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Abstract The paper reviews a hierarchical modelling procedure for extreme values
of stationary series proposed by Bortot and Gaetan (2013). A modification of the
model to allow for different types of marginal tail behaviour is presented. The two
models are applied to the analysis of extreme hourly and daily rainfalls and their
performances compared.
Abstract Nel lavoro viene presentata una modifica di un modello gerarchico per i
valori estremi di serie stazionarie sviluppato da Bortot e Gaetan (2013) che per-
mette di includere vari tipi di code della distribuzione univariata marginale. I due
modelli vengono applicati all’analisi di estremi di pioggia orari e giornalieri e le
loro capacità di adattamento poste a confronto.
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1 Introduction

Statistical analysis of extreme values has played an important role in environmen-
tal sciences and related fields (for a review, see Jonathan and Ewans, 2013). A
widespread approach for inferring the extremal behaviour of a phenomenon of in-
terest is the so-called Peaks over Threshold (POT) approach whereby the recorded
exceedances over a sufficiently high threshold are modelled using the Generalized
Pareto distribution (GPD) (Pickands, 1975). This class of procedures has an asymp-
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totic justification since the GPD arises as the limiting distribution of an exceedance
as the threshold tends to the upper endpoint of the underlying distribution. However,
in the application of the POT approach care must be taken of the temporal depen-
dence, as this might persist even at very high levels, causing the excedances to occur
in clusters. A simple solution is declustering, i.e. filtering the exceedances so that
the resulting sequence is made of approximately independent observations (Ferro
and Segers, 2003). A downside of filtering is a loss of information that leads to re-
duced estimation precision. Another possibility, that overcomes the waste of data,
but at the cost of a greater modelling effort, is to infer the joint distribution of all
the exceedances. This approach has the additional benefit of allowing inference of
general functionals of exceedances, for example the aggregate exceedance within an
extremal event. Various attempts to model the joint distribution of exceedances can
be found in the literature. One example is the method of Smith et al. (1997) which
assumes Makovianity for successive exceedances and uses multivariate extreme val-
ues distributions to model the chain transitions above the threshold. Another exam-
ple can be found in Reich et al. (2013) which consists of modelling the series of
exceedances as a realization of a censored max-stable process (de Haan, 1984). Al-
ternatively, Bortot and Gaetan (2013) suggest a hierarchical procedure based on a
latent process to capture serial dependence at high levels. Their proposal allows for
the strength of extremal dependence to decrease when moving further into the tail
of the series, a feature which is exhibited by many environmental time series. Two
drawbacks of this procedure are that it is limited to long-tailed margins and there
is no separation between model parameters controlling marginal and temporal as-
pects, respectively, which, in some cases, constrains the range of dependence that
the model can capture. In the next section the model of Bortot and Gaetan (2013)
is briefly reviewed and a modification that aims at overcoming the aforementioned
limitations is proposed. A comparison of the two models is carried out in Section 3
through an application to rainfall data.

2 Hierarchical models for stationary series

A way of capturing temporal dependence in stationary series is through hierarchical
structures. In extreme value studies this is often implemented by letting the parame-
ters of a standard extreme value distribution be driven by a latent stochastic process,
and assuming conditional independence of extremes given the latent process (see,
for example, Gaetan e Grigoletto, 2004 and Huerta and Sansó, 2007). Typically,
however, the resulting marginal distributions are no longer of an extreme value type
and the induced temporal dependence is weak, in the sense that it decreases as the
threshold increases eventually converging to independence at asymptotically high
levels. The hierarchical model proposed by Bortot and Gaetan (2013) aims to over-
come both limitations.
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2.1 A hierarchical model for exceedances

The basic idea of the modelling procedure of Bortot and Gaetan (2013) is using a
representation of the GPD as a mixture of an Exponential distribution with Gamma
distributed rate parameter and inducing serial dependence among exceedances by
specifying a latent process with Gamma margins for the rate parameter. More pre-
cisely, classical extreme value results (Pickands,1975) justify modelling the distri-
bution of the exceedances of a random variable X over a high threshold u, i.e.

Fu(x) = P(X ≤ x+u|X > u)

with the GPD whose density function is given by

f (x;ξ ,σ) =
1
σ

(
1+ξ

x
σ

)−(1/ξ+1)

+
, x≥ 0, (1)

where (x)+ = max(0,x), ξ is a real shape parameter and σ is a positive scale pa-
rameter. With the reparametrization α = 1/ξ and β = σ/ξ , for α > 0, the density
of the GPD can be represented as

f (y;α,β ) =
∫

∞

0
λe−yλ g(λ ;α,β )dλ , (2)

where
g(λ ;α,β ) = [β α/Γ (α)]λ α−1e−βλ

is the density of a Gamma(α,β ) distribution (Reiss and Thomas, 2007). In other
words, when α > 0, which corresponds to a heavy right tail, the GPD can be char-
acterized as a Gamma mixture of Exponential distributions.

Starting from representation (2), if {Xt} is a stationary random sequence, its be-
haviour above u is modelled through a hierarchical structure which, at the first stage,
assumes that conditionally on a latent process Λt , the Xt ’s are independent with

Xt −u|(Λt ,Xt > u) ∼ Exp(Λt), (3)

where Exp(a) denotes the Exponential distribution with mean 1/a. To model the
occurrence of Xt > u, the authors propose

pr(Xt > u|Λt) = exp(−κΛt),

where κ is a positive constant controlling the percentage of crossings of the thresh-
old u. At the second stage, temporal dependence above the threshold u is incorpo-
rated by choosing a stochastic process with Gamma(α,β ) margins for {Λt}. Two
choices are considered: the Warren process (WP) introduced by Warren (1992) and
the Gaver and Lewis process (GLP) developed by Gaver and Lewis (1980) (see also
Walker, 2000, for an autoregressive representation of the process). The two specifi-
cations of {Λt} are first-order Markov and have the same autocorrelation function
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which depends on a parameter ρ ∈ (0,1). However, when embedded in the hierar-
chal structure they lead to different forms of extremal serial dependence. Broadly
speaking, under WP, the strength of dependence of the exceedances of u∗, with
u∗ > u, decreases as u∗ increases, eventually reaching independence. Under GLP,
the dependence also gets weaker as u∗ increases, but in the limit the exceedances
still exhibit dependence and occur in clusters. Thus, under WP there is asymptotic
independence of exceedances, while under GLP exceedances are asymptotically de-
pendent.

Combining the first and second stages, marginally with respect to {Λt}, the dis-
tribution of Xt −u|Xt > u is still GPD and

pr(Xt > u) =
(

β

β +κ

)α

.

Inference for this hierarchical model can be carried out using a censored likelihood.
As likelihood contributions are computationally intractable, a pairwise approxima-
tion of the full likelihood is used.

2.2 An alternative hierarchical formulation

In Bortot and Gaetan (2013) the performance of the model of Section 2.1 is as-
sessed through a simulation study and an application to real data sets. In both cases,
it shows a good flexibility in capturing different types of tail behaviour. However,
some drawbacks are also present. Perhaps the most serious is the constraint α > 0,
which limits the application of the method to heavy tailed data. Many series arising
in the financial and insurance areas fall within this class, but in the environmental
context, this constraint could be rather severe as many phenomena, such as temper-
ature series, are known to be lighter tailed. A less evident limitation is related to the
double role of α as a parameter of the marginal GPD of the exceedances and of the
latent process controlling temporal dependence. In particular, under both specifica-
tions of {Λt}, larger values of α , which correspond to lighter tails, imply weaker
dependence of exceedances. Both WP and GLP have an additional dependence pa-
rameter ρ; for WP, ρ can compensate for this effect, but for GLP this is only partly
true. It can be shown that, regardless of the value of ρ , for sufficiently large α , the
degree asymptotic dependence allowed by GLP is rather low.

A way to overcome these limitations, while working within the same hierarchical
modelling framework, exploits a copula type of technique. The basic idea is to trans-
form marginally the process defined in Section 2.1 so to have marginal GPD with
unconstrained shape parameter. In greater detail, in the definition of the hierarchical
model of Section 2.1, we set α and β equal to 1. Let {X∗t } be the series obtained
from the model under this setting. An integral transformation is applied marginally
to each of the X∗t , with X∗t > u to derive
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Yt =
σ

ξ

{(
1+

X∗t −u
κ +1

)ξ

−1

}

having GPD with parameters ξ ∈R and σ > 0 as in (1). Finally, by letting Xt =Yt +u
a new hierarchical model for the series of exceedances of u is obtained. Inference
for this model can again be carried out through a pairwise likelihood).

The modification proposed in this section is characterized by a separation of pa-
rameters governing marginal behaviour, ξ and σ , and parameters controlling tem-
poral dependence, ρ . The advantage of this separation is that the GPD shape pa-
rameter ξ is no longer restricted to be positive and different types of marginal tail
behaviour can be modelled. In addition, the model can be easily adapted to account
for covariates through the inclusion of regression terms in the GPD parameters. This
extension was precluded in the previous version as any transformation of α would
affect both marginal and dependence aspects. On the other hand, ρ remains the only
dependence parameter, so that a greater flexibility in marginal behaviour might be
offset by an increased rigidity in the temporal structure. The choice between the two
modelling frameworks is thus not so clear cut and investigation of the relative merits
of each of the two models is required.

3 Application to rainfall extremes

When analyzing rainfalls, accounting for serial dependence at high levels is funda-
mental as functionals of extreme values are of interest, such as the average length of
a storm or the aggregate exceedance during a storm. Typically, a decreasing strength
of extremal dependence with threshold is observed for rainfall data which often give
evidence of asymptotic independence. In addition, rainfall recordings are known to
be heavy tailed, so this is an area of application where the two versions of the hier-
archical model can be compared and their relative performances assessed.

The data analyzed are series of hourly and daily rainfalls in Camborne, west
Cornwall, England. The recordings, obtained from the British Atmospheric Data
Centre, cover the period 01/01/1980–31/12/2012, but for the whole of September
1994 both hourly and daily measurements are missing. As the model of Section 2.1
cannot be easily adjusted to capture non-stationarity, only the summer season from
June to September was analyzed. This season, within which the data seem to be
stationary, produces the most extreme events. The results of the study can be sum-
marized as follows. As might be expected there is stronger dependence at extreme
levels for hourly than daily rainfalls. However, both series support the hypothesis of
independence in the limit. Variuos diagnostics have been carried out to assess per-
formance of the two models at different thresholds u∗, above the model threshold
u. These focussed on probabilities of consecutive uncrossing of u∗, distribution of
aggregate exceedances and average length of extremal events. It was found that for
daily data, the differences between the two versions of the model, with both WP and
GLP specifications, are negligible and that they both provide a good fit. On the other
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hand, for hourly data the new model, under WP, largely outperforms the previous
one for any choice of the latent process and describes well the extremal behaviour
of the series and the way this changes when raising the threshold.
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