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Abstract Empirical Bayes procedures are commonly used based on the supposed
asymptotic equivalence with fully Bayesian procedures, which, however, has not so
far received full theoretical support in terms of uncertainty quantification. In this
note, we provide some results on contraction rates of empirical Bayes posterior
distributions which are illustrated in nonparametric curve estimation using Dirichlet
process mixture models.
Abstract Le procedure bayesiane empiriche sono comunemente utilizzate sulla
base di una presunta equivalenza asintotica con quelle propriamente bayesiane,
la quale, tuttavia, non ha finora ricevuto piena giustificazione teorica in termini di
quantificazione dell’incertezza. In questa nota si forniscono alcuni risultati sulla
velocità di convergenza della distribuzione finale bayesiana empirica che sono il-
lustrati nel caso della stima non parametrica di curve mediante modelli miscuglio
di processi di Dirichlet.
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1 Introduction

In a Bayesian approach to inference, the prior distribution should be chosen inde-
pendently of the data. However, not always enough information is a priori avail-
able to honestly elicit the prior distribution by either fixing the values of its hyper-
parameters or specifying a prior for them in a hierarchical approach and it is a com-
mon practice to just replace them with reasonable estimates. A data-driven selection
of the prior hyper-parameters can be appealing as a computationally simpler alter-
native to an analytically more complex hierarchical specification of the prior. The
prior is then data-dependent and this mixed approach, which arises as a way to by-
pass a complete specification of the prior distribution, appears as a bridge between
Bayesian and frequentist approaches to inference, thus being commonly referred to
as empirical Bayes. Indeed, the expression “empirical Bayes” has been originally
used by [20] in compound sampling problems to denote estimation of a latent dis-
tribution generating the unknown parameters of n distributions from each one of
which an observation is then drawn at random. A data-driven choice of the prior
hyper-parameters is only one of the possible contexts in which the term empirical
Bayes is used. Another relevant context of application of empirical Bayes methods
is the analysis of semi-parametric models, where preliminary estimation of nuisance
parameters is considered to then carry out inference on the component of interest.
It has been illustrated in Example 4 of [18] that some of the techniques employed
to work out the case of empirical Bayes selection of prior hyper-parameters can
also be fruitfully used to deal with the case of a data-driven choice of the nuisance
parameters.

Empirical Bayes methods are widely used based on the idea that, for large sample
sizes, there is a substantial agreement between empirical Bayes and fully Bayesian
procedures, in the sense that they lead to the same inferential conclusions. However,
empirical Bayes procedures have so far been mainly adopted to explore possible
data-dependent prior distributions with the aim of showing that empirical Bayes in-
ference can give satisfactory results in applications, see, e.g., [11] in the context of
variable selection in regression, [3] for wavelet shrinkage estimation, [16], [17] in
Bayesian nonparametric mixture models and [9] in Bayesian nonparametric infer-
ence for species diversity. A careful comparison of empirical Bayes and Bayesian
variable selection criteria in regression is developed by [5] and [22]. However, there
seems to be a substantial lack of results establishing the presumed asymptotic equiv-
alence between empirical Bayes and fully Bayesian procedures. The recent article
of [19] addresses this issue in terms of weak merging in the sense of [6], which,
roughly speaking, means that any Bayesian statistician is sure that her/his posterior
distribution and the empirical Bayes posterior distribution will eventually be close,
in the sense of weak convergence. From results in [6], it follows that Bayesian
weak merging holds if and only if the empirical Bayes posterior is consistent in the
frequentist sense, see Proposition 1 in [19]. However, there are no general results
concerning the asymptotic behaviour of empirical Bayes posterior distributions like
rates of convergence. Studying the asymptotic behaviour of posterior distributions
corresponding to data-dependent priors may allow for a better understanding of the
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impact of the prior measure on the posterior distribution and the entailed inferential
procedures. There have been so far hardly general results in the literature on the
asymptotic behaviour of empirical Bayes procedures and most of the existing ones
only concern specific families of models and priors, see, for example, [2], [25] on
Gaussian priors in the white noise model and [26] for finite mixture models.

In this note, we present some general results that describe the large sample behav-
ior of empirical Bayes posterior distributions and quantify the uncertainty in terms
of contraction rates. The illustration concerns empirical Bayes estimation in the
context of linear regression with unknown error distribution modeled as a Dirichlet
process (DP) mixture of Gaussian distributions. Other relevant examples concern-
ing empirical Bayes estimation of monotone non-increasing intensity functions of
Aalen point processes and empirical Bayes adaptive density estimation with DP
mixtures of Gaussian densities are studied in [7]. The main message is that a large
class of empirical Bayes procedures have optimal frequentist asymptotic properties
as fully Bayesian procedures. That such an optimal recovery is possible using em-
pirical Bayes methods is theoretically important and encouraging to the use of these
procedures in various applied settings such as the analysis of DNA microarrays, see
[8]; it is also promising for the use of dynamic empirical Bayes models in finance
and insurance, see, for instance, [10] and [4].

2 Main Results

In this section, we blend ideas from [19] and [7] to give a heuristic explanation of
the requirements and ingredients involved in the approach followed to tackle the
problem of assessing contraction rates for empirical Bayes posterior distributions
which attempts at giving conditions resembling those considered in the literature
for fully Bayesian posteriors, see, e.g., [13].

Consider a statistical model (P(n)
θ , θ ∈ Θ) over a sample space X (n), together

with a family of prior distributions Π(· | γ), γ ∈ Γ ⊆ Rℓ, on the parameter space
Θ equipped with a semi-metric d(·, ·). A Bayesian statistician would either set γ to
a specific value or integrate it out using a probability distribution in a hierarchical
specification of the prior for θ . Both approaches would lead to a prior distribution
for θ that does not depend on the data. However, it is often the case that not enough
information is a priori available to either fix a value for γ or elicit a prior distribution
for it so that γ can be more easily estimated from the data using an estimator γ̂n. In
our approach, a crucial assumption concerns the large sample behavior of γ̂n: we
assume that, with probability going to 1, γ̂n belongs to a subset Kn of Γ ,

P(n)
θ0

(γ̂n ∈ Kc
n) = o(1), (1)

where P(n)
θ0

denotes the probability measure generating the data. Clearly, require-
ment (1) is satisfied if γ̂n converges to some value γ∗: one can then simply take Kn to
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be a fixed neighborhood of γ∗. Existence of a sequence of sets Kn wherein, with high
probability, the estimator γ̂n is going to take values, allows to get a uniform control,
over Kn or some suitably chosen subset thereof, of the likelihood ratio when the
dependence on the data through γ̂n is transferred from the prior to the likelihood. In
fact, the main difficulty when studying frequentist asymptotic properties of posterior
distributions corresponding to data-dependent priors arises from the dependence of
the prior on the data. The key idea is then to get control of the impact of γ̂n on the
prior by constructing a transformation ψγ ,γ ′ : Θ → Θ such that, for all γ, γ ′ ∈ Γ ,
if θ ∼ Π(· | γ) then ψγ ,γ ′(θ) ∼ Π(· | γ ′). This mapping allows to make a change
of the prior measure so that the dependence on the data through γ̂n is conveniently
transferred from the prior to the likelihood, in the spirit of what is done in Proposi-
tion 3 and, more concretely, in Example 3 of [19] which deals with nonparametric
mixture models for which the mapping ψγ ,γ ′ remains naturally identified when the
prior involves a Dirichlet process on the mixing distribution.

Another important requirement is the one according to which the prior mass
should be sufficiently spread out over the parameter space Θ so that, wherever the
true value θ0 of θ lies, there is enough mass in suitable neighborhoods of P(n)

θ0
as de-

fined by the Kullback-Leibler divergence. To formalize this requirement, for εn ↓ 0,
define a Kullback-Leibler type neighborhood of P(n)

θ0
as Bn,k(θ0)= {θ : KL(θ0; θ)≤

nε2
n , Vk(θ0; θ)≤ nk/2εk

n}, k ≥ 2, where Vk(θ0; θ) is the centered absolute moment
of order k of log(p(n)θ0

/p(n)θ ) under P(n)
θ0

. Then, the refined Kullback-Leibler prior

support condition is that, for fixed k ≥ 2, infγ∈Kn Π(Bn,k(θ0) | γ)& e−2nε2
n for suffi-

ciently large n, where “&” denotes inequality valid up to a constant multiple which
is universal or inessential for our purposes. A formal statement providing sufficient
conditions for contraction rates of empirical Bayes posterior distributions can be
obtained as a refinement of Proposition 3 in [19]. We now present an example on
empirical Bayes posterior contraction rates in the context of linear regression with
unknown error distribution that is modeled as a DP mixture of Gaussian densities.

Example. Linear regression with unknown error distribution
Suppose we observe a random sample X (n) = (X1, . . . , Xn) of independent response
random variables each one satisfying the relationship Xi = α +β zi+εi, i = 1, . . . , n,
where the zi are deterministic covariates taking values in a compact set and the
errors εi are independent and identically distributed according to a distribution with
Lebesgue density p that is modeled as a DP mixture of Gaussian densities:

p(·) = pF,σ (·) :=
ˆ

ϕσ (·−θ)dF(θ)

F ∼ DP(αRN(m,s2)) independent of σ ∼ IG(ν1, ν2), ν1, ν2 > 0,

where ϕσ (·) = σ−1ϕ(·/σ), with ϕ the density of a standard Gaussian distribu-
tion and N(m,s2) the Gaussian base distribution with mean m and variance s2. Let
γ = (m, s2). The priors for α and β are assumed to be compactly supported and
to possess positive Lebesgue densities. All parameters are assumed to be a priori
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independent. Let Π(· | γ) denote the joint prior distribution of (p, α, β ). Assume
that the true value (p0, α0, β0) of (p, α , β ) is a point in the prior support. We
consider rates of contraction for the empirical Bayes posterior distribution corre-
sponding to a DP mixture of Gaussians as the prior on the unknown error density,
when a data-driven choice of the hyper-parameter γ of the base measure of the DP
is performed. Posterior consistency has been studied for this model by [1], while
[13] have assessed rates of convergence for fully Bayesian posterior distributions
in general and, specifically, for the case where the prior on the mixing distribution
is a DP with compactly supported base measure and the true error density is also
a Gaussian mixture, finding the nearly parametric rate n−

1
2 (logn). The key point

is that, when considering rates of convergence for the parameter (p, α, β ), the Eu-
clidean part (α , β ) does not really play a role: the driving component is only the
density p, so that working out rates for this model essentially reduces to working
out rates for DP mixtures of Gaussian densities in the problem of density estima-
tion. Posterior contraction rates for density estimation with DP mixtures of Gaus-
sian densities have been first investigated by [12] and [14]. Following an idea of
[21], [15] have proven that finite location mixtures of Gaussian densities lead to
full rate-adaptation over the whole collection of locally Hölder log-densities on the
real line. This result has been extended to a multivariate set-up and to other fami-
lies of super-smooth kernels by [24] and [23]. Here, we are concerned with full
rate-adaptation when the true error density is ordinary δ -smooth, δ > 0, using a
DP mixture of Gaussians with a data-driven choice of γ = (m, s2) like γ̂n = (X̄n, S2

n),
with X̄n =∑n

i=1 Xi/n and S2
n =∑n

i=1(Xi−X̄n)
2/n. Set E0[X1] =m0 and σ2

0 =Var0[X1],
since γ̂n is a consistent estimator for (m0, σ2

0 ), the set Kn = [m0 − logn/
√

n, m0 +
logn/

√
n]× [σ2

0 − logn/
√

n, σ2
0 + logn/

√
n] satisfies condition (1). Having identi-

fied the transformation ψγ ,γ ′(p, α, β ) which remains essentially determined by the

stick-breaking construction of the DP, the density p(n)ψγ,γ ′ (p,α,β ) is, uniformly over

all γ, γ ′, bounded above and below by suitable densities. This allows to then pro-
ceed using standard tools. In particular, letting εn = n−δ/(2δ+1)(logn)a for some
a ≥ 0, in order to lower bound the prior probability of Bn,k(p0, α0, β0), the fact
that KL((p0, α0, β0); (p, α, β )) . ∥p1/2 − p1/2

0 ∥2
2 + |α −α0|2 + |β −β0|2 is used.

The key idea is that, for a δ -smooth density p0, there exists a finite mixing dis-
tribution F∗, with Nσ points included in [−aσ , aσ ], satisfying KL(p0, pF∗,σ ) =

O(σ2δ ) and, for k ≥ 2, Vk(p0, pF∗,σ ) = O(σ kδ ), with aσ = | logσ |ρ1 and Nσ =
O(σ−1| logσ |ρ2), see, e.g., Lemma 4 in [15]. Consequently, for α and β such that
max{|α −α0|, |β −β0|} ≤ σ , we have KL((p0, α0, β0); (pF∗,σ , α, β )) = O(σ2δ ).
Once a finite mixture is constructed, it is shown that there exists a set of finite Gaus-
sian mixtures close to it and contained in a Kullback-Leibler type ball which, at
worst, is charged enough prior mass. We thus have the following result, where the
distance dn defining the ball UMnεn centered at (p0, α0, β0) is d2

n(P
(n)
p,α ,β ,P

(n)
p0,α0,β0

) =

n−1 ∑n
i=1 ∥p(·−α−β zi)

1/2− p0(·−α0−β0zi)
1/2∥2

2. The joint posterior distribution
of (p, α , β ) concentrates around (p0, α0, β0) at rate εn relative to dn, in symbols,
E(n)

p0,α0,β0
[Π(Uc

Mnεn
|γ̂n, X (n))] = o(1).
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