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Abstract Although there have been a lot of developpements in the recent years on
estimation in Bayesian nonparametric models, from a theoretical point view as well
as from a methodological point of view, little has been done on Bayesian testing in
nonparametric frameworks. In this talk I will be interested on asymptotic properties
of Bayesian tests when at least one of the hypotheses is nonparametric. I will first
give some results on goodness of fit types of tests where one is interested in testing
a parametric model against a nonparametric alternative embedding the parametric
model. Then I will discuss the more delicate problem where both hypotheses are
nonparametric. Such cases involve in particular tests for monotonicity, two-sample
tests and estimation of the number of components in nonparametric mixture models.
It will be shown that the Bayes factor or equivalently the 0-1 loss function might not
be appropriate in such cases and that modifications need to be considered.
Abstract Nonostante i notevoli sviluppi nella stima di modelli nonparametrici degli
ultimi anni, da un punto di vista teorico e metodologico i contributi su test di ipotesi
Bayesiani in ambito nonparametrico sono stati limitati. In questa presentazione,
si discutono le proprietà asintotiche dei test Bayesiani quando almeno una delle
ipotesi è nonparametrica. Innanzitutto, si discutono risultati su indici di bontà sta-
tistica quando si sia interessati a testare un modello parametrico contro una al-
ternativa nonparametrica che contiene il modello parametrico. Quindi, si discute
il caso più delicato di ipotesi entrambe nonparametriche. Questi casi riguardano
in particolare testi di monotonicità, test per due campioni e stima del numero di
componenti in modelli mistura nonparametrici. Si mostra che il fattore di Bayes o,
equivalentemente, una funzione di perdita 0-1 potrebbero non essere appropriati in
tali casi e opportune modifiche si rendono necessarie.
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1 Introduction

Suppose we have two candidate models M0 and M1 for yn ∈ Y n, a set of observa-
tions from an arbitrary distribution Pn which is absolutely continuous with respect
to a commone measure µn on Yn, where n defines a known measure of information,
such as the number of observations. We also assume two candidate models to have
respective parameters and prior distributions, θ , π0(θ), λ and π1(λ ),

M0 = {pn
θ (yn),θ ∈Θ , π0(θ)}, M1 = {pn

λ
(yn),λ ∈Λ , π1(λ )}, (1)

where pn
θ
(yn) and pn

λ
(yn) denote the densities of yn with respect to µn under M0

and M1 respectively.
The aim of this paper is to review some results on consistency of Bayesian testing

procedures of M0 and M1, when at least one of the hypothesis corresponds to a
nonparametric model. We focus mainly on the Bayes factor approach for testing,
[7], which is defined as follows

B01 =
p(yn|M0)
p(yn|M1)

=
m0(yn)
m1(yn)

=
∫

pn
θ
(yn)π0(θ)dθ∫

pn
λ
(yn)π1(λ )dλ

. (2)

Note that the large value of B01 indicates the strong evidence in support of model
M0 ([7] and [8]). Accordingly, B01 is expected to converge to infinity as the sample
size increases when M0 is the true model, and converge to 0 when the M1 is true.
This notion is called Bayes factor consistency or consistency of the Bayes factor and
is more precisely defined as :

lim
n→∞

B01 =

{
∞, in Pn

θ0
probability, if pn

θ0
∈M0

0, in Pn
λ0

probability, if pn
λ0
∈M1. (3)

In the i.i.d case, there some results have been obtained on Bayes factor consis-
tency, either in specific models or providing general conditions, see [16], [3], [5],
[13] and [11]. In the non i.i.d case some results have been obtained in the linear
regression model, mostly in terms of variable selection, see [9], [1], [12], [15] and
[2]. In [14] the authors generalize the works of [13] and [11] to the case of non i.i.d
data, providing sufficient conditions for (3) to be valid when M0 corresponds to a
parametric model and M1 is nonparametric and applying these conditions ot the
case of the partial linear model.

In the case of embedded models, i.e. M0 is a submodel of M1 and if M0 is
parametric, consistency under M1 is obtained by mainly considering posterior con-
sistency conditions under M1. Consistency under M0 is slightly more subtil since
roughly speaking pn

θ0
∈M0 ⊂M1 so that both models are correct but the aim is

to choose the smallest. Bayes factor consistency in such cases is obtained if the
penalization induced by integration over the parameter λ ∈ Λ is stronger than that
induced by integration of θ ∈Θ . Intuitively it is expected to happen, since Θ is fi-
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nite dimensional while Λ is not. However there are cases where this is not the case.
These notions are reviewed in Section 2.

The case where both M0 and M1 are nonparametric with M0 a submodel of M1
is more complicated. Consistency issues under M1 are similar to the former case,
while they become significantly more difficult under M0. In section ?? we describe
briefly two setups: the two sample case and the tests for monotony or more generally
for some shape constraints.

2 Parametric versus non parametric

We now recall the sufficient conditions proposed in [13] and [11] and [14] and
discuss cases were such conditions can fail and more importantly where consistency
fails under M0. In this section we restrict our attntion to the case where M0 is
parametric and is embedded in M1. We first recall the general conditions as provided
in [14].

Let dn be a semimetric on the set of models M0 and M1, define

h(λ0) = liminf
n

inf
θ∈Θ

dn(pn
λ0

, pn
θ ), λ0 ∈Λ

Consistency under M1 corresponds to considering λ0 ∈Λ such that

h(λ0) > 0. (4)

Define also

m0(yn) =
∫

Θ

p(n)
θ

(yn)

p(n)
0 (yn)

dπ0(θ), m1(yn) =
∫

Λ

p(n)
λ

(yn)

p(n)
0 (yn)

dπ1(λ )

where p(n)
0 denotes the true distribution of the observations. Under M1 it is assumed

that there exists λ0 ∈Λ such that p(n)
0 = p(n)

λ0
and under M0 it is assumed that there

exists θ0 ∈Θ such that p(n)
0 = p(n)

θ0
. We first state the conditions ensuring consistency

of the Bayes factor under M1.
Assumption A1. Let Λ0 ⊂Λ satisfies : for all ε > 0,

sup
λ0∈Λ0

Pn
λ0

[
m1(yn) < e−nε2

]
= o(1)

Assumption A2.

(i) There exists ε0 > 0 such that for all λ0 ∈ Λ0 and all ε0 > ε > 0, there exists
Θn,ε(λ0)⊂Θ , such that

π0(Θn,ε(λ0)c)≤ e−2nε2
,
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(ii)For all ε > 0 there exists a > 0 such that for all λ0 ∈Λ0, there exists a sequence
of tests φn(λ0) satisfying

sup
λ0∈Λ0

En
λ0

[φn(λ0)] = o(1), sup
λ0∈Λ0

sup
θ∈Θn,ε (λ0)

En
θ [1−φn(λ0)]≤ e−an.

Theorem 1. Suppose that assumptions A1 and A2 hold, together with (4). Then for
all ε > 0 there exists δ > 0 such that

sup
λ0∈Λ0

Pn
λ0

[
B01eδn > ε

]
= o(1)

That is, the Bayes factor is exponentially decreasing under M1 (uniformly over Λ0).

As seen from assumptions A1 and A2, obtaining consistency under M1 merely
uses tools of posterior consistency. This is due to the fact that in such a case the true
distribution is well separated from the wrong model, namely M0 so that it does not
require much to see that from the likelihoods. This is not the case when p(n)

0 ∈M0.
Let KL( f ,g) denote the Kullback-Leibler divergence between f and g and

V ( f ,g) =
∫

f (log f / logg)2 and consider the following assumptions:
Assumption B1. For all Θ0 ⊂Θ compact and all θ0 ∈Θ0, there exists k0 > 0

such that

inf
θ0∈Θ0

nk0/2
π0

[
{θ : KL(pn

θ0
, pn

θ )≤ 1, V (pn
θ0

, pn
θ )≤ 1)}

]
≥C

for some positive constants C.
Assumption B2. For all Θ0 ⊂Θ , for all θ0 ∈Θ0, there exists εn > 0 going to 0,

with Aεn(θ0) = {λ ∈Λ : dn(pn
λ
, pn

θ0
) < εn} such that

B2-1.
sup

θ0∈Θ0

Pn
θ0

[
π1
[
Ac

εn(θ0)|yn]]= o(1)

and such that
B2-2.

sup
θ0∈Θ0

nk0/2
π1 [Aεn(θ0)] = o(1).

where k0 is the same positive constant as in Assumption B1.

Theorem 2. Suppose that assumptions B1 and B2 hold. Let Pn
θ0

denote the joint
distribution of yn. Then for all compact subset Θ0 of Θ , uniformly over θ0 ∈Θ0,

B01→ ∞ in Pn
θ0

-probability .

That is, the Bayes factor is increasing to infinity under M0.

Assumption B2-1 only requires posterior consistency π1, the extra condition,
specific to studying the behaviour of the Bayes factor is B2-2. In [13], in the context
of goodness of fit tests for i.i.d observations, a counter - example where consistency
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does not hold under M0 is provided. The example corresponds to a prior π1 such that
θ0 can be more easily approximated (i.e. a lesser number of constraints is required
on the parameter) under the largest model than under the smaller model although it
belongs to both. The example provided is however artificial and the set of θ0 ∈Θ ⊂
R2 having such pathological behaviour has null Lebesgue measure. Interestingly, in
the case of partial linear model, [14] exhibits a more problematic counter- example
where the subset of badly behaved θ0 is much larger. To explain why things can go
wrong recall that the partial linear model can be written as

yi = α +βxi + f (zi)+ εi, εi ∼N (0,σ2) independently

where xi ∈ [−1,1]p, zi ∈ [−1,1], α ∈R,β ∈Rp and f ∈ L2([−1,1]) and assume that
the design is random satisfying (xi,zi) ∼ µ independently, we write µ for both the
joint and the marginal distributions of X ,Z. Consider a hierarchical Gaussian prior
on f in the form

f = fη =
k

∑
j=0

η jφ j, k ∼ 1+P(λ ); η j ∼N (0,τ), j ≤ k i.i.d

where P(λ ) denotes a Poisson distribution with parameter λ > 0 and (φ j) jıN is the
Fourier basis of L2([−1,1],µ). For the sake of simplicity consider the case where
p = 1, define m(x) = E[Z1|X = x]. It can be shown that if∫ 1

−1
φ1(x)m(x)dµ(x) = 0

then for all θ = (α,β ) ∈ R2, the Bayes factor does not go to infinity under p(n)
θ

. So
in this case, the Bayes factor is never consistent under the null model, see [14].

Hence, when considering goodness of fit tests or more generally when testing
a parametric model versus a nonparametric model, with the parametric model be-
ing a submodel of the nonparametric one, some apparently surprizingly unpleas-
ant behaviour may happen if the prior is not carefully chosen. In the above case,
the inconsistency issue can be fixed by forbidding the first r values of k for which∫ 1
−1 φ j(x)m(x)dµ(x) = 0, for all j ≤ r, the difficulty being that m is typically un-

known.
When both hypothesis are nonparametric are unknown, then this becomes even

more crucial. As an illustration, I describe in the following section two cases : the
two sample test and the test for monotony.
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3 Nonparametric versus nonparametric : a series of open
problems

In the previous Section, we provide sufficient conditions to obtain consistency of
the Bayes factor for testing model M0 versus model M1 with M0 a parametric
sub-model of M1 and we showed that under the null hypothesis, consistency can
be proved if prior mass of neighbourhoods of the true distribution under π0 is sig-
nificantly larger than that under π1. In the case where both M0 and M1 are non-
parametric with M0 ⊂M1 (roughly speaking), such an approach can be too crude,
specially if the M0 differs from M1 only by a finite number of parameters. This is
for instance the case in the case of finite nonparametric mixture or HMM models,
with unknown number of states. To our knowledge, if these models have been used
in practice, see for instance [18] and studied in theory, see for instance [4] and [17],
the problem of estimating the number of states remains an open problem so far.
The problem of the two-sample test is simpler. However no asymptotic result exists
on fully nonparametric Bayesian tests. [6] and [10] propose tests based on Polya
trees or hierarchical versions of Polya trees but consistency is only proved under a
finite dimensional version of the prior and is thus partial; [?] propose an interesting
parametric test based on finite mixture models and prove some consistency under
misspecification, but oes not cover the fully nonparametric version of the problem.
Let us state the testing problem. Consider two samples x(n1) and y(n2) of indepen-
dent and identically observations from distributions F1 and F2 respectively on R,
with densities f1 and f2 with respect to a given measure. Then the two samples test
aims at choosing between the following two hypotheses:

M0 : F1 = F2, M1 : F1 6= F2.

Consider a probability distribution π on the set F of probability densities on R. A
bayes factor associated to π is then defined as

B0/1 =
∫
F f (x(n1)) f (y(n2))dπ( f )∫

F f (x(n1))dπ( f )
∫
F f (y(n2))dπ( f )

.

To obtaining general conditions on π for the above Bayes factor to be consistent
under the null hypothesis, we would need to bound from above the numerator and
from below the denominator. In each case, the usual technics, based on the approach
of [?], lead to controls of the form∫

F
f (x(n1)) f (y(n2))dπ( f ) . e−nc1ε2

n , n = n1 +n2

and ∫
F

f (x(n1))dπ( f )
∫

F
f (y(n2))dπ( f ) & e−c2(n1ε2

n1
+n2ε2

n2
),

with probability going to 1, where εn is some sequence converging to 0 and depend-
ing on properties of the true density f0 and on the prior and c1,c2 > 0 are some
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positive constant, whose control is not sharp and which satisfy c1 < c2. This leads
to a bound on B0/1 of the form

B0/1 . en(c2−c1)nε2
n

which does not go to 0. Hence a much tighter type of proof than the one used for
instance to prove Theorem 2 in Section 2 is required.

Obtaining consistency under the H1 is not so much of an issue, since then the
marginal can be proved to be exponentially small, using the usual technics of proofs
and under the usual types of assumptions.

Instead, in an ongoing work, we are proposing a modification of the Bayes factor,
leading to a sequential approach for which consistency can be proved, both under
the null and under the alternative.

Testing for monotonicity, in this respect is even more complicated, since the
structure of the null space is more complex than in the two sample test.
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