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Abstract In this work we are interested in clustering data whose support is “curved”.

For this purpose, we will follow a Bayesian nonparametric approach by consider-

ing a species sampling mixture model. Our first goal is to define a general/flexible

class of distributions, such that they can model data from clusters with non standard

shape. To this end, we extend the definition of principal curve given in [8] (Tibshi-

rani 1992) into a Bayesian framework. We propose a new hierarchical model, where

the data in each cluster are parametrically distributed around the Bayesian principal

curve, and the prior cluster assignment is given on the latent variables at the second

level of hierarchy according to a species sampling model. As an application we will

consider the detection of seismic faults using data coming from Italian earthquake

catalogues.

Abstract In questo lavoro siamo interessati al raggruppamento di dati il cui sup-

porto è “curvo”. Per perseguire questo obiettivo, seguiamo un approccio bayesiano

non parametrico utilizzando un modello mistura a campionamento di specie. Il nos-

tro primo obiettivo è quello di definire una classe generale/flessibile di distribuzioni

parametriche, in modo che queste possano modellare gruppi con forme non usuali.

A tal fine, estendiamo la definizione di curva principale data in [8] (Tibshirani 1992)

ad un contesto bayesiano. In conclusione, in questo lavoro proponiamo un nuovo

modello gerarchico, nel quale i dati in ciascun gruppo hanno distribuzione para-

metrica centrata su una curva. L’assegnazione a priori dei dati ai gruppi è invece

rappresentata mediante la legge di variabili latenti al secondo livello di gerarchia,

le quali son distribuite secondo un processo a campionamento di specie. Come ap-

plicazione consideriamo l’individuazione di faglie sismiche per dati provenienti da

un catalogo di terremoti italiano.
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1 Introduction

In a nutshell, model-based cluster analysis means that data are assumed as coming

from a several subpopulations, where each subpopulation is modeled separately,

so that the overall population is a mixture. In this paper we are going to cluster

data whose support is “curved” (in a Euclidean space), in a Bayesian nonparametric

model-based framework. To this end we will define a species sampling mixture

model with kernels belonging to a flexible and large class of densities.

Species sampling mixtures have been introduced in [5] as an extension of the well

known Dirichlet process mixture model. They do not require specifying the number

of mixture components and the clustering procedure can be viewed as a generalized

Chinese restaurant process (see [5]): assume customers arriving sequentially at a

Chinese restaurant and randomly assigned to an infinite number of tables which

have unlimited seating capacities. When a new customer arrives, she will be seated

to a (new or one of the occupied) table according to the current seating arrangement

of all previous customers. Under this process, inference on the number of clusters

and mixture model parameters estimation are unified and computed by a suitable

MCMC algorithm.

Recently (see [1]) we have addressed the problem of clustering curved data, in-

troducing a model called b-DBSCAN. However the prior for the random partition

under the b-DBSCAN model, i.e. prior cluster assignment, is based on the geometry

of the space of kernel densities rather than a direct random partition prior elicitation.

Bayesian statisticians would prefer the latter alternative. With these considerations

in mind, as an alternative, a new hierarchical model for clustering is proposed here,

where the data in each cluster are parametrically distributed around a curve (prin-

cipal curve), and the prior cluster assignment is given on the latent variables at the

second level of hierarchy according to a species sampling model as sketched before.

Clustering using principal curves is useful for detecting curvilinear features in spa-

tial point patterns: as an application we will analyze the detection of seismic faults

from earthquake catalogs.

2 Species sampling mixture models

A proper species sampling model (SSM) (see [6]), on Θ ⊂ R
d is a random proba-

bility measure of the form

P(·) :=
∞

∑
j=1

w jδτ j
, (1)
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where the atoms {τ j} are chosen iid according to a centering distribution P0 on

Θ , while the distribution of the weights {w j} is characterized by the generalized

Chinese process described in the Introduction (see [6] for mathematical details).

A species sampling mixture model, can be defined in a hierarchical way as fol-

low:

Xi|θi
ind.
∼ f (·;θi) i = 1, . . . ,n (2)

θi|P
i.i.d.
∼ P i = 1, . . . ,n, P ∼ Π(·; ·,P0) (3)

where Π(·; ·,P0) is the law of of a species sampling model as in (1). Here E(P(A)) =
P0(A) for each measurable A ⊂ Θ . As a particular case, notation P ∼ DP(α,P0)
means that P is given a Dirichlet process prior with parameters α > 0 and P0. Species

sampling mixture models are particularly suitable for cluster analysis. Indeed, under

(2)-(3) the natural clustering rule is: Xi and X j share the same cluster if and only if

θi = θ j. We denote with (φ1, . . . ,φk) the unique values among the θi’s, and with

ρ = {C1, . . . ,Ck} the partition induced by the rule i ∈C j iff θi = ψ j, i = 1, . . . ,n and

j = 1, . . . ,k. The parameter ρ (random partition) is the main object of our analysis.

3 Bayesian principal curve mixtures

The aim of this section is to define a a general and flexible class of kernels densities,

such that they can model data on clusters with non standard shape. The main idea is

to represent data in the same curved cluster using one single distribution centered

around a curve mmm(·) := (m1(t),m2(t)), t ∈ (0,1). To be more formal, suppose that

X ∈ R
2, and consider the model X |mmm(·),Σ ∼ fmmm(·),Σ with

fmmm(·),Σ (x) =
∫ 1

0
N2(x;mmm(t),Σ)dt. (4)

The triplet

{U (0,1),N2(mmm(·),Σ),mmm(·)} (5)

is a principal curve according to [8]. We can write our model as

X = mmm(T )+ ε;

where T ∼ U (0,1), ε ∼ N2(0,Σ) and T and ε are independent. Then, we can

describe our model as a nonparametric regression, where the mean of each data is a

random point on a curve, and the error is bivariate Gaussian with covariance matrix

Σ . More in details we represented the components of the curve mmm(·) through two

independent low-rank thin-plate splines [2], that is:

mmm(t) =

(

m1(t)
m2(t)

)

=

(

β0 +β1t +∑K
k=1 uk|t −κk|

3

γ0 + γ1t +∑K
k=1 vk|t −κk|

3

)

Σ =

(

σ2
1 0

0 σ2
2

)

,
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where {κk,k = 1, . . . ,K} are fixed knots. Finally, we observe as the parameters of the

kernel fmmm(·),Σ can be summarized as the real valued vector θ = (βββ ,uuu,γγγ ,vvv,σ2
1 ,σ

2
2 ).

Since our aim is to perform cluster analysis for data “belonging” to different curved

clusters, we add a level of hierarchy to fmmm(·),Σ according to a Bayesian nonparamet-

ric approach. By Bayesian principal curve mixture model we mean the following:

Xi|θi
ind.
∼ f (xi|θi)

θi = (mmmi(·),Σi)|P
i.i.d.
∼ P, i = 1, . . . ,n,

P ∼ Π(·; ·,P0)

where P is a species sampling model as in (1). Under this model, conditioning to the
random partition ρ (induced by the SSM), data points in each cluster are centered
around a curve, and are (conditionally) Gaussian distributed; their means are bound
to lie on a curve mmmi(t), t ∈ (0,1). Observe that we will be able to provide not only
cluster estimates, but also principal curve estimates (see Section bho). As far as the

choice of P0 is concerned, we assume that the component of θ = (βββ ,uuu,γγγ,vvv,σ2
1 ,σ

2
2 )

are independent and

β0,β1,γ0,γ1
i.i.d.
∼ N (0,1000) σ2

1 ,σ
2
2

i.i.d.
∼ inv−gamma(a,b)

ui|σu
i.i.d.
∼ N (0,σ2

u ), σu ∼ inv−gamma(au,bu)

vi|σv
i.i.d.
∼ N (0,σ2

v ), σv ∼ inv−gamma(av,bv).

This prior choice for the parameters uuu and vvv is motivated by the equivalence be-

tween penalized splines and mixed models in the regression context, as shown for

instance in [2]. As a final remark, we observe that, any smoother depends heavily

on the choice of the smoothing parameter: in our model the smoothing parameters

are λu = σ2
u /σ2

1 and λv = σ2
v /σ2

2 : small (large) λ ’s corresponds to oversmooth-

ing (undersmoothing). As we will show in the next section, the hyperparameters of

the inverse-gamma distributions should be accurately fixed heavy oversmoothing or

undersmoothing.

4 Application

We have implemented our model for the simple case of a Dirichlet process mix-

ture model (DPM); posterior estimates were obtained through a modification of the

Blocked Gibbs sampler based on a finite dimensional approximation of the Dirichlet

process proposed in [4]. Moreover, all Bayesian cluster estimates here are based on

the posterior distribution π(ρ |data) of the random partition ρ , as the partition min-

imizing the posterior expectation of Binder’s loss function, i.e. as the loss function

assigning cost b when two elements are wrongly clustered together and cost a when

two elements are erroneously assigned to different clusters. In particular we have

assumed a = b.
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Simulated data

Prior setting 1

number of clusters α = 0.137 ⇒ E(k) = 2

mixed effect parameters σu ,σv ∼inv-gamma(2,0.01)

residual variance σ2
1
,σ2

2
∼inv-gamma(2,0.01)

Smoothing λ̄u = 2.0E5 λ̄v = 2.8E5

Prior setting 2

number of clusters α = 0.137 ⇒ E(k) = 2

mixed effect parameters σu ,σv ∼ inv-gamma(2,0.01)

residual variance σ2
1
,σ2

2
∼ inv-gamma(20,2)

Smoothing λ̄u = 10.12 λ̄v = 1.64
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Fig. 1 Cluster and principal curve estimates when the smoothing parameters are large (figure on

the left) or small (figure on the right)

In this section we illustrate our model with application to a simulated dataset of size

n = 1000. Data are shown in Figure 1; there are two main groups of observations:

the first one has a sharp round shape and it is located around the point (0,0), while

the second group lays on a semicircular region on the right of the first group.

We report here the result of two significative experiments with hyperparameters

reported in the table on the left panel of Figure 1. From the figure we see that, if

an “informative” (Prior setting 1) distribution for the covariance matrix Σi in each

cluster is elicited, the cluster and curve estimates in the right panel are better than

those in the left panel, corresponding to a “non-informative” (Prior setting 2) prior

for the covariance matrix. This can even be understood in terms of the two smooth-

ing parameters. If we consider the posterior means of the smoothing parameters

for each observation (λ̂ui, λ̂vi) := E((λui,λvi)|data), with i = 1, . . . ,n, and consider

λ̄u = 1
n ∑n

i=1 λ̂ui, λ̄v =
1
n ∑n

i=1 λ̂vi as two overall poster smoothing indexes, we see

that the first setting of the prior leads to an oversmoothing estimation of the princi-

pal curves within the clusters (middle panel of the Figure 1).

Seismic sources data

In the construction of seismic risk maps is important to identify faults segments

inside the seismogenic sources . From the literature (see [7]) is well known that in

Italy there are inherent difficulties to this achievement. As an application we deal

with this problem by fitting our model to data coming from the CPTI04 Italian

earthquake catalogue (CPTI04 2004), from which we have considered all the events

classified by geologists as belonging to the three composite sources CSS-25, CSS-

27, CSS-37 of the Database of Italian Seismogenic Sources [3]. Data are arranged

on a long stretch of the Apennines mountains ranging from Modena district (norther

Italy) up to Frosinone district (middle Italy). We have run the analysis under various

hyperparameter settings, here we report one of the most significant (see the table in

Figure 2). Here the mass parameter of the Dirichlet process α has an interpretation

as smoothing parameter controlling the length of the principal curve in each cluster.

Large values of α mean more groups and shorter principal curves and vice versa.
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Prior setting for seismic data

number of clusters α = 0.02 ⇒ E(k) = 1

mixed effect parameters σu ,σv ∼inv-gamma(2,0.01)

residual variance σ2
1
,σ2

2
∼inv-gamma(2.01,0.01)

Smoothing λ̄u = 1.82 λ̄v = 4.58

Fig. 2 Earthquakes from CPTI04 catalog classified by source 27 (squares), source 37 (triangles)

and source 25 (circles). Cluster and principal curve estimates are represented by colors

The posterior estimates are reported in Figure 2, and can be summarized as fol-

lows: the model is able to recover source CSS-25; source CSS-27 is split into two

parts (north and south); the southern part of source CSS-37 is grouped, while the

northern events are wrongly classified as belonging to source CSS-27. Indeed, since

the sample size is very low northern events of source CSS-37 are far from the south-

ern points on the same source but geographically close to source CSS-27. In ad-

dition, when geologists associate earthquakes with seismogenic sources, they take

into account many elements, as the focal mechanism, and not only the geographical

location of the epicentre as done by our model. On the other hand, the association of

the events related to the source CSS-27 with two fault segments may be supported

by geological considerations as reported in [7].

Acknowledgments: we thank Renata Rotondi for the seismic dataset and very in-

teresting discussions.
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