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Modelli di Analisi di Ridondanza complessi con covariate: uno studio di simulazione

Pafundi Pia Clara and Vacca Gianmarco

Abstract The focus of the present work are Structural Equation Models in the Redundancy Analysis framework (SEM-RA) and, in particular, the extension of Redundancy Analysis to more than two sets of variables, with the recently developed Extended Redundancy Analysis as the major outline. Drawbacks of the model in presence of concomitant indicators will be highlighted, thus introducing a further extension, Generalized Redundancy Analysis, whose introduction will be motivated, along with a simulation study aimed to assess the performance of the model, in three path diagrams at increasing complexity.

Abstract Il focus del presente lavoro sono i Modelli ad Equazioni Strutturali nell’ambito della Redundancy Analysis (SEM-RA) e, in particolare l’estensione della Redundancy Analysis a più di due insiemi di variabili, attraverso la Extended Redundancy Analysis, di cui si evidenzieranno i limiti in presenza di indicatori concomitanti. Si introdurrà, motivando assieme ad uno studio di simulazione che valuti le prestazioni del modello, in tre path diagrams a crescente complessità, l’introduzione come ulteriore estensione della Generalized Redundancy Analysis. 
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1 Introduction

In the Structural Equation Models - Redundancy Analysis framework (SEM-RA), our main focus will be on the extensions of the original Redundancy Analysis (RA; [10]) model, which analyses the causal relationship between two sets of multivariate data [4]. A few attempts have been made to extend RA to more than two sets of variables [8, 11], with the most relevant Multiblock Redundancy Analysis (MbRA; [1]) and Extended Redundancy Analysis (ERA; [3]) (see Figure 1).

Figure 1: MbRA (on the left) and basic ERA (on the right) path specifications.
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In MbRA the relationships between one block of dependent variables and several blocks of explanatory variables is modelled, maximizing the sum of the covariances between the latent constructs of each explanatory block and the latent construct of the dependent block, whereas in ERA a linear combination of the manifest variables is employed to obtain the latent composites (LCs), which are in turn fitted with the endogenous block. The estimates of the parameters are obtained minimizing a global LS criterion. ERA stands off as an incisive improvement in the SEM-RA framework, especially thanks to its versatility: it can accommodate more diverse and complex specifications than MbRA (in the ERA model in fig. 1 a LC does not necessarily have an impact on all the endogenous variables), and it can also include either (i) direct effects from covariates not strictly taking part in the formation of the latent composites or (ii) simultaneously exogenous and endogenous variables (see Fig. 2). 

Figure 2: Examples of two path diagrams not feasible with MbRA.

[image: image7.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

6

.

0

6

.

0

0

0

0

0

6

.

0

6

.

0


2 Generalized Redundancy Analysis

Extending the ERA formal specification to evaluate direct effects without altering the model formulation or the estimation algorithm leads to inefficient solutions and misinterpretation of the coefficients, since (a) the estimation of the parameters forming the LCs is performed by ERA between the endogenous block (i.e. Y) and the exogenous and concomitant block altogether, in block matrix notation (i.e. [X|T]), ignoring direct effects; (b) T and X are typically correlated and present different causal effects on Y, making the separate contribution of each block to the determination of the LC scores not distinguishable. GRA [7] has been proposed as a further extension, to include concomitant indicators
:

Y= TAY’ + XWA’ +TWTA’ + E
where WT is the corresponding weight matrix and AY is the corresponding direct coefficient matrix. Two further steps are then added to the algorithm: (1) the TAY’ block is isolated and estimated separately; (2) W and WT are estimated separately and correlation between X and T is accounted for, by matrix manipulation.

3 A simulation study

In this section the GRA model in three different path diagrams at increasing complexity (Fig. 3) will be evaluated through simulation (SAS software, [9]), focusing on GRA and how biases and accuracy of the estimates behave in presence of different concomitant links, rather than on comparing ERA and GRA in a single model specification (as in [7]). In fact, the ultimate aim of these simulations is to point out variations in bias patterns in a clear step-by-step increase in complexity: (i) a single covariate affecting a single endogenous variable (Model I); (ii) a single concomitant indicator affecting also LCs (Model II) and finally, (iii) a concomitant indicator affecting both the endogenous variables (Model III). 

Figure 3: Three GRA path specifications, with increasing complexity.
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The distributions underlying X, T and E simulated data is X~N4(0, ΣX), T~N(0, σ2T), and E~N2(0, ΣE), with covariance matrices and arbitrary parameters for W and A’ defined as follows (as in [3]):

 ΣX                                      ;   T = 1  ;         ΣE               ;       W                  ;    A’                   
For Model I, with only one external link, WT is null and AY’= [0.3  0]; for Model II, with a concomitant link, WT = [0.4  0] and AY’= [0.3  0]; for Model III, with the second external link: WT = [0.4  0] and AY’[image: image3.png] QUOTE  
= [0.3 0.3]. A population of N=1000 observations is then randomly generated and the endogenous matrix Y is calculated based on the above specifications. GRA is evaluated in each specification with increasing sample sizes, with two indices representing the accuracy of the estimates: (1) the congruence coefficient (1/2 [5][image: image5.png] QUOTE  
 between the estimates  and the real parameters and (2) the relative bias (in absolute value), of each estimate. Estimates have been obtained through Bootstrap resampling [2], for each sample size.
3.1 Simulation Results

In all three models convergence of the estimates was reached (see Table 1). Results show a general increase in Mean() along with an increase in the sample size, indicating a satisfactory recovery of the population parameters, with n>200, for Models I and II ( > 0.85). The distribution of  through the replications appears to be increasingly pointed towards high values, with decreasing standard deviations. Model III fails to recover efficiently the true values of the coefficients, with  < 0.9 until n = 600 and more variable results (StdDev() = 0.110 at n = 400). 

Table 1: Descriptive statistics of  for the GRA model for n= {50; 100; 200; 400; 600} and model complexity. For model III convergence criterion has been lowered from 10-4 to 10-3.

	Model
	I
	II
	III
	I
	II
	III

	n
	Mean()
	StdDev()

	50
	0.653
	0.597
	0.494
	0.226
	0.228
	0.226

	100
	0.770
	0.734
	0.642
	0.158
	0.172
	0.219

	200
	0.855
	0.845
	0.784
	0.113
	0.107
	0.173

	400
	0.912
	0.903
	0.880
	0.074
	0.065
	0.110

	600
	0.929
	0.925
	0.917
	0.058
	0.053
	0.067


Reasons are highlighted analyzing the estimates biases (Table 2), generally satisfactory in Models I and II, although the presence of the concomitant indicator affects some estimates peculiarly: with t1, W biases do not decrease, having w1 and w2 affected by its presence (→ y1 in I and also →f1 in II), for which w1 > 50% and w2 has increasing bias for n = 50→300; without concomitant indicators, A biases do not decrease (a3 and a4 in I and II are affected by the absence of indicators related to f2, for which (a3) and (a4)  are ~ 20%, regardless of n). Model III is more unstable for lower values of n, with biases mainly on loadings related to f1: having t1 and f1 sharing the same endogenous variables, should normally lower A biases, but the causal link between t1 and y2 is only external, influencing them similarly to Model I. Moreover, the additional external link affects wT1 bias ((wT1) > 20% at high sample size).
Table 2: Estimates, S. Errors and biases for relevant parameters, by model and sample size.
	Model
	I
	II
	III

	Par.
	Pop.
	n
	Est.
	S.E.
	%Bias
	Est.
	S.E.
	Bias%
	Est.
	S.E.
	Bias%

	w1
	0.6
	50
	0.18
	0.701
	70.1
	0.17
	0.614
	70.1
	0.16
	0.558
	73.3

	
	
	100
	0.25
	0.547
	58.3
	0.22
	0.467
	62.6
	0.21
	0.386
	64.6

	
	
	200
	0.27
	0.384
	55.1
	0.28
	0.352
	53.7
	0.24
	0.320
	60.5

	
	
	400
	0.31
	0.273
	49.1
	0.27
	0.243
	54.4
	0.25
	0.253
	58.3

	
	
	600
	0.32
	0.216
	45.9
	0.3
	0.202
	51.8
	0.27
	0.208
	55.2

	w2
	0.6
	50
	0.61
	0.631
	2.3
	0.52
	0.537
	14.7
	0.49
	0.504
	19

	
	
	100
	0.7
	0.442
	15.1
	0.59
	0.397
	1.9
	0.47
	0.383
	22.1

	
	
	200
	0.74
	0.301
	23.7
	0.63
	0.301
	5.4
	0.61
	0.310
	1.3

	
	
	400
	0.74
	0.216
	22.8
	0.67
	0.205
	12
	0.72
	0.215
	19.3

	
	
	600
	0.73
	0.175
	21.6
	0.68
	0.17
	13.1
	0.69
	0.167
	14.8

	a1
	0.3
	50
	0.23
	0.140
	16.9
	0.3
	0.297
	48.4
	0.37
	0.399
	85.2

	
	
	100
	0.23
	0.010
	15
	0.32
	0.497
	58
	0.44
	0.472
	120

	
	
	200
	0.22
	0.068
	10.1
	0.25
	0.152
	26.7
	0.29
	0.260
	45.9

	
	
	400
	0.21
	0.047
	6.4
	0.23
	0.056
	17
	0.22
	0.121
	10.8

	
	
	600
	0.21
	0.039
	4.1
	0.23
	0.230
	15.1
	0.23
	0.040
	15.4

	a2
	0.3
	50
	0.23
	0.138
	15.3
	0.28
	0.280
	40.2
	0.27
	0.153
	76.9

	
	
	100
	0.22
	0.094
	8.0
	0.25
	0.098
	23
	0.42
	0.448
	107.4

	
	
	200
	0.2
	0.072
	1.2
	0.23
	0.069
	14.8
	0.28
	0.281
	40.5

	
	
	400
	0.2
	0.050
	2.1
	0.22
	0.049
	8.8
	0.21
	0.081
	3.7

	
	
	600
	0.2
	0.041
	1.5
	0.21
	0.042
	7.2
	0.21
	0.041
	6.5

	a3
	0.3
	50
	0.27
	0.152
	33.9
	0.26
	0.151
	31.5
	0.27
	0.153
	34.5

	
	
	100
	0.25
	0.100
	24.9
	0.24
	0.156
	21.5
	0.23
	0.102
	14.7

	
	
	200
	0.24
	0.071
	22.1
	0.25
	0.071
	22.9
	0.22
	0.065
	10.9

	
	
	400
	0.24
	0.048
	21.7
	0.24
	0.050
	20.6
	0.22
	0.044
	8.1

	
	
	600
	0.24
	0.039
	21.7
	0.24
	0.042
	19.7
	0.24
	0.043
	13.7

	a4
	0.3
	50
	0.27
	0.136
	37.2
	0.26
	0.144
	30.9
	0.26
	0.151
	30.7

	
	
	100
	0.26
	0.097
	27.4
	0.25
	0.102
	24.2
	0.23
	0.104
	16.8

	
	
	200
	0.24
	0.070
	21.9
	0.24
	0.072
	20.2
	0.22
	0.069
	12.2

	
	
	400
	0.24
	0.050
	20.7
	0.24
	0.051
	20.5
	0.22
	0.045
	9.1

	
	
	600
	0.24
	0.039
	21.7
	0.24
	0.04
	19.9
	0.24
	0.041
	19.2

	wT1
	0.4
	50
	-
	-
	-
	0.27
	0.492
	32.4
	0.22
	0.592
	45.3

	
	
	100
	-
	-
	-
	0.31
	0.407
	23.7
	0.15
	0.662
	62.9

	
	
	200
	-
	-
	-
	0.35
	0.279
	12.6
	0.21
	0.499
	46.6

	
	
	400
	-
	-
	-
	0.38
	0.208
	6.3
	0.25
	0.315
	36.9

	
	
	600
	-
	-
	-
	0.38
	0.161
	5.3
	0.39
	0.154
	3.7


4 Conclusion

Several extensions of RA, among which MbRA [1] and ERA [3], have been proposed to investigate causal relationships between more than two datasets [8, 11]. However, both methodologies present limitations. ERA, in particular, studies more complex relationships among variables, also including possible direct effects of observed variables on endogenous variables [7], but its limits are clear when we want to analyze these effects without any change either in the model specification or in the estimation procedure. Thus, GRA [7] has been introduced, with innovative and theoretically valid features in the estimation of SEM, providing separate estimation for each different influential block and efficiently dealing with concomitant and external covariates simultaneously. GRA also provides good performances in recovering population parameters at sufficiently high sample size, either when compared to the ERA block-matrix counterpart [7], or in itself when challenged by increasingly complex path diagrams, as pointed out by the previous simulations. 

Empirical validity of GRA has been proven in the analysis of Human Capital (HC), considered as a compound of latent traits derived from education (f1) and working experience (f2) variables, and of their impact on several economic indicators [6]: the related model has first been estimated without any concomitant indicator, adding it on second instance to test whether the economic background of the subjects (t1) had a meaningful impact on the income variables. The provided results are fully interpretable and coherent, sustaining the hypothesis of a positive direct effect of the socioeconomic background on the income.

Some further complex specifications need to be tested, as the presence of correlations between different blocks, different underlying distribution, and concomitant indicators simultaneously linked to different LCs, for which correlations between LCs appear to be a crucial aspect to outline.
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� A concomitant indicator is an exogenous covariate that does not strictly belong to the formative blocks of unobservable composites, but that may have a causal impact on observed endogenous variables and on composites too [8].
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