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ABSTRACT: Air pollution is usually driven by a complex combination of factors in which 

meteorology, physical obstacles, and interactions between pollutants play significant 

roles. Considering the characteristics of urban atmospheric pollution and its consequent 

impacts on human health and quality of life, forecasting models emerge as an effective 

tool to identify and forecast AP episodes. 

The overall objective of the present work was to produce forecasts of pollutant 

concentrations with high spatio-temporal resolution and to quantify the uncertainty in 

those forecasts. Therefore, a new approach was developed based on a two-step 

methodology. Firstly, neural network models were used to generate short-term temporal 

forecasts based on air pollution and meteorology data. The accuracy of those forecasts 

was then evaluated against an independent set of historical data. Secondly, local 

conditional distributions of the observed values with respect to the predicted values 

were used to perform spatial stochastic simulations with local distributions for the entire 

geographic area of interest.  
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1 Introduction 

Urban air pollution (AP) is a complex mixture of toxic components that may 

induce acute and chronic pathologic responses in vulnerable individuals, especially 

children and people with cardiac and respiratory insufficiencies (Kolehmainen et al. 

2001). In 2009, about 20% of the urban population in the EU was exposed to PM10 

above the limit value (EEA 2011). 

Since the pioneer work of Bilonick (1983, 1985) and continuing to the most recent 

hybrid models coupled to determinist models (Russo et al. 2008, Russo et al 2014), 

geostatistical modeling has evolved tremendously. These models are able to mimic the 

dynamic behavior of physical phenomena, and specifically AP behavior. The mapping 

of pollutant concentrations has been treated by classical estimators of kriging (Atkinson 

and Lloyd 2001), stochastic simulation (Pereira 1999; Russo et al. 2008), Markov 

random fields (Cressie et al. 1999), and the co- simulation of contaminants (Franco et 

al. 2006). In addition, secondary information and time components have been 



introduced into the frameworks of most geostatistical models (Kyriakidis and Journel 

1999). These models have been widely used to characterize AQ in urban areas, where 

pollutant sources are considered diffuse, and in industrial areas, with localized emission 

sources (Nunes and Soares 2005; Soares and Pereira 2007; Russo et al. 2008). 

Considering the complexity of dispersion phenomena, non-stationary situations have 

been focused in several spatial models (Monestiez 1997) and space-time simulations 

(Kyriakidis and Journel 1999). Nonetheless, mainstream geostatistical models are 

basically interpolation exercises (estimation, simulation) using a set of variables in a 

spatial or spatio-temporal domain. The temporal prediction of a pollutant, i.e., 

extrapolation in the time domain, usually requires knowledge of both the main trends 

and the complex patterns of physical dispersion phenomena; that is, the dispersion of 

the main pollutants, the meteorological conditions, and the relevant chemical reactions. 

However, the types of information and knowledge needed to produce AQ predictions 

with the required rigor for urban areas are usually not compatible with the stationary 

assumptions of most geostatistical models.  

Geostatistical space-time simulation models allow the characterization of 

uncertainty by supplying equiprobable images that reproduce patterns of spatial 

continuity quantified by the observations available. These space-time models can 

incorporate complex combinations of factors—which are usually non-linear—and 

thereby play a significant role in AQ forecasting (Kyriakidis and Journel 1999; Pereira 

1999; Nunes and Soares 2005; Soares and Pereira 2007).  

The objective of this work is to present an hybrid approach based on a two-step 

methodology which combines neural network short-term temporal forecast at the 

monitoring stations and a new spatial stochastic simulation, with local conditional 

probability distributions, to access the spatial uncertainty.  To illustrate the proposed 

methodology a case study of the PM10 concentration in the city of Lisbon is presented.  

 

2 Hybrid model for urban air pollution forecasting:  a stochastic 

spatial-temporal approach  

2.1 Short-term forecasts of the local conditional probability distributions at the 

monitoring stations.   

Let us consider Z(x,t), the pollutant’s concentration at spatial location x and time 

period t, and M(x,t) the general notation for the meteorological conditioning data.  



Denoting the present time as t0, and the spatial locations of the Nm monitoring 

stations as xα, the objective of the first step was to calculate at any location xα the 

conditional probability 
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Equation (1) expresses the probability of forecasting the concentration of a 

pollutant Z(xα, t0) at instant t0, taking into account both its concentration Z(xα, t0-i) and 

the meteorological conditions M(xα, t0-i) of previous time periods t0-i (i=1,NT). In order 

to calculate Eq. (1), our approach replaces the conditioning data [Z(xα, t0-i), M(xα, t0-i)] 

with a function   that summarizes all the conditioning data in a “predicted” value at 

(xα,t0)  
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(2) 

The function   can be any predictor and its construction is achieved using NN 

modeling. For this study a multi-layer NN was chosen. The NN model used was trained 

and implemented based on the historical time series Z(xα, t0-i) and on the meteorological 

conditions M(xα, t0-i) (i=1,NT) of the local monitoring stations xα (Sect. 3) (Russo et al, 

2014).  

Based on (2) , local bivariate distributions of predicted and observed values are 

estimated, based on independent historical data that were not used in the construction of 

the NN prediction model at each monitoring station : 
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For the present time period t0, z*(xα, t0) are predicted using the local model of NN at the 

monitoring stations xα, after which the local conditional distribution functions were 

estimated based on the historical bivariate distribution obtained from Eq. (4) 
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Details of the calculation of Eq. (5) are presented in Russo et al, 2014. For the 

sake of simplicity, in the following Z(xα, t0)  is denoted as Z(x), Z*(xα, t0)  as Z*(x) and 

z* as m. 

After the concentration of a pollutant has been forecasted and the conditional 

probability distributions of the observed values estimated for xα =1,Nm and t=1,NT, the 



objective of the second step of the proposed methodology is to use the local conditional 

distributions (5) for that period to perform spatial simulations for the entire area of 

interest.  

2.2 Stochastic simulation with local conditional distributions  

A set of realizations of Z(.,.) for instant t0 was obtained based on the local 

distributions F [Z|Z*= m] determined at monitoring stations location xα.  Among the 

existing algorithms that are based on the spatial “re-sampling” of conditional 

distributions, P-field simulation (Srivastava 1992) implies knowledge of the local 

cumulative distribution functions (cdfs) on the entire grid of nodes to be simulated, and 

not only those at the locations of the experimental samples. One option is to adapt 

sequential Gaussian simulation (Gomez-Hernandez and Journel 1993; Goovaerts 1997) 

by transforming the local distributions; however, that would imply the spatial 

stationarity of the Gaussian transformation (in practice, the same Gaussian transform 

function is applied at any location xα, which is not a valid assumption in this case). 

Hence, for our model we adapted the basics of the model of direct co-DSS with bi-

distributions (Horta and Soares 2010) to the direct simulation with local cdfs.  

Let us set the first nodes to be visited in the path of the sequential algorithm as 

precisely the Nm monitoring stations. At each “experimental” node (monitoring station 

location), a local mean and its variance is calculated at a given time and a simulated 

value Z
(l)

(xα, t0) is obtained from the local distributions F [Z|Z*= m] following the 

algorithm of Horta and Soares (2010). The remaining N-Nm nodes are then sequentially 

simulated following the traditional DSS algorithm (Soares 2001). The DSS algorithm 

with local cdfs can be summarized as follows: 

i) The spatial locations of local cdfs (in this case, the locations of the monitoring stations) 

are visited in a random path and at each one the simple kriging (sk) mean and its 

variance is calculated based on the previous simulated values. A simulated value Z
(l)

(xα, 

t0) is obtained from the local distributions F [Z|Z*= m]  according to the DSS algorithm 

with bi-distributions (Horta and Soares 2010).    

ii) The remaining N-Nm nodes are then visited sequentially and Z
(l)

(xi, t0), i=1,N-Nm is 

obtained from the global cdf by following the traditional approach (DSS algorithm). 



The image representing the previous instant (t0-1) of a pollutant’s concentrations is 

used as the local spatial trend. As we have an average image of simulated realizations 

Z
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(x, t0-1), l=1,Ns for the period 
10t , calculated with the observations at t0-1 
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then it is possible to use the O(x, t0-1) as the local trend of the sk estimates for the next 

period t0 
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This approach is repeated for all the NT time instants. Thus, this approach allows 

forecasting of the space-time distribution of AP, accounting for spatial as well as 

temporal uncertainties. An application to PM10 concentration forecasting is presented in 

the next section. 

3 Space-time application of PM10 concentration forecasts for the 

greater Lisbon area 

This illustrative example focuses on the city of Lisbon (Fig. 1), a large coastal city 

in central Portugal; The area is covered by a conventional AQ monitoring network 

comprising urban, traffic, industrial and suburban monitoring stations that record the 

atmospheric concentrations of major pollutants.  

3.1 Data 

The datasets consisted of the daily concentrations of several pollutants’ (NO, 

NO2, CO, PM10) measured at 12 monitoring stations within the greater Lisbon area  for 

a period of 5 years (from 1/1/2002 to 31/12/2006). Data from the first 4 years were used 

to construct the models whereas data from the last year (2006) were used for 

independent evaluation. Meteorological hourly observational data were also available.  

Daily values of boundary layer height (BLH) and SLP (sea-level pressure), obtained 

from the ECMWF (European Centre for Medium Weather Forecast), were used as well.  



 

Fig 1 Case study area 

After a pre-processing, one conclude that for the majority of the monitoring stations, the 

most significant variables in the prediction of PM10 were the previous-day PM10 

concentration, followed by the 0 a.m. and previous-day maximum PM10 concentrations, 

and the previous-day values of NO2 concentration, wind direction and humidity.  

 

3.2 Forecasting daily contaminants with neural networks  

The first step in the proposed approach consists of forecasting the present day (t0) 

PM10 concentration using NN models, producing for each one of the monitoring stations 

an individual temporal forecast. In their construction, an AP system is considered as one 

that receives information from various sets of inputs and responds by producing a 

specific output. This model assumes no prior knowledge about the relationship between 

input and output variables. The NN models were trained with data from the first 4 years 

(01/01/2002 to 31/12/2005).  



A cross-validation exercise was performed, dividing the available period into four 

sets and completing the calibration-validation procedure four times independently, i.e., 

from the 4 years of data available, data from 3 years were used to build the model and 

data from 1 year for validation. The cross-validation approach was applied such that the 

equivalent period of one year was taken out, for validation purposes, in all runs.  

After calibration and validation with data from 2002–2005, the models were used 

to produce daily average PM10 forecasts for a period of 1 year. For this purpose an 

independent 1-year sample (1/1/2006 to 31/12/2006) was omitted in order to evaluate 

the performance of the models for the respective monitoring stations during individual 

daily average predictions. The PM10 forecasts were then compared with the actual 

values of the pollutants at the monitoring stations and with persistence.  

 

Fig 2 Scatter plots of the NN results versus the actual observed PM10 values for the Avenida Liberdade monitoring 

station. The filled dot represents the NN forecast for (a) 29/4/2006 and (b) 7/8/2006 

Scatter plots and the correlation coefficients for two days, 29/4/2006 and 

7/8/2006, determined at the Av. Liberdade monitoring station, are presented (Fig. 2). 

These two days were intentionally chosen to illustrate the potential of the proposed 

method, because they represent two daily periods characterized by a relative sharp 



change in AQ relative to the previous day, hence, with difficult forecasting properties. 

The scatter plot results for 29/4/2006 show generally lower PM10 values than on the 

previous day, i.e., 28/4/2006. By contrast, on 7/8/2006, the PM10 values were generally 

higher than on 6/8/2006. Consequently, the forecasts for 29/4/2006 were usually 

underestimated while those for 7/8/2006 were mostly overestimated. These results 

influenced the conditional spatial simulations. Also, the simulated NN results for 

29/4/2006 were generally closer to the perfect correlation curve (the red line which 

represents that predictions (y) are equal to observations (x), y=x) whereas those for 

7/8/2006 were usually farthest away from the y=x curve. For more detailed discussion 

of these results see Russo et al, 2014. Based on each day’s forecast (red dot on each 

scatter plot of Fig. 4), bivariate distributions were determined based on the methodology 

presented in Horta and Soares (2010).  

3.3 Conditional spatial simulations with local distributions  

Based on the bivariate distributions between the predicted values resulting from 

the independent NN forecasts and the previously determined equivalent real values, 

conditional distributions were estimated for each monitoring station according to the 

methodology described in Sect. 2.2. Then, and in order to reproduce the PM10 spatial 

dispersion, a conditional spatial simulation was performed by applying the methodology 

described in Sect. 2.2.  A set of Nr=50 equiprobable simulated realizations was 

generated by the algorithm described in Sect. 2.2, using 100-m×100-m grids for each 

day, with the trend being the simulated average image of the previous day. Figure 3 

illustrates the trend image for the previous day (t0-1) and the conditional distributions of 

real PM10 at the monitoring station locations for the present day (t0). An average image 

was computed based on the 50 realizations ( Figures 4(a) and 4(b)). 



 

Fig 3 Schematic representation of the second stage of the proposed method, showing a trend image for the previous 

day (t0-1) and the conditional distributions of real PM10 at the monitoring station locations for the present day (t0) 

 

 

Fig 4 Average image (50 simulations) representing the spatial dispersion of PM10 on (a) 29/4/2006 and (b) 7/8/2006 

 

Fig 5 Average image representing the (a) 10th, (b) 50th, and (c) 90th percentile forecasts for 29/4/2006 



 

Fig 6 Average image representing the (a) 10th, (b) 50th, and (c) 90th percentile forecasts for 7/8/2006 

Figures 5(a) and 6(a) show the 10
th
 percentile average image for the 29/4/2006 

and 7/8/2006 events, Figs. 5(b) and 6(b) the 50
th

 percentile, and Figs. 5(c) and 6(c) the 

90
th

 percentile, respectively. This percentile representation allows an assessment of the 

spatial uncertainty of the predictions..  

3.4 Discussion 

Sharp transitions in pollutant levels from one day to the next are among the most 

difficult situations to forecast by means of machine learning techniques, which learn 

based on historical past events and thus require a certain amount of repetitiveness. As 

these situations are uncommon relative to the mean behavior, prediction becomes a 

difficult task. By contrast, the NN approach performed reasonably well on 29/4/2006 

and 7/8/2006, i.e., both situations were well forecasted within the range of risk defined 

by the 10th and 90th percentiles.  

Geographic areas repeatedly subjected to daily PM10 values higher than 50µg/m
3
 

or located close to major roads, intersections, or transport infrastructures are considered 

pollution hotspots. The health and quality of life of people living and working close to 

those areas may be at risk due to increased levels of AP and noise (EC 2006). Therefore, 

the correct prediction of high pollutant levels and the identification of pollution hotspots 

are vital in order to equip the responsible entities with the tools to produce alerts and to 

facilitate sustainable AQ management. The simulated images (Figs. 7 and 8) show the 

areas with higher and lower PM10 values; some of those areas are hotspots. Critical risk 

areas are those with PM10 values higher than the 50 µg/m
3
 threshold. These were also 

well forecasted within the risk intervals of the 10
th
 and 90

th
 percentiles. The choice 

among the percentile forecasts might be decided upon based on an evaluation of the 

main spatial trend of the previous day (12 hours ahead).  



Through this hybrid approach, the uncertainty resulting from the prediction errors 

and from the local spatial variability of pollutants is quantified by the simulated maps, 

giving rise to critical risk areas. Thus, the resulting images provide a threshold of risk 

for use in risk assessment studies and by decision-makers. It is worth noting that the 

time prediction could be performed by using an alternative machine learning method or 

by deterministic simulation, as long as the chosen method is able to integrate as many 

factors into the prediction as the NN does. This means that the hybrid approach 

proposed in this study is, above all, a methodological framework, coupling a time 

predictor (in this case a NN) with a new geostatistical simulation methodology for the 

spatial characterization of a pollutant's concentration, in which the uncertainty in the 

time prediction is accounted for.  
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