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Abstract The estimation of diversity indexes is considered when species abundance
is estimated by means of plots thrown onto the study area in accordance with prob-
abilistic schemes. In presence of rare species the sample diversity index estima-
tors heavily underestimate their population counterparts. Under the uniform random
sampling variance estimation and reduction of finite-sample negative bias are per-
formed using jackknife. Despite its theoretical simplicity, uniform random sampling
may lead to uneven coverage of the study area. To avoid the shortcoming, the use of
stratified sampling is adopted. Large sample properties of diversity indexes estima-
tors are considered under this alternative scheme as well as the use of jackknife to
deal with negative bias.
Abstract La stima degli indici di diversità è effettuata stimando l’abbondanza delle
specie tramite plot collocati nell’area di studio sulla base di disegni campionari.
In presenza di specie rare gli indici risultano fortemente sottostimati. Nel caso del
campionamento casuale uniforme la stima della varianza e la riduzione della dis-
torsione negativa avvengono attraverso l’uso del jackknife. A fronte della sua sem-
plicità, questo campionamento putò causare una copertura non uniforme dell’area
di studio e pertanto risulta opportuno utilizzare il campionamento stratificato. Le
proprietà per grandi campioni degli stimatori cosı̀ ottenuti sono analizzate cosı̀
come l’uso del jackknife per gestire la distorsione negativa.
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1 Introduction

The concept of ecological diversity relies on the apportionment of abundance into
the animal or plant species forming the ecological community under study. Any
diversity index is a function of the species abundance vector which is actually un-
known and it must be estimated by means of a sample survey.

This paper deals with the estimation of diversity indexes when the species abun-
dance vector is estimated by means of plots placed onto the study region in accor-
dance with probabilistic schemes. The most simple scheme is the so-called Uniform
Random Sampling (URS). Under URS, plots are uniformly and independently lo-
cated giving rise to consistent and large-sample normally distributed diversity in-
dexes estimators. In presence or rare species, diversity indexes estimators are highly
negatively biased for a finite number of plots, and bias reduction is achieved by us-
ing jackknife (Barabesi and Fattorini, 1998). Despite its theoretical simplicity, URS
may lead to uneven coverage of the study region which may cause a massive absence
of the less abundant species in the sample. In order to overcome this drawback, a
sampling scheme frequently adopted in environmental studies is the so-called one-
per-stratum Stratified Sampling (SS). The SS scheme involves partitioning the study
region into spatial subsets of equal size and uniformly and independently selecting
a plot in each of these subsets.

This paper aims to discuss the results, quoted from Barabesi et al. (2014), on the
large sample properties of the diversity indexes estimators under SS, as well as on
the sampling variance estimation and the bias occurring for a finite number of plots.

2 Statistical properties

By assuming that k species are present in the population, let N = (N1, . . . ,Nk)
t be

the corresponding abundance vector. Any diversity index can be viewed as a func-
tion of the abundance vector, say ∆(N). Denote by N̂n the mean of the Horvitz-
Thompson estimators based on the n plots under URS. It can be proven that N̂n is
unbiased with variance-covariance matrix var(N̂n) where max[var(N̂n)] = O(n−1)

and that var[N̂n]
−1/2(N̂n−N)−→Nk(0,I) as n→ ∞. If ∆ is differentiable at N and

d 6= 0, where d represents the gradient of ∆ at N, a straightforward application
of the Delta method ensures that the properties of N̂n are asymptotically trans-
ferred to the diversity index estimator ∆(N̂n), i.e. ∆(N̂n) is asymptotically unbi-
ased, consistent and normal with an asymptotical O(n−1) variance which can be
consistently estimated by σ̂2

URS,n. However, even if ∆(N̂n) is asymptotically unbi-
ased, a bias occurs for finite samples. Barabesi and Fattorini (1998) consider the
use of jackknife to reduce bias and to provide variance estimates. From the stan-
dard results on jackknife (e.g. Shao and Tu, 1995), if ∆ is twice continuously dif-
ferentiable at N and if d 6= 0, denoting by ∆̂n, jack the jackknife estimator, it fol-
lows that σ̂

−1
n, jack(∆̂n, jack−∆(N))−→N(0,1), where σ̂2

n, jack is the jackknife vari-
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ance estimator which turns out to be consistent for σ2
URS,n. Moreover, it holds that

E[∆̂n, jack] = ∆(N)+ o(n−1). Accordingly, under URS, ∆̂n, jack shares all the prop-
erties of ∆(N̂n), but, while ∆(N̂n) has a O(n−1) bias, the bias of ∆̂n, jack is o(n−1).
Therefore, Barabesi and Fattorini (1998) recommend the use of ∆̂n, jack in order to
achieve better centered confidence intervals and more reliable assessments of statis-
tical hypotheses on ∆(N).

Under SS, denoting by Ñn the mean of the Horvitz-Thompson estimators based
on the n plots, by extending the results provided by Barabesi, Marcheselli and
Franceschi (2012) for the estimation of a scalar parameter to the parameter vec-
tor N, Barabesi et. al. (2014) prove that Ñn is unbiased and that, under rather
mild conditions on the shape of the spatial subsets partitioning the study region,
max[var(Ñn)] = O(n−3/2) and var[Ñn]

−1/2(Ñn−N)−→Nk(0,I) as n→ ∞. More-
over, the authors suggest the use of a large sample conservative estimator of var[Ñn]
based on “neighbours”plots.

The asymptotical properties of the diversity index estimator ∆(Ñn) and its bias
reduction have been investigated by Barabesi et al. (2014) who show that, if the
conditions for the large-sample normality of Ñn are satisfied, the application of the
Delta method ensures that σ

−1
n,SS(∆(Ñn)−∆(N))−→N(0,1) as n→ ∞, where in this

case σ2
n,SS = dtvar[Ñn]d represents the asymptotic variance of ∆(Ñn) and σ2

n,SS =

O(n−3/2). Moreover, an asymptotically conservative estimator σ̃2
n,SS for σ2

n,SS based
on the “neighbours”plots is proposed. Practically speaking, analogously to the URS
case, the properties of Ñn are asymptotically transferred to ∆(Ñn). Indeed, ∆(Ñn)
is consistent and large-sample normally distributed with a O(n−3/2) variance. Thus,
SS turns out to be superefficient with respect to URS even in the case of diversity
index estimation. As to the bias order, Barabesi et al. (2014) prove the following
result.

Theorem 1. Let ∆ be twice differentiable at N with bounded derivatives. Then,

E[∆(Ñn)] = ∆(N)+O(n−3/2). (1)

Theorem 1 ensures that under SS the bias of ∆(Ñn) is o(n−1) showing the superiority
of SS with respect to URS also in term of bias. In order to deal with the finite
sample bias of ∆(Ñn), Barabesi et al. (2014) consider the use of jackknife. To this
purpose, denoting by ∆̃n, jack the jackknife estimator corresponding to ∆(Ñn), the
authors prove the following result.

Theorem 2. If ∆ is third-order differentiable at N, it holds that

E[∆̃n, jack] = ∆(N)+O(n−1). (2)

On the basis of (2), it follows that ∆̃n, jack has a O(n−1) bias even if ∆ is a third-order
differentiable function at N and hence under SS the use of jackknife increases the
order of the bias instead of reducing it. This drawback obviously depends on the
fact that the n Horvitz-Thompson estimators obtained on the basis of the n plots are
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independent, but not identically distributed, and they have different expectations.
Thus, in contrast to a common tendency of statistical practice, care must be taken in
the use of resampling procedures when the conditions under which they are able to
work are not met.

3 Simulation study

In order to evaluate the performance of SS with respect to URS, a simulation study
was performed (Barabesi et al. (2014)).

A square of size 1ha was assumed to be the study region. Within the region a
community of N = 1,000 trees, partitioned into k = 36 species, was considered. Tree
locations were generated in such a way that 6 species (3 of them constituted by 300,
200 and 100 trees, respectively, and the remaining 3 constituted by 20 trees each)
were uniformly distributed onto the square. In order to simulate species association
and species avoidance, 15 species (2 of them constituted by 50 trees each, 3 of them
constituted by 20 trees each, and the remaining 10 constituted by 1 tree each) were
uniformly distributed within a circle of radius 15m settled on the upper part of the
quadrat. Similarly, 15 species with the same abundance were uniformly distributed
within a circle of radius 15m settled in the lower part of the quadrat. It is worth
noting that the simulated community was manly composed by very rare species,
since 20 out of the 36 species have abundance equal to 1. The Shannon diversity
index ∆SH = −∑

k
l=1(Nl/N) ln(Nl/N) and the Simpson diversity index ∆SI = 1−

∑
k
l=1(Nl/N)2 were considered to quantify diversity and turned out to be 2.35 and

0.85, respectively. Since in a community of 36 species it turns out that 0 ≤ ∆SH ≤
3.58 and 0 ≤ ∆SI ≤ 0.97, the simulated forest showed a high level of ecological
diversity due to the presence of the 20 rare species.

A plot sampling was simulated on the study region by using circular plots of ra-
dius 5m. In order to avoid edge effects and to ensure the same inclusion probability
to each tree in the forest, the study region was enlarged by a buffer of width 5m.
Under URS, n = m2 (with m = 5, . . . ,20) sample points were uniformly and inde-
pendently thrown onto the enlarged study region. For each sample point, the plot
was constructed and the trees contained in the circle were sampled. Accordingly,
the estimate of the Shannon and Simpson diversity indexes and the correspond-
ing asymptotic variance estimate, i.e. the realizations of ∆(N̂n) and σ̂2

n,URS, were
achieved along with the corresponding jackknife estimates, i.e. the realizations of
∆̂n, jack and σ̂2

n, jack. The estimates of the relative errors were achieved as the real-

izations of σ̂n,URS/∆(N̂n) and σ̂n, jack/∆̂n, jack, respectively. The extremes of confi-
dence intervals at nominal level of 0.95 were implemented as the realizations of
∆(N̂n)± z0.95σ̂n,URS and ∆̂n, jack± z0.95σ̂n, jack, respectively. For each sampling effort
n, the procedure was replicated 10,000 times to achieve the Monte Carlo distribu-
tion of the diversity indexes estimators and the corresponding variance estimators.

The whole simulation procedure was repeated under SS. In this case the enlarged
study region was partitioned into n = m2 (with m = 5, . . . ,20) squares of the same
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size and a sample point was uniformly selected in each square. The simulation study
was carried out similarly to the URS case.

The simulation results confirm the theoretical findings: under URS the jackknife
estimator has to be preferred while the opposite conclusion occurred under SS. It
should be remarked that bias reduction should be the main concern when estimating
diversity indexes. Indeed, as pointed out by Särndal and Lundström (2005, p. 98),
“if an estimator is greatly biased, it is poor consolation that its variance is low”. For
such a reason, the performance of the strategy based on URS joined with jackknife
estimator and of the strategy based on SS without jackknife correction are compared
in terms of relative bias, relative root mean squared error, actual coverage of the
confidence intervals at nominal level 0.95 and empirical expectation of the relative
error estimators.

Under URS, the bias level of ∆̂n, jack becomes irrelevant (below 1%) for n = 49
when estimating the Shannon index and for n = 25 when estimating the Simpson
index. On the other hand, by using ∆(Ñn), n = 144 and n = 64 plots are respectively
necessary for estimating the Shannon and the Simpson indexes at the same level
of bias. Even if URS invariably provides smaller bias than SS, the use of ∆(Ñn)

turns out to be invariably more accurate with respect to the use of ∆̂n, jack - with an
efficiency which increases from about 1.5 when n = 25 to about 3 when n = 400
for both indexes. Under URS and for both indexes, the jackknife variance estimator
satisfactorily performs in terms of bias of the relative error estimator and coverage
of confidence intervals for n above 100. Under SS and for both indexes, estimator
σ̃2

n,SS becomes conservative in terms of bias and coverage for n above 144.
The practical conclusion deriving from both the theoretical findings and the sim-

ulation results is that the best strategy to perform design-based diversity index es-
timation consists in estimating N by means of the SS scheme and subsequently
estimating ∆(N) by means of ∆(Ñn) - without further attempt to use jackknife for
reducing bias.
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