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Abstract In this paper, the problem of combining information from different sources
of data is considered. We focus our attention on spatially misaligned data, where
available information (typically counts or rates from administrative sources) refers
to spatial units that are different from the ones of interest. A hierarchical Bayesian
perspective is considered, as firstly proposed by Mugglin et al. in 2000, to provide
a fully model-based approach in an inferential, and not only descriptive, sense. In
particular, explanatory covariates are arranged to be modeled according to spatial
correlation through a conditionally autoregressive prior structure. In order to assess
model performance and its robustness we generate artificial data basing on a real
study and a simulation exercise is then carried out.

Abstract In questo lavoro si considera il problema dell’integrazione di dati prove-
nienti da diverse fonti. In particolare, vengono presi in esame dati spaziali non-
allineati, ovvero informazioni (solitamente conteggi o tassi provenienti da fonti
amministrative) riferite a unita spazialmente differenti da quelle di interesse. Con
questo obiettivo, i modelli gerarchici Bayesiani, cosi come proposti da Mugglin et
al. nel 2000, forniscono un valido strumento statistico in termini sia descrittivi sia,
soprattutto, inferenziali. Tale approccio prevede di utilizzare una serie di variabili
esplicative attraverso una struttura di autoregressione che spieghi la correlazione
spaziale e, di conseguenza, aiuti nell’integrazione delle informazioni. Il modello
proposto viene testato anche in termini di robustezza su dati simulati facendo rifer-
imento ad uno studio realmente svolto.
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1 Introduction

A challenging topic of spatial analysis is certainly represented by linking data col-
lected at different scales, locations and dimensions. The great interest on this area is
mainly due to practical reasons, drawing on works from geographic, ecological, en-
vironmental, agricultural and geological fields. In statistical literature several terms
have been introduced to denote the different aspects of the overall problem of “in-
compatible” spatial data and various solution to it have been proposed. The mainly
used terms are the ecological inference problem, the Modifiable Areal Unit Problem
(MAUP), the change of support problem (COSP), areal interpolation ([5]; [1]). The
proposed solutions depend on the study objectives and on the field of application
(i.e. block and co-kriging, multiscale modeling, Bayesian hierarchical modeling).
Gotway and Young ([4]) provided a complete multidisciplinary history of this topic
with a description of early solutions in both geographical and statistical literature.
Here, we focus the attention on spatially misaligned data, where available infor-
mation (typically counts or rates from administrative sources) refers to spatial areas
that are different from the ones of interest. A hierarchical Bayesian interpolation,
estimation and spatial smoothing is considered, as firstly proposed by Mugglin et
al. in 2000 ([6]), over misaligned data grids both defining regions too large to be
considered marked points and where one grid contains the other. The main aim is to
convert the source information to target zones by exploiting a set of covariates on
both grids. In order to assess performance of this method and its robustness we gen-
erate artificial data basing on a real study. Preliminary results are presented, different
scenarios will be compared as further developments of the simulation exercise.

2 Motivating example

European projects require often ad hoc data collection for socio-economic or en-
vironmental analysis. Case studies usually refer to areas defined more on the basis
of problem features than to administrative boundaries. Onerous effort in terms of
money and time consuming is needed to collect original data in many case limited
both by the area of interest and by very specific topics. This implies that the use of
secondary data (for example administrative or census data) as covariates would be
desirable and sometimes necessary, rising up the misaligned data problem.

As an example to motivate the needing of statistical methods aiming at integrat-
ing misaligned data, we refer to a real study at European level granted by European
Commission in 7FP. This project, namely CLAIM (www.claimproject.eu) aims to
provide the knowledge base to support an effective Common Agricultural Policy de-
sign in the direction of improved landscape management. The specific target is the
assessment of the capacity of landscape in providing added value for society in ru-
ral areas. This objective is realized through a deeper insight on the relation between
agriculture, landscape features and the socio-economic development of rural areas
by means of 9 case studies in different European countries. In Italy the selected area
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is Po Delta area where data were collected through two ad hoc surveys. Obviously
the area of interest does not coincide with municipalities boundaries making quite
inaccurate the use of administrative data as covariates. Then, on one hand secondary
administrative data are easily available, also geographical referred, and very useful
as explanatory variables; on the other hand they refer to different and larger areas
than selected case study sites.

3 Modeling framework

Let consider two misaligned spatial grids, Sp and Sc, where the first one defines
the so-called source zones, i.e. areas on which data of interest are available, and
the second grid partitions regions for which data are to be imputed, namely target
zones. Thus, the first grid is often referred to the response grid and the second one
to the explanatory grid. We consider a special case with respect to the more general
framework proposed by Mugglin et al. in 2000, where one data grid contains the
other, that is, following the motivating example, the administrative data coverage is
higher than the whole area of interest, say Sc C Sg. In this case, there will not exist
C cells with portions lying outside of Sp.

In the first grid regions are indexed by i (with i = 1,...,I) and denoted by B;;
similarly, for the second grid we have regions C;, with j =1,...,J. The intersection
of the two grids creates atoms, i.e., cells identifying partitions of both B; and C;
regions. Atoms can be referenced relative to an appropriate B cell and denoted by B
(withk=1,...,K;) or, equally, to an appropriate C cell by Cj; (withl =1,...,L;).
Thus, we can formally define the function f such that f(Bj) = Cj; and the inverse
function g such that g(Cj;) = Bj. Atoms with no intersection across the grids are
edge atoms. In our case, only B-edge atoms could exist, say Bjg.

For each source zone B;, we can observe the response Y;. Referring to the notation
introduced above, the main aim is then to convert Y; to Y J’ ,1.e. imputing values of Y to
the target zones, by exploiting covariates which can be observed on the explanatory
grid, X;, and/or to the response grid, W;. In this first attempt, let us consider only the
availability of an X covariate, which is assumed to be an aggregated measurement
similarly to the response Y. Under this hypothesis the observed values of ¥; can
be regarded as Y ; Yjx, where Yj; are latent values for the atoms associated with B;.
Similarly, X; =Y. j X1, where X; are unobserved according to the atoms associated
with C -

In order to specify the model, we assume Poisson distributions for the observed
measurements

Xj ~ Poi(e™|Cj)) ey

Y; ~ Poi <€Hi Z |Bik‘]’l(Xilk/|Bik‘; 6,-k)> 2)
k
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where |A| denotes the area of a generic region A, @; and y; are random effects cap-
turing spatial association among the X;’s ad the ¥;’s, respectively, /(e) is a selected
parametric function depending on 8;, and adjusting an expected proportional-to-area
allocation according to X}, which are the values of Xj; associated to the response
grid. As a result, the conditional distribution of the latent variables X;; and Yy given
the observed is a product multinomial

(Xj1, X2, -, Xj1;) ~ mult(Xj3qj1,q2 -, q;L;) (3)

(Yi1, Xz, ..., Xix;) ~ mult(Y;; pi1, pi2, - - -, Pik;) “4)
_ |Bit |h(X}./|Bi|:6ik)

Y [Bilh(X]/|Bix]:6x) *

For B-edge atoms, Bjg, there is not a corresponding Cj;, thus a latent X/ is intro-
duced whose distribution is defined by the adjacent non-edge atoms

ICji|
where gj; = \ij,\ and pj;

Xjp ~ Poi(e® |Big|) (5)

where @] are additional spatial random eftects to be associated to the others ®;.

In a fully Bayesian setting, prior distributions for each involved parameter need
to be specified. To capture the spatial nature of B;, a Markov random field prior for
the p;’s can be adopted ([2]). In particular, if the adjacency form is considered, we
obtain a conditional autoregressive (CAR) prior ([3]); in the most simplest form, we
refer to an exchangeable prior that captures heterogeneity but not local clustering
across areas. Similar considerations can be referred to the set of spatial random
effects for C; regions, namely {a)ja)i*}. For other (hyper-) parameters proper and
vague priors are generally adopted (see [6] for more details).

4 Simulation study

In order to test the method described above, we generate an artificial data set basing
on the practical purposes of the motivating example. As a first attempt, we consider
a restricted number of areas for both grids, with the potential of being extended by
using data from Global positioning systems (GPSs) and geographical information
systems (GISs), as soon as available. We select a number of 3 source zones B; and 4
target zones Cj, with Sc C Sp. The intersection of the two grids generates 3 B-edge
atoms, Big, Bop and Bsg and a total of 9 non-edge atoms, By (with k =1,... K;
and K; = 3,5,4) or Cj; (with [ =1,...,L; and L; = 3,2,2,2). Figure 1 graphically
resumes the grids.

Areas of regions and atoms are randomly generated. These are then employed
to simulate data for the covariate X and the response Y for each atom through the
multinomial distribution, given the parameters fixed for the distribution of {;} and
{a) Hox } Here, we first consider a simple case, where both the spatial random effects
follow exchangeable priors.
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Fig. 1 Representation of Areal Data Misalignment of the simulation.

Parameter estimation is then implemented by considering the model specification
introduced above adopting a MCMC approach and using the software WinBUGS
([7]). Referring to the seminal work of Mugglin et al. ([6]), we choose a function
h for the computation of the p;;’s ensuring non-null estimates of the response ¥ on
the atoms, i.e. h(X], /|Bi|; Oi) = X, /|Bir| + 6 with 0 = Ki\%ml . We firstset 0 =1,
considering different specifications in future developments.

Preliminary results are reported in Table 1. We consider the parameters of interest
on response Y imputed for both target zones, Y/, and non-edge atoms associated
to the explanatory grid, ijl. We show and compare true and estimated parameters,
together with 95% credibility intervals (CI).

Table 1 True parameters and estimates from hierarchical Bayesian model.

Parameters True Estimates (95% CI)

Y/ 27650 27590 (27320 - 27820)
Y, 2451 2426 (2367 - 2492)
Y] 8246 8263 (8192 - 8352)
Y, 53793 53690 (53190 - 54280)
Y/ 1 2447 2375 (2309 - 2441)
Y1,,2 13303 13160 (12800 - 13470)
Y{,3 11900 12050 (11850 - 12280)
Yz"] 75 73 (69-177)

Y2/,2 2377 2353 (2295 - 2418)
Y3/‘1 5014 4969 (4836 - 5102)
Y3,,2 3233 3294 (3227 - 3365)
Yi] 34415 33960 (33200 - 34750)
Y4"2 19378 19730 (19380 - 20050)

The estimates seem to be quite precise, with acceptable relative biases (varying
from a minimum of —2.9% to a maximum of 1.9%) and non-coverages of 95% CI
only for two values.
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5 Final remarks

In this work, we considered the problem of combining information from different
sources of data focusing on spatially misaligned data. A hierarchical Bayesian mod-
eling is used to convert the source information to target zones by exploiting a set of
covariates on both grids. We applied this method to simple simulated data generated
to resemble a real study. The estimates we obtained result to be quite precise, with
acceptable relative biases.

As a future development, we would assess method robustness with respect to
model misspecifications (e.g., with respect to prior assumptions) and further con-
sidering a larger number of areas in both grids. Finally, we would be interested into
the application of the method to real data.
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