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Abstract A great number of procedures for sparse principal component analysis
(PCA) were proposed in the last decade. However, they cannot be applied directly
for PCA of compositional data (CoDa). We introduce a new procedure for sparse
PCA which takes into account the additional constraints specific for CoDa. The
proposed method is very effective to find logcontrasts in data, which is illustrated
on a real example.
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1 Introduction

Compositional data (CoDa) consist of vectors of positive elements which sum
to one, or in general, to some fixed constant K > 0, which is usually 1 or 100. The
CoDa are commonly present in a number of experimental fields, and often their
high dimensionality requires principal component analysis (PCA) in attempt to find
adequate low-dimensional description of the compositional variability (1).

The sample space for a p-dimensional compositional vector v is the simplex de-
finedas P = {v > 0;v"1 » = k}. For this sample space, the internal simplicial oper-
ation of perturbation, the external operation of powering, and the simplicial metric
define a Hilbert space (4). Thus, compositional problems can be investigated within
this space with its specific algebraic-geometric structure.
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Unfortunately, working in a simplex turns out to be unpopular. The widely ac-
cepted approach is to move from a constrained sample space (simplex) to an uncon-
strained space, as the Euclidean real space, by log-ratio transformations, opening
up all available standard multivariate techniques. Several log-ratio transformations
are proposed in the literature among which the centered log-ratio (c1r) and the
isometric log-ratio (i 1r) transformations seem to be the most widely accepted by
statisticians. Applying a log-ratio transformation to the input data for compositional
analysis, solves the paradox of subcompositional coherence (2). The property of
subcompositional coherence is indeed one of the cornerstones of compositional data
analysis: results should be the same for components in a full composition as in any
subcomposition, where the subcomposition has been closed again to give k-sum.
An example that is often given of subcompositional incoherence is that the corre-
lation coefficient between two components in a subcomposition is not the same as
that for the same two components in the full composition, see (10) and (6, p.141).

In this work, we follow the approach to move from simplex to real space by c1r
transformation and develop sparse PCA applied for compositions. A PCA of c1r
transformed data gives one zero eigenvalue with corresponding eigenvector with
all equal elements. ”The remaining eigenvalues are positive and, because the corre-
sponding eigenvectors are orthogonal to the final eigenvector, they define contrasts
(that is, linear functions whose coefficients sum to zero)” (8, p.347).

During the last decade it became clear that the analysis of high-dimensional data
requires methods that produce results involving only a small portion of the original
(some times huge) number of variables. The reason for this is twofold: such results
are easier to interpret, and most of the involved variables are not really important for
the main reasoning behind the data. A great number of procedures for sparse PCA
(12) were proposed . However, they cannot be applied directly for PCA of CoDa,
because such component loadings have additional constraint to add up to zero.

We introduce a new procedure for sparse PCA which takes into account the ad-
ditional constraints specific for CoDa. Let R denote a sample covariance/correlation
matrix and D — an r X r diagonal matrix containing its r largest eigenvalues. Con-
sider the following sparse PCA formulation proposed recently by (12):

min ||A|l¢, + p[|diag(A " RA) — diag(D)]]3 , ()
AeO(p,r)

where O (p, r) is the Stiefel manifold of all p x r orthonormal matrices A, i.e. ATA =
I, and diag() is a matrix-to-vector operator taking the main diagonal of the matrix
argument. The matrix norm ||Al|s, is defined as usual ||A||;, = trace[Asign(A)].
The tuning parameter 1 controls the importance of the two terms of the objective
function (1). Clearly, the smaller 1 the sparser component loadings A.

The sparse PCA defined in (1) can be easily adapted to analyze CoDa. We show
that one simply needs to solve (1) on the Stiefel sub-manifold &y (p,r) of all p x r
orthonormal matrices A with zero column sums, i.e. ATA =1, and AT1 px1 = 0px1:

min |||, +p|/diag(A"RA) — diag(D)]5 . 2)
Ae0y(pr)
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2 Steepest Descent Matrix Algorithm

We solve (2) by making use of the projected gradient approach. The standard gra-
dient method is designed for optimization problems without constraints, while the
projected gradient method extends the same idea for constrained optimization prob-
lems. The key feature of the projected gradient method is that it simultaneously
keeps the steepest descent direction and moves on Jy(p,r), the constrained set of
(2). This is achieved by projecting the steepest descent at each step of the algorithm
on the constrained manifold €(p,r). For this reason, one needs to have a projec-
tion formula (operator) of an arbitrary p X r matrix Z onto &y (p,r) at A, which is to
say on its tangent space 4 Oy(p,r) at A. The strong point of the projected gradient
approach is that it leads to globally convergent algorithms, i.e. converging from any
initial Ag € ﬁo(p, r).

Detailed consideration of the projected gradient approach and the Stiefel sub-
manifold &y (p,r) of all p x r orthonormal matrices with zero column sums is avail-
able in (11). Here we briefly revisit some useful results. It can be shown that the
tangent space at any A € Op(p,r) is given by

%ﬁo(p,r) = {H S Rpxr‘ HTJpA—FATJpH = Or}
= {H e R""| ATJ,,H is skew-symmetric} , 3)

where J, = I, — %1 17><11;|7—><1 is the p x p centering matrix. Then, it follows from
(3) that each element H of the tangent space Jp0y(p,r) has the form H = QK +
(Jp— Q0" W = QK + I, — QQT)J,,W for some skew-symmetric K and arbitrary
W. Therefore, it follows from (11, p.448) that the projection of a general Z € RP*"
onto the tangent space 74 O(p,r) is defined by

A'Z-ZTA
o) (Z) = A=+ (Jp—A4T)Z. @)

After having the projection formula (4) one needs the gradient of the objective
function (2) with respect to the Frobenius matrix norm ||Z||% = trace(Z'Z). We
employ the following smooth approximation ||Al|;, ~ trace[A " tanh(yA)], for some
large y > 0. Other smooth approximations for [|A[|,, are also available. Then, the
gradient of (2) is given by:

Va = tanh(YA) + (YA) © [1x11/,; — tanh(YA) © tanh(yA)] + )
URADiag(diag(A " RA) — diag(D)) ,
where © denotes the Hadamard (element-wise) matrix product and Diag() is a
vector-to-matrix operator producing a diagonal matrix from its vector argument.

Following the projected gradient formalism and applying the projection formula
(4) we arrive at a matrix ordinary differential equation (ODE) of the form:



4 Nickolay T. Trendafilov and Michele Gallo

dA  A'V,—-V]IA
= A— AT L (J,—AAT )V, . 6

The ODE (6) defines steepest descent matrix flow on &y (p,r) for the objective
function (2). Starting with an initial point, we can use this ODE to find the solution
of (2). Alternatively, one can use (4) and (6) and employ iterative algorithms for
optimization on matrix manifolds which are freely available (9).

3 Numerical example: Ischial2

Ischial? contains data for the category of hotels preferred by foreign tourists that
visit the island of Ischia in 2012. The six parts of compositions (or parts) considered
are: one star (1S), two stars (2S), three stars (3S), four stars (4S), five stars (5S) and
others (Oth - bed and breakfast, private apartments etc.). We solve (2) by taking R
the covariance matrix of the clr-transformed data:

3.9730 .2838 —.9194 —.9789 —1.4162 —.9423

2838 1.8167 —.5479 —.5164 —.9983 —.0379
—.9194 —.5479 5030 4172 4182 .1290
—.9789 —.5164 4172 4720 4244 1817 ’
—1.4162 —.9983 4182 .4244 1.8201 —.2482
—.9423 —.0379 .1290 .1817 -—.2482 9176

R=

and considering r = 2 sparse components such that D = Diag(5.5329,2.37438).

The variance V,, = trace(D) of the first two principal components of R is 7.9077,
and the percentage of the explained by them variance is 83.22% (= 100V, /trace(R)).
The sparse loadings A are orthonormal, but the components that they form are not
uncorrelated as the original principal components. Thus, V; = trace(AT RA) gives an
over-estimation of the variance of the sparse components. To overcome this prob-
lem (13) introduced adjusted variance which takes into account the correlations
among the sparse components. We adapt their definition to our case when the sparse
loadings are obtained from covariance matrix. Consider the following Cholesky de-
composition AT RA = CC". Then, the adjusted variance of the sparse components is
given by V,, = trace(C® C).

The choice of the tuning parameter u is of great importance. In sparse PCA,
tuning parameters as [ are usually found by cross-validation for large applications
(13). Another popular option is employing information criteria. For small applica-
tions, as those considered in the paper, the optimal tuning parameter U can be easily
located by solving the problem for several values of y and compromising between
sparseness and fit. Another option is to solve (2) for a range of values of p and
choose the most appropriate of them based on some index of sparseness. Here we

use the following one:
ViVe #
IS=-"20x 7)
v pr
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which is introduced in (12). V,,V, and V,, were defined above, and # is the number
of zeros among all pr loadings of A. IS increases with the goodness-of-fit (V;/V,),
the higher adjusted variance (V,/V,) and the sparseness.

We solve (2) for several values of pt and the results are summarized in Table 1.
The second and the third columns give the percentage of explained and explained
adjusted variances, respectively TV = 100V, /trace(R) and TVA = 100V, /trace(R).

Table 1 Solutions of (2) for a range of p values for comparing their merits

u TV TVA #0s IS
10.0 80.5870 79.4583 3 .2312
9.5 80.5615 79.4092 3 .2309
9.0 80.5126 79.3290 2306
8.5 80.5112 79.3270 2306
8.0 80.4960 79.3127
7.5 80.4916 79.3099
7.0 80.4882 79.3079
6.5 80.4798 79.3004
6.0 80.4615 79.2851
5.5 80.4486 79.2759
5.0 80.4196 79.2514
4.5 80.3991 79.2389
4.0 80.3569 79.2087
3.5 80.2549 79.1288
3.0 80.0848 79.0023
2.5 79.6932 78.7040
2.0 78.8883 78.0568
1.5 77.5811 76.9538
1.0 75.5226 75.1768
0.5 77.9744 742917
0.0 35.0617 35.0596

M RRAAERERRRAARERRAAREDEDRLOW
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~

The highest S value is for g = 0.5. The corresponding sparse loadings are:

855 —.883 —.227 —.707
707 797 707
| —a87 _ .190 _
Au—05= | 2 s Ap=8.0 = 203 s Ap=00 = 707
—.001 —.707 353 —.566 —.707
— 407 138

For comparison, we reproduce the sparse loadings for yu = 8.0. They are less
sparse, but the explained and the adjusted explained variances are quite high and
pretty close to the one of the first two principal components. Finally, the most ex-
treme case is when ¢ = 0.0 and the second term of (2) is switched off. The sparsest
possible loadings A,—.0 € € (6,2) depend only on the initial value for solving (6).

To study compositional relationships, ratio and subcompositions one can use
graphical tools as principal component plots as in Figure 1 or biplots (3; 7).

Here, we want to highlight the constant logcontrastin A, —o 5 given as 4.736 log(Oth) +
log(18)+5.73610g(3S) = constant. Thus, a proportionality relationship between the
categories is expressed as:

1S 35 \*7°
log (35> =< log (Oth) . 8)
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