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Abstract This paper presents a Bayesian model for meta–analysis of sparse discrete
binomial data which are out of the scope of the usual hierarchical normal random
effect models. To assure coherency between the marginal and conditional prior dis-
tributions utilized in the analysis, the crucial linking distribution between the ex-
perimental effectiveness and the unconditional effectiveness (meta–effectiveness)
is constructed from specific bivariate classes of distributions with given marginals.
Applications to real multicenter data are given and compared with previous meta–
analysis.
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1 Introduction

The usual scenario for Bayesian meta–analysis of medical treatment effectiveness
is as follows. A given treatment is applied to k samples of patients of sizes {ni, i =
1, ...,k}, and the sample effectiveness xi = (xi1, ...,xini) at the ith center is assumed
to be normally distributed Nni(xi|θi1n1 ,σ

2
i Ini), where θi represents the treatment

effectiveness conditional on center i, and σ2
i the variance. A non–observable meta–

variable x is implicitly considered and assumed to be N(x|θ ,σ2) distributed, where
the meta–parameter θ represents the unconditional treatment effectiveness, and σ2

the meta–variance.
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In many practical situations the sample variables are discrete, for instance 0−1
random variables, and in that case the above normal hierarchical model is ap-
plied to the logit transformation yi = log[xi/(ni − xi)] with the reparametrization
log[θi/(1−θi)], where xi denotes the number of successes at the ith center, (Morris
and Normand, 1992; Carlin, 1992; Sutton et al., 2000; Lambert et al., 2005; Nissen
and Wolski, 2007, among many others). Unfortunately, when the multicenter bino-
mial sample contains ceros this normal approximation does not work properly, even
if a continuity correction to the original data be applied (Sweeting et al. 2004).

This paper proposes a hierarchical Bayesian model for meta-analysis of multi-
center binomial data that may contain zeros. The crucial step of choosing a link-
ing distribution, the distribution of θi conditional on θ , is addressed by imposing
two constraints on it. The linking distribution has to be coherent with the specified
marginals, and has to be able to accommodate different degrees of heterogeneity
between the experimental trials.

The rest of the paper is organized as follows. In Section 2 we give the linking
distributions and study some of their properties. In Section 3 a Bayesian procedure
for testing the equality of the meta–effectiveness of two treatments is proposed. In
Section 4 the Bayesian meta–analysis procedure is applied to real data from Nissen
and Wolski (2007). Section 5 contains some concluding remarks.

2 Binomial Bayesian models for sparse data

Let Mi be the Bayesian model for the observational study in center i

Mi : {Ber(xi|θi), π(θi)}, i = 1, ...,k,

where Ber(xi|θi) = θ
xi
i (1−θi)1−xi , xi denotes a 0−1 random variable the meaning

of which is xi = 1 if a patient receiving the treatment at center i successes and xi = 0
otherwise, and θi denotes the probability of success of the treatment conditional on
center i. Uniform or Jeffreys’ priors are widely accepted as objective priors for the
Bernoulli parameter, although for sparse data some arguments favoring the uniform
over the Jeffreys have been given by Tuly et al. (2008).

Likewise, the Bayesian meta–model M0 for a 0−1 unobservable meta–treatment
effectiveness x is given by the pair of distributions M0 : {Ber(x|θ), π(θ)} , where the
meta–parameter θ means the unconditional probability of success of the treatment,
and π(θ) is the uniform.

To complete the formulation of the Bayesian meta–analysis we need a link-
ing distribution π(θi|θ) to which we impose to be compatible with the marginal
π(θi) and π(θ) given above. This implies that the bivariate distribution π(θi,θ) =
π(θi|θ)π(θ) must satisfy the integral equations∫ 1

0
π(θi,θ)dθi = π(θ),

∫ 1

0
π(θi,θ)dθ = π(θi). (1)
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For the case where π(θ) = 1(0,1)(θ) and π(θi) = 1(0,1)(θi), a class of bivariate
distributions that satisfies the integral equations (1) is the following Farlie–Gumbel–
Morgenstern class, a parametric class of probability distributions given by

π
FGM(θi,θ |κ) = 1+κ(2θi−1)(2θ −1), (2)

for 0≤ κ ≤ 1 (Morgenstern, 1956). The question here is which is the between center
heterogeneity captured by this class. It follows that VarFGM(θi|θ) is a decreasing
function of the correlation coefficient ρ . We note that 0 ≤ ρ ≤ 1/3 as κ varies in
(0,1) so that the FGM family is unable to model a linear correlation coefficient
between θi and θ larger than 1/3.

To extend the FGM class we consider the intrinsic-uniform (IU) class of priors

π
IU (θi,θ |t) =

t

∑
z=0

(
t
z

)
(θiθ)z[(1−θi)(1−θ)]t−z

Be(z+1, t− z+1)
(3)

where t = 1,2, ..., and Be(a,b) is the Beta function. For each t this bidimensional
prior is a beta–binomial mixture, which is derived using the intrinsic method (Berger
and Pericchi 1996; Moreno et al. 1998; Casella and Moreno 2005, among others).

It follows that the variance of θi is a decreases function of ρ for any θ . We note
that ρ varies in (1/3,1) as t ranges in {1,2, ...}.

To eliminate the hyperparameters, we consider integrate out κ to obtain the un-
conditional FGM bivariate prior

π
FGM(θi,θ) = 1+

1
2
(2θi−1)(2θ −1). (4)

Similarly, we obtain the bivariate unconditional intrinsic–uniform prior

π
IU (θi,θ) =

∞

∑
t=1

π
IU (θi,θ |t)

3
(t +2)(t +3)

. (5)

2.1 Likelihood and posterior distribution of the meta–parameter

For a given link π(θi|θ), the likelihood of the meta-parameter θ for the data (xi,ni)
drawn from center i is given by

Pr(xi|ni,θ) =
∫ 1

0

(
ni

xi

)
θ

xi
i (1−θi)ni−xiπ(θi|θ)dθi. (6)

If we replace π(θi|θ) by the associated linking distribution given in (4) and (5) we
obtain the likelihoods

Pr(xi|ni,θ ,FGM) =
1

ni +1

(
1+

1
2
(2θ −1)

(
2xi−ni

ni +2

))
,
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Pr(xi|ni,θ , IU) =
∞

∑
t=1

(1+ t)(1−θ)t
(

ni

xi

)
Beta(1+ni + t− xi,1+ xi)

×3F2

(
a,b,

θ

θ −1

)
3

(t +2)(t +3)
,

where 3F2(a,b, θ

θ−1 ) denotes the generalized hypergeometric function with a = (1−
t,−t,1+ xi) and b = (1,−ni− t + xi).

Assuming that the center samples {(xi,ni), i = 1, ...,k} are independent, condi-
tional on θ , we obtain the likelihood of the meta-parameter θ for the whole data set
as the product

Pr(x|n,θ ,w) =
k

∏
i=1

Pr(xi|ni,θ ,w), (7)

where x = (x1, ...,xk), n = (n1, ...,nk) and w = FGM and IU .
Let us assume that a priori the links have probabilities π(FGM) = π(IU) = 1/2.

Then, the posterior model probabilities are given by

Pr(MFGM|x,n) =
m(x|n,FGM)

m(x|n,FGM)+m(x|n, IU)
= 1−Pr(MIU |x,n) (8)

where m(x|n,FGM)=
∫ 1

0 Pr(x|n,θ ,FGM)dθ and m(x|n, IU)=
∫ 1

0 Pr(x|n,θ , IU)dθ

are the marginals of the data (x|n) under model FGM and IU, respectively.
Finally, the posterior distribution of the meta–parameter θ is given by the mixture

of the posterior distribution of θ conditional on FGM and on IU , and the weights
of the mixture are given by their posterior model probabilities.

3 Testing the equality of treatment effectiveness

Treatments effectiveness comparison based on multiple studies is one of the most
important chapter in meta–analysis. We assume that there are available samples
(x1,n1) of the effectiveness of a given treatment in k1 healthcare centers, and
(x2,n2) for another treatment in k2 healthcare centers. We want testing H0 : ζ = ξ

versus the unrestricted alternative H1 : (ζ ,ξ ) ∈ (0,1)× (0,1).
This problem is equivalent to the model selection problem between the Bayesian

model M0
M0 : {Pr(x1|n1,θ)Pr(x2|n2,θ), π(θ)},

and M1
M1 : {Pr(x1|n1,ζ )Pr(x2|n2,ξ ), π(ζ ,ξ )},

where we assumed that the data x1 and x2 are independent, conditional on the meta-
parameters. The optimal solution to this decision problem under a 0− 1 loss func-
tion is to reject the null H0 if its posterior probability is smaller that 1/2, that is if
Pr(M0|x1, ,n1,x2,n2) < 1/2.
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Assuming that a priori Pr(M0) = Pr(M1) = 1/2, the posterior probability of M0
is given by

Pr(M0|x1,x2) =
1

1+B10(x1,x2)
, (9)

where B10, the Bayes factor to compare M1 and M0, is

B10(x1,x2) =
∫ 1

0
∫ 1

0 Pr(x1|n1,ζ )Pr(x2|n2,ξ )π(ζ ,ξ )dζ dξ∫ 1
0 Pr(x1|n1,θ)Pr(x2|n2,θ)π(θ)dθ

.

An empirical evaluation of the Bayesian testing procedure given above is pro-
vided in Moreno et al. (2014), suggesting that they are quite balanced.

4 Illustration

We consider data from 42 comparative studies (Nissen and Wolski, 2007) for an-
alyzing the possible cardiovascular toxicity of the rosiglitazone, a type 2 diabetes
drug, versus the control. They conducted searches of the published literature, the
Web site of the Food and Drug Administration and a clinical–trials registry main-
tained by the drug manufacturer (GlaxoSmithKline), and the criteria for inclusion
of the study for doing meta–analysis included a study duration of more than 24
weeks, the use of a randomized control group not receiving rosiglitazone, and the
availability of outcome data for myocard infarction from cardiovascular causes.

For those data we test the null hypothesis M0 that the efficacy of rosiglitazone
and placebo are equal. As a previous step we compute the weights of the FGM and
IU models under uniform marginals. The values obtained are Pr(MFGM|x1,x2) = 0
and Pr(MIU |x1,x2) = 1, respectively. These values show that the data favour models
for large homogeneity.

Then we compute the posterior probabilities of the null model PrU (M0|x1,x2) =
0.995. This posterior probability indicates that there is strong empirical evidence
in favour of the equality of myocard infarction for patients under rosiglitazone and
control. This conclusion is in disagreement with that obtained by Nissen and Wolski
(2007, p. 2459).

5 Discussion

The misuse and abuse of the different continuity correction methods in meta–
analysis for sparse data was presented in Sweeting et al. (2004). We agree with
these criticisms and in this paper we abandon the idea of correcting the data, and
propose an objective Bayesian meta-analysis procedure for binomial data which is
valid for analyzing binomial sparse data.
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We have proposed classes of bivariate prior distributions for (θi,θ) such that they
have given marginals, and can be parametrized in term of the Pearson’ correlation
coefficient between these parameters, so that the choice of the linking distributions
have been driven by the linear correlation coefficient. For these classes we have seen
that the higher the correlation coefficient the smaller the between center heterogene-
ity. Further, the linking and marginal distributions of θi and θ are coherent, and the
elusive heterogeneity notion of the studies to be pooled is described by the Pearson’
correlation coefficient, a quantity that varies in a bounded real set.

We have proposed the FGM and the intrinsic-uniform classes of distributions, a
pair that cover Pearson’s correlation coefficient values from 0 to 1, for testing the
equality of meta–parameters. Since we use two different linking distributions, we
need to averaging over the models and hence the final testing result is obtained as
a mixture of the tests for each of the links. The weights of the mixture are given
by the posterior probabilities of the models involved, and these weights inform us
about the linking distribution favoured by the data.
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