have an increased probability to
be selected in the final sample and, at the same time, to be selected more than once,
even if this have not occurred in practice; and 3) information about frame member-
ship and the linkage matrix (see Figure 3) must be available, usually collected from
every sampled unit besides the study values yk.
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5.1 Simple Multiplicity HT estimator

In a conventional unique-frame survey, the familiar Horvitz-Thompson estimator is
computed by using data from a unique-sample s with design weights π

−1
k inverting

the (first order) inclusion probability of unit k: ŶHT = ∑k∈s ykπ
−1
k . In a MF survey

the target population is covered by Q ≥ 2 frames so that the population total is
given by Y =∑k∈

⋃Q
q=1 Uq

yk. Since frames are assumed both partial and with unknown

overlaps, it is convenient to alternatively express the target parameter from a sum
over the unavailable union

⋃Q
q=1 Uq of size N (possibly unknown) to a sum over

the Q overlapping frames with ∑
Q
q=1 Nq ≥ N. This is naturally accomplished by

using unit multiplicity mk, i.e. the number of frames in which every unit is included
Y =∑

Q
q=1 ∑k∈Uq ykm−1

k A design-unbiased simple multiplicity estimator thus follows
straightforward, also extending to MF the so called DF average estimator (see for
instance [7], sec. 2.1)

ŶSM =
Q

∑
q=1

∑
k∈sq

ykm−1
k π

−1
k =

Q

∑
q=1

Nq

∑
k=1

ykm−1
k π

−1
k 1k∈sq (1)

where 1k∈sq denotes the sample membership indicator of unit k into each frame
sample sq, i.e. an observable random variable under the design-randomization. Ex-
pression (1) shows how the (inverse of) unit multiplicity would adjust the design
weights with respect to the risk of data duplication in a MF survey. In a conven-
tional unique-frame survey mk = 1 for all k = 1 · · ·N and equation (1) reduces to
the usual HT estimator. The case of Q non-overlapping frames is equivalent to a
target population partitioned into Q strata. In this case too every population unit has
unitary multiplicity and equation (1) is equivalent to the usual stratified HT estima-
tor. As a consequence ŶSM naturally generalizes to MF surveys the conventional HT
estimation [14].

Unit multiplicity is a natural choice, still it is not the unique. By defining a
general multiplicity-adjustment coefficient, a generalized multiplicity-adjusted HT
class of estimators for MF survey is also defined.

5.2 Generalized Multiplicity-adjusted HT estimators

In Singh and Mecatti [14] a generalized multiplicity-adjusted HT methodology for
MF estimation is given. Let αk(q) 6= 0 be a general multiplicity-adjustment coeffi-
cient for every unit k in a given frame Uq with ∑q αk(q) = 1. By substituting in equa-
tion (1) a class of design-unbiased estimators is given as Generalized Multiplicity-
adjusted Horvitz-Thompson (GMHT) class of MF estimators

ŶGMHT =
Q

∑
q=1

Nq

∑
k=1

ykαk(q)π
−1
k(q)1k∈sq (2)



Multiple Frame Surveys: a simplified and unified review 9

where the coefficient αk(q) ensures that yk is counted once even if unit k is dupli-
cated in more than one frame, i.e ∑

Q
q=1 αk(q) = 1. Different GMHT estimators follow

by different choices for the multiplicity-adjustment α-coefficient in (2). The simple
multiplicity-adjusted MF estimator as given in (1) is the simplest GMHT estima-
tor with the basic choice αk(q) = mk, unit multiplicity being constant whatever the
frame(s) Uq listing unit k.

The GMHT class has the potential of encompassing the range of MF estimators
available in the literature and briefly discussed in Section 4. Notice that, as defined
in (2), the class includes all the known design-unbiased MF estimators. However, the
unbiasedness requirement can be relaxed to embrace into the GMHT methodology
all the MF estimators known so far, as it will be outlined in Section 6.

Singh and Mecatti [14] was primarily concerned with combined-frame estima-
tors, requiring to adjust for multiplicity by a unit/frame-specific α-coefficient, so
that equation (2) applies straightforward. Consider for instance the Kalton and An-
derson estimator originally proposed for DF and SRS [4] :

ŶKA = Ŷa(A)+
πA

πA +πB
Ŷab(A)+

πB

πA +πB
Ŷab(B)+ Ŷb(B) (3)

where πA = na/NA and πB = nB/NB. In other words Kalton and Anderson proposed
to adjust data from the overlapping domain - where data duplication might occur
- by giving higher weight to the estimator from the frame with higher inclusion
probability. In Singh and Mecatti [14] a general MF form for estimator (3) is given
for any number of frames Q≥ 2 and under a general sampling design in each frame

ŶKA =
Q

∑
q=1

∑
k∈Uq

yk1k∈sq

(
Dq

∑
d=1

Q

∑
q′=1

πk(q′)1k∈Ud(q′)≡Ud(q)

)−1

(4)

Thus ŶKA is a GMHT estimator with the following choice for the multiplicity-

adjustment α-coefficient αKA
k(q) = πk(q)

(
∑

Dq
d=1 ∑

Q
q′=1 πk(q′)1k∈Ud(q′)≡Ud(q)

)−1
.

5.3 GMHT Regression Form

Most of DF and MF estimators can be computed under a separate-frame approach
such as i) first consider separately data from each frame-sample sq post-classified
into domain-samples sd(q),d = 1 · · ·Dq; ii) compute estimate of domain totals; and
iii) finally aggregate all domain estimates to produce the overall estimate of the
population total. A design-unbiased separate-frame estimator can be expressed as
GMHT by considering a domain-specific multiplicity-adjustment α-coefficient

αk(q) =
Dq

∑
d=1

αd(q)1k∈Ud(q)
with

Q

∑
q=1

Dq

∑
d=1

αd(q)1k∈Ud(q)
= 1 (5)
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Expression (5) applies for instance to the original Hartley’s estimator, proposed
as a design-unbiased optimal estimator for DF under SRS in both frame [3]

ŶH = Ŷa(A)+αŶab(A)+(1−α)Ŷab(B)+ Ŷb(B) (6)

with α optimal, namely chosen to minimize the actual estimator variance V
(
ŶH
)

α
H =

V
(
Ŷab(B)

)
+Cov

(
Ŷb(B),Ŷab(B)

)
−Cov

(
Ŷa(A),Ŷab(A)

)
V
(
Ŷab(A)

)
+V

(
Ŷab(B)

) (7)

Estimator (6), under the same argument used above for the Kalton and Anderson
estimator, can be generalized to a MF survey with any number Q ≥ 2 of frames
under a general sampling design in each frame

ŶH =
Q

∑
q=1

∑
k∈Uq

yk1k∈sqπ
−1
k(q)

Dq

∑
d=1

α
H
d(q)1k∈Ud(q)

(8)

Hence Hartley’s MF estimator is in fact GMHT, with multiplicity-adjustment α-
coefficient as given by (5) and optimal αH

d(q) minimizing V
(
ŶH
)

under the unitary
sum constraint. No easy formulae in closed form generalizing to MF the DF solu-
tion (7) are available so far for optimal αH

d(q). In Lohr and Rao [9] a method based
on solving a linearized system is provided. A simpler solution in a closed form can
be given (MecattiSingh2014) based on expressing ŶH under a regression rapresen-
tation, as already suggested for DF surveys [16].

First notice that each and all units included in the same domain share the same
multiplicity, so that unit multiplicity mk for all k ∈ Ud(q) also defines the multi-
plicity md(q) of domain Ud(q) 3 k. Therefore md(q) estimators are available for the
same domain total, one from each frame-sample intersecting into that domain. Sec-
ondly, by starting from the simple multiplicity-adjusted estimator (1) with initial
basic multiplicity-adjustment αk(q) = mk, excluding domains of unitary multiplicity
which in fact do not need any multiplicity adjustment, a regression form would fol-
low from the convex combination of the md(q) independent HT estimators available
for the same domain total which would act as predictors. Thus equation (8) can be
rewritten as

ŶH = ŶSM−
D

∑
d=1

[
md

∑
q=1

md

∑
q′>q=1

βd(qq′)

(
Ŷ HT

d(q)− Ŷ HT
d(q′)

)]
(9)

where Ŷ HT
d(q) = ∑k∈Uq ykπ

−1
k(q)1k∈sd(q)

is the HT estimator of the total of domain Ud(q)

computed with data from frame-sample sq classified into domain-samples sd(q) =
sq
⋂

Ud(q), d = 1 · · ·Dq. This yelds to an explicit closed expression for the vector β

of optimal regression coefficients βd(qq′) in (9)

β =V−1
ϕϕ Cov

(
ϕ,ŶSM

)
(10)
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where ϕ is the vector of available predictors ϕd(qq′) = Ŷ HT
d(q)− Ŷ HT

d(q′), Vϕϕ defines the

Var-Cov matrix of ϕ and Cov
(

ϕ,ŶSM

)
is the vector of covariances between every

predictor in ϕ and ŶSM ( see [16] for details). Finally, some little algebra over the
equivalent expressions (8) and (9) gives the following closed solution for the optimal
α-coefficient of Hartley’s, estimator

α
H
d(q) =


1 if md(q) = 1

m−1
d(q)−

md(q)

∑
q′6=q=1

βd(qq′)(−)q′>q
1Ud(q)≡Ud(q′) if md(q) ≥ 2

(11)

where β−coefficients can be computed by standard software for linear regression
analysis. Moreover equation (11) generalizes the DF solution given in (7) and the
unitary sum constraint is readily proved.

5.4 Variance Estimation

Unbiased multiplicity-adjusted estimators included in the GMHT class (2) are in
fact linear combinations of Q independent HT estimators - one from each frame-
sample sq. Thus the estimator variance as well as an unbiased variance estimator
follow direclty from HT-type estimation [14]. In other words the simplification in-
duced by the multipicity approach allows for standard variance estimation in closed
form, while resampling and/or asympthotics have been usually suggested in the lit-
erature. The exact variance of any GMHT estimator in the well known HT form is
given by

V
(
ŶGMHT

)
=

Q

∑
q=1

[
∑

k∈Uq

y2
kα

2
k(q)

1−πk(q)

πk(q)

+ ∑
k 6=k′

∑
∈Uq

ykαk(q) yk′αk′(q)
πk(q)πk′(q)

(
πk(q)k′(q)−πk(q)πk′(q)

)] (12)

Moreover an unbiased variance estimator then follows straightforward in closed
form by substituting in (12) standard estimators of variance and convariaces between
HT domain estimators.
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6 Generalizing the multiplicity approach: research perspectives

The GMHT class of unbiased MF estimators as defined in (2) can be further general-
ized for also including approximately or asymptotically unbiased estimators shown
in Figure 6. Let δk(q) be an observable random variable generalizing the sample
membership indicator 1k∈sq in expression (2) and let wk(q) define general design-
weigths. An alternative more general definition of GMHT class is then

ŶGMHT =
Q

∑
q=1

∑
k∈Uq

ykαk(q)wk(q)δk(q) (13)

which includes definition (2) with δk(q) = 1k∈sq and wk(q) = E
(
1k∈sq

)−1
= π

−1
k(q).

Moreover any GMHT estimator included in (13) will be exactly unbiased if wk(q) =

E
(
δk(q)

)−1 or else approximately unbiased if wk(q) ' E
(
δk(q)

)−1. The α-coefficient
in (13) still represents the multiplicity-adjustment with the unitary constraint, either
frame-specific as in (13) or domain-specific as in (5). Internal consistency (see for
instance [7] section 2) is granted by all positive α-coefficients.

GMHT class as defined in (13) is likely to encompasse also all the approximately
unbiased MF estimators appeared in the literature, a regression representation as
discussed in subsection 5.3 appearing as a suitable, unifying argument [15]. The
same form also offer a flexible weighting approach, suitable for including available
extra information. Future research will consider calibration to known auxiliary totals
of GMHT-reg estimators.

Finally note that a large amount of simulation results have appeared in the liter-
ature about DF and MF surveys. Althougth empirical evidence supplies some rac-
comendations and suggestions for subsets of compared MF estimators, still the lack
of homogeneity of the estimation approach can make it difficult to compare and
choose. The GMHT-reg class would provide a simplified framework for compar-
isons as well as for the derivation of new estimators according to both theoretical
requests and specific application conditions.
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