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Abstract In this paper we present a generalisation of the algorithm by Raftery
and Dean [3], which is tailored for the selection of variables in Gaussian mixture
models. Our proposal allows for the detection of multiple independent clusterings.
A simulation study is provided in order to assess the performance of the algorithm
for different sample sizes and different numbers of variables in the data set.
Abstract In questo lavoro si presenta una generalizzazione dell’algoritmo in-
trodotto da Raftery e Dean [3], mirato alla selezione di variabili in misture gaus-
siane nel contesto della classificazione. La nostra proposta consente di individuare
molteplici classificazioni indipendenti. Si illustrano i risultati ottenuti su alcune si-
mulazioni, allo scopo di valutare empiricamente il comportamento dell’algoritmo
al variare delle dimensioni del campione e del numero di variabili nel data set.
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1 Introduction

Traditionally, in cluster analysis, a unique partition of a set of objects is searched
for. When dealing with high dimensional data, however, different grouping struc-
tures may be identified when looking at the data under different perspectives, and
features relevant to one clustering may differ from the ones relevant under an alter-
native view. An excellent overview of the methods proposed for detecting multiple
clusterings in the machine learning and in the data mining literature is provided by
[2], who also introduce a nonparametric Bayesian model that can discover multiple
clusterings in the data. Within a model-based framework, Galimberti and Soffritti
[1] approach the identification of multiple partitions as a model comparison prob-
lem. In this paper, we shall indicate how a generalisation of the variable selection
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method proposed by Raftery and Dean [3] can lead to the identification of multiple
clusterings. We shall consider a model for the multidimensional variable Y charac-
terised by the following structure:

p(Y |θ) = p(Y C̄T |YCT ,θC̄T
)

T

∏
t=1

pt(Y Rt |θt), (1)

where Y Rt , t = 1, . . . ,T, are subsets of variables giving rise to T clusterings, and
their distributions are independent finite Gaussian mixtures, pt(Y Rt ); YCT =∪T

t=1Y Rt

represents the subset of all clustering variables, Y C̄T = Y \Y C̄T represents the sub-
set of Y which provides no information about clustering, and θ = [θC̄T

,θ1, . . . ,θT ]
indicates the vector of unknown parameters. Equation (1) implies that

p(YCT |θ) =
T

∏
t=1

pt(Y Rt |θt),

i.e. the clustering variables giving rise to the T distinct mixture models are inde-
pendent. Each of the T mixtures can be used to partition the data into clusters by
applying an approximation of the Bayes rule of classification based on the fitted
parametric model [3].

2 Model selection.

2.1 Raftery and Dean method.

Raftery and Dean [3] introduced a variable selection algorithm that we now illus-
trate. Assume we have a dataset Y which, at any step of the variable selection algo-
rithm, is partitioned in three subsets of variables, Y (1) (the subset of already selected
variables), Y (2) (the variable being considered for inclusion into or exclusion from
the set of clustering variables), and Y (3) (the set of the remaining variables). The
decision of including Y (2) into (excluding Y (2) from) the set of clustering variables,
is taken by comparing the following models:

M1 : p(Y |θM1 ,M1) = p(Y (3)|Y (1),Y (2),θ13)p(Y (2)|Y (1),θ12)p(Y (1)|θ11) (2)

M2 : p(Y |θM2 ,M2) = p(Y (3)|Y (1),Y (2),θ13)p(Y (1),Y (2)|θ21) (3)

where p(Y (1)|θ11) and p(Y (1),Y (2)|θ21) in (2) and (3) are finite Gaussian mixtures.
The decision of including Y (2) into (excluding Y (2) from) Y (1), is taken whenever
B(M1,M2)< 0 (B(M1,M2)> 0), where

B(M1,M2) = BIC(M1)−BIC(M2) (4)

and BIC(M), the Bayes Information Criterion for model M, is defined as
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BIC(M) = 2× log(maximised likelihood)− (no. of parameters)× log(n).

When Y is assumed to be distributed as a multivariate mixture with Gaussian com-
ponents, the contribution of p(Y (3)|Y (1),Y (2),θ13) and p(Y (2)|Y (1),θ12) in (2) to
BIC(M1) can be easily computed by regressing Y (3) on Y (1) and Y (2), and Y (2)

on Y (1), whereas the contribution of p(Y (1)|θ11) can be computed by estimating
a mixture model for Y (1). Furthermore, it is assumed that the term p(Y (3)|Y (2),Y (1))
does not change when we move from M1 to M2. Therefore, in order to compare
BIC(M1) with BIC(M2), only the estimation of a finite mixture model for (Y (1),Y (2))
is needed. The algorithm is given by the following steps, as described in [3]:

1. Select the first clustering variable to be the one that has the most evidence of univariate
clustering.

2. Select the second clustering variable to be the one that shows the most evidence of
bivariate clustering including the first variable selected.

3. Propose the next clustering variable to be the one that shows the most evidence of mul-
tivariate clustering including the previous variables selected. Accept this variable as a
clustering variable if the evidence favors this over its not being a clustering variable.

4. Propose the variable for removal from the current set of selected clustering variables
to be the one for which the evidence of multivariate clustering including all variables
selected versus multivariate clustering only on the other variables selected and not
on the proposed variable is weakest. Remove this variable from the set of clustering
variables if the evidence for clustering is weaker than that for not clustering.

5. Iterate steps 3 and 4 until two consecutive steps have been rejected, then stop.

2.2 An algorithm for the identification of multiple clusterings

The aim of this section is to introduce an algorithm suitable for the identification of a
model like (1). Assume we have identified t−1 subsets of Y providing information
about t − 1 independent clusterings. Now, we wonder whether some variables in
Y C̄t−1 , independent of Y Rs , s= 1, . . . , t−1, can still provide any information about an
undetected clustering. Let Y (1)

t be a subset of Y C̄t−1 providing such information, Y (2)
t

a variable in Y C̄t−1 candidate for inclusion into (or exclusion from) Y (1)
t , and Y (3)

t the
set of the remaining variables in Y C̄t−1 . The decision of including (excluding) Y (2)

t

into (from) Y (1)
t , is taken by comparing the following models:

Mt,1 : p(Y |θMt,1 ,Mt,1) = p(Y (3)
t |Y

(2)
t ,Y (1)

t ,YCt−1 ,θt,13)

p(Y (2)
t |Y

(1)
t ,YCt−1 ,θt,12)

pt(Y
(1)

t |θt,11)p(YCt−1 |θCt−1), (5)

Mt,2 : p(Y |θMt,2) = p(Y (3)
t |Y

(2)
t ,Y (1)

t ,YCt−1
t ,θt,13)

pt(Y
(2)

t ,Y (1)
t |θt,21)p(YCt−1 |θCt−1), (6)
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where pt(Y
(1)

t |θt,11) and pt(Y
(2)

t ,Y (1)
t |θt,21) in (5) and (6) are the densities of two

finite Gaussian mixtures. Notice that, under Mt,2, Y (2)
t is a clustering variable and

Y (1)
t and Y (2)

t are independent of YCt−1 . The algorithm we propose works as follows:

I. If t = 1 run Raftery and Dean algorithm, otherwise

1. Select the first clustering variable in the t-th clustering, Y (1)
t to be the one

that minimizes BIC(M∗1)−BIC(M∗2), with

M∗t,1 : p(Y |θM∗t,1
) = p(Y (3)

t |Y
(1)

t ,YCt−1 ,θt,13)p(Y (1)|YCt−1 ,θt,11)

p(YCt−1 |θCt−1),

M∗t,2 : p(Y |θM∗t,2
) = p(Y (3)

t |Y
(1)

t ,YCt−1 ,θt,13)p(Y (1)
t |θt,21)

p(YCt−1 |θCt−1).

2. Propose the next clustering variable to be the one that shows the most ev-
idence of multivariate clustering including the previous variables selected.
Accept this variable as a clustering variable if the evidence favors (6) over
(5).

3. Propose the variable for removal from the current set of selected clustering
variables to be the one for which the evidence of multivariate clustering
including all variables selected versus multivariate clustering only on the
other variables selected and not on the proposed variable is weakest. Re-
move this variable from the set of clustering variables if the evidence for
(6) is weaker than that for (5).

4. Iterate steps 2. and 3. until two consecutive steps have been rejected, then
stop.

II. Iterate step I. until no further grouping structure can be found in the data.

2.3 Identification of the number of clusterings

After running the algorithm, we identify a number, say T ∗, of different clusterings,
produced by the following T ∗ models:

M1 : p(Y |θM1) = p(Y C̄1 |YC1 ,θC̄1
)P(YC1 |θC1)

MT : p(Y |θMT ) = p(Y C̄T
T |Y

CT ,θC̄T
)P(YCT |θCT ), T = 2, . . . ,T ∗

At each step, the algorithm estimates one of such models, and, as a byproduct, com-
putes the value of its BIC, say BIC(MT ). By selecting the model maximising the
BIC criterion, MT0 , we identify the optimal number of clusterings, T0.

It is worth to notice that, when T0 = 1, MT0 coincides with the (single cluster-
ing) model identified by Raftery and Dean’s algorithm; when T0 > 1 and Y C̄T0 is
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empty, i.e. when all the variables in Y provide some information about clustering,
MT0 reduces to:

p(Y |θMT0
) =

T0

∏
t=1

p(Y Rt |θCT0
),

which is the model considered in [1].

3 Simulation study.

We shall present the results of two experiments based on the simulation of samples
from

Y =
[
Y ′1, . . . ,Y

′
T ,U

′
11, . . . ,U

′
1S,U

′
K1, . . . ,U

′
KS,W1, . . . ,WJ

]′ (7)

where

- Yt = [Y1t ,Y2t ]
′ ∼∑

Gt
g=1 πgtφ(x|µgt ,Σgt), where t = 1, . . . ,T , Gt > 1, πgt = G−1

t , the
functions φgt(x|µgt ,Σgt) are bivariate Gaussian densities, with expectation µgt
and variance matrix Σgt such that µgt = (g−1)mt and Σgt is equal to one of the
following matrices:

S1 =

[
1 0.5

0.5 1

]
, S2 =

[
1.5 −0.75
−0.75 1.5

]
, S3 =

[
1 0
0 1

]
, S4 =

[
2 0
0 2

]
.

Furthermore, Yt and Ys are independent for t 6= s.
- Uks = Y1k + εs, εs

iid∼ N(0,1), s = 1, . . . ,S, k = 1, . . . ,K ≤ T .

- Wj
iid∼ N(1.5,4), j = 1, . . . ,J, with Wj independent of Yt and εs for all j,s, t.

3.1 Experiment 1

We fixed T = 3, G1 = 2, G2 = 3, G3 = 4, m1 = 5, m2 = 4, m3 = 3, Σ11 = Σ12 =
Σ13 = S1, Σ21 = Σ22 = Σ23 = S2, Σ32 = Σ33 = S3, and Σ34 = S4, K = 1 and for
different values of S, J and n we generated 1000 independent samples of size n from
(7). Table 1 shows the results of the simulation: we can notice that our algorithm
very often selects the variables correctly for moderately large sample sizes, whereas
the dimension of the data set does not affect sensibly its performance.

3.2 Experiment 2

In this experiment we fixed T = 2, G1 =G2 = 2, m1 = 5, m2 = 3, Σ1t = S1, Σ2t = S2,
and K = 1. For different values of S and J, we generated 1000 independent samples
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n J S N. of correct N. of correct variable selections for
variable selections mixture 1 mixture 2 mixture 3

100 2 1 708 985 988 723
150 2 1 914 984 985 928
200 2 1 956 974 973 978
200 9 1 946 966 964 982
200 19 1 940 970 968 969
200 10 10 905 968 970 935
200 49 1 925 961 961 966
200 25 25 886 970 973 917

Table 1 Results on 1000 independent simulations for each value of n and J in experiment 1.

of size n from (7), ran our algorithm on each sample and computed the adjusted
Rand index (ARI) between the true simulated clustering and the ones we estimated.
Table 2 shows the results of the simulation: the identification of the variables is as
satisfactory as in the previous experiment and the average ARI index between the
true and the estimated partition is very close to 1.

n J S N. of correct N. of correct variable selections for Average ARI
variable selections mixture 1 mixture 2 1st clustering 2nd clustering

100 2 1 982 991 987 0.980 0.861
150 2 1 992 993 993 0.989 0.889
200 2 1 997 997 999 0.994 0.902
200 9 1 993 995 997 0.997 0.904
200 19 1 985 996 987 0.995 0.892
200 10 10 993 996 996 0.995 0.901
200 49 1 978 997 979 0.995 0.890
200 25 25 973 992 979 0.995 0.892

Table 2 Results on 1000 independent simulations in experiment 2.
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