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Abstract Motivated by the problem of modelling high-dimensional multivariate ref-
erenced data, arising in many areas of research, this article proposes a Generalised
Latent Spatial Quantile Regression (GLSQR) model as a reliable solution in study-
ing the effects of some covariates across the quantiles of the response distribution.
In addition, the discussed model warrants consideration when the matrix of the ex-
planatory variables is defined through a set of spatial common latent factors. The
latent factors and quantile regression components are estimated through a hierarchi-
cal Bayesian procedure and MCMC algorithms are used to provide full probabilistic
inference. We illustrate the use of our GLSQR model with application to radon data,
as motivating example coming from the environmental protection research.
Abstract In questo articolo si introduce un modello (GLSQR) che combina la re-
gressione spaziale quantilica con un modello ad equazioni strutturali generalizzato.
Il modello GLSQR é adatto per studiare gli effetti di alcune covariate sui quan-
tili condizionati della distribuzione della variabile risposta. La modellizzazione in
esame consente, inoltre, di poter specificare la matrice delle variabili esplicative
attraverso fattori latenti spaziali comuni. I fattori latenti e la componente di regres-
sione quantilica del modello sono stimati con una procedura bayesiana gerarchica
che prevede il ricorso ad algoritmi di tipo MCMC. La metodologia proposta é il-
lustrata attraverso un’applicazione a dati relativi alle misure di concentrazioni di
radon indoor.
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1 Introduction

It is common in many areas of research to have high-dimensional multivariate spa-
tially referenced data. Hereby, in spatial settings, there is the need for flexible ex-
planatory stochastic data models in order to improve estimation precision and pro-
vide simpler description of the complex relationships among variables. A crucial
problem consists in describing and analysing the influence of some covariates on a
real valued response variable. In most practical cases, the conventional regression
analysis, based on conditional means, may ignore some essential features of the de-
pendence of the outcome on a set of predictors. For instance, we could be interested
in investigating the changing effect of the covariates across quantiles. In this respect,
a quantile regression approach is worthwhile since it allows the covariates to affect
the entire conditional distribution, rather than just the mean. Albeit there is a vast lit-
erature discussing quantile regression approach [see for example, Section 2 of Lum
and Gelfand, 2012, for a recent review], few researches [see Reich et al., 2012, Lum
and Gelfand, 2012] have to date defined a conditional quantile regression which in-
corporates spatial dependence. A semiparametric modelling approach where a type
of spatial autoregressive model is used to enrich the structure of the quantile re-
gression function, has been formulated by Borgoni [2011]. Following the lines of
Lum and Gelfand [2012], in this paper we build a fully model-based approach to
examine quantile effects together with spatial dependence. Our contribution is the
introduction of a Generalised Latent Spatial Quantile Regression (GLSQR) model
which integrates the spatial dependence through the definition of the spatial asym-
metric Laplace process. This model differs from commonly used quantile regression
models in several aspects. Both from a computational and interpretative perspective
there can be advantages to working with the specification of the GLSQR model.
Rather than focusing on a single variable, our approach allows the data to have a
multivariate and multidimensional structure. A remarkable flexibility of our model
specification regards the possibility to specify the required design matrix through
a set of spatial latent factors. Furthermore, the GLSQR model formulation confers
the distinct advantage to take into account the spatial nature of the variables and
facilitate the identification of spatial clusters in the latent factors. In such a way,
the GLSQR model provides an effective way to address the curse of dimension-
ality, usually present in large spatial data. In addition, of particular interest in our
model specification, is the possibility for the latent factors to be not restricted to
normally distributed variables, since more types of observed data from the expo-
nential family can be handled. The GLSQR model is implemented in a full bayesian
framework in which the latent variables and the spatial quantile regression compo-
nents are treated jointly, overcoming the issue of underestimating the uncertainty,
arising when a two-step estimation strategy is adopted. Bayesian computation for
this model is performed by using MCMC methods. The rest of paper is organized
as follows. Section 2 is devoted to illustrate the general approach providing a back-
ground on spatial quantile regression and latent variables analysis. In Section 3 we
describe inference for the parameters in a fully bayesian context. Finally, Section 4
gives an example using indoor radon data.
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2 The GLSQR model

In this section we describe the GLSQR model. Our approach considers a conditional
quantile regression which integrates spatial dependence through the definition of the
spatial asymmetric Laplace process (ALP). This strategy is well discussed in Lum
and Gelfand [2012]. Our model-based approach for spatial quantile regression has
the additional key feature to deem some of the relevant explanatory variables (pre-
dictors in the quantile regression) as indicators of spatial latent factors. The GLSQR
model performs estimation of quantile regression and latent spatial factors compo-
nents hierarchically. Let Y (si) be a spatial process representing some response of
interest and X(si) a (k× 1) related vector of explanatory random variables.We as-
sume that the variables are measured at n sites, si ∈ S, i = 1, . . . ,n, with S a spatial
domain in two dimensional Euclidean space R2. For a generic site s, let qp[X(s)]
denote the pth (0 < p < 1) quantile regression function of Y (s) given X(s). A gen-
eral form for a spatial quantile regression is given by Y (s) = qp[X(s)]+εp(s) where
εp(s) must satisfy the constraint that Pr(εp(s)≤ 0) = p. The distribution of εp(s) is
thus restricted to have the pth quantile equal to zero.

Apart from including spatially referenced covariates in qp[X(s)], spatial depen-
dence can be incorporated in the εp(s) which, as shown by Lum and Gelfand [2012],
is assumed to be an asymmetric Laplace process, i.e. εp(s)∼ AL(p,0,τ). By using
its mixture representation [Kuzobowski and Podgorski, 2000], we can thus write

εp(s) =

√
2ξ (s)

τ p(1− p)
Z(s)+

1−2p
p(1− p)

ξ (s) (1)

where Z(s) is a zero mean Gaussian process with valid correlation function, ρZ(s,s′|θ),
and ξ (s) a marginally exponentially distributed process with rate τ [Lum and
Gelfand, 2012]. Different modelling options are possible for ξ (s). However, as dis-
cussed in Lum and Gelfand [2012], the assumption that the ξ (s)’s are independent
and identically distributed exponential variables has been found adequate in practice
and offers computational simplicity and good behavior in the fitting procedure. In
this case, they show that

Cor[εp(s),εp(s′)] = ρZ(s,s′)
π

2 p(1− p)
1−2p+2p2

and that, therefore, the covariance of the quantile process model is a scaled version
of that of the Gaussian process.

The first level of the model is completed by assuming that at each site s, the rela-
tionship between qp(X(s)) and X(s) can be modelled as qp[X(s)] = X(s)′βββ p, where
βββ p is a vector of unknown parameters of interest. Since conditionally on ξ (s), the
specification of εp(s) in equation (1) gives a normal linear regression model, it is not
difficult to derive the full conditional density of βββ p. At the second level of hierarchy
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we consider a generalized spatial structural equation analysis. Following the discus-
sion in Wang and Wall [2003], we assume there are two hidden common factors
underlying the observed variables. Let Xg(s) =

(
Xg1(s), . . . ,Xgn(s)

)′ be a multivari-
ate spatial process observed at a site s, referring to a set of ordinal variables. We
express the generalized common spatial factor model as a linear model for a contin-
uously distributed unobserved latent variable X∗g j

(s), as

X∗g j
(s) = v j +ψ j fg(s)+ eg j(s), j = 1, . . . ,n (2)

where v j is the intercept, ψ j is the factor loading, fg(s) is the common spatial fac-
tor process underlying the n observed variables and eg j(s) is a zero mean Gaussian
error with variance σ2

e . Additionally, suppose to have another multivariate spatial
process observed at a site u, denoted as Xr(u) =

(
Xr1(u)Xr2(u)Xrm(u)

)′. It is as-
sumed that, conditionally on their mean, µxr j(u), and their variance, σ2

xr j
, the vari-

ables Xr j(u), j = 1,2,m, are independent in the one-parameter natural exponential
family with distribution F and a link function, gxr(·). The generalized common spa-
tial factor model for this data is thus defined through the linear predictor

gxr

(
µxr j(u)

)
= m j +λ j fr(u), j = 1,2, ...,m (3)

where m j is the intercept, λ j is the factor loading and fr(u) is the common spa-
tial factor process underlying the observed variables. For these variables we use a
Gamma distribution and a logarithmic link instead of the canonical link function.
As displayed in the Section 4, we relate the two common factors through a linear
regression function.

3 Bayesian inference

Full probabilistic inference for the model parameters is carried out by eliciting
the following priors distributions. In the quantile model stage, reasonable assump-
tions for the priors are: ξ (s) iid∼ Exp(τ), βββ p ∼ N(µµµβ ,ΣΣΣ β ) with µµµβ = 000, ΣΣΣ β = σ2

β
I

and σ2
β

large. The prior choice for τ depends upon the necessity to ensure a
constant process variance across quantiles. Recall that Var[εp(s)] = 1/κ2, with
κ = τ( 2

p(1−p) + ap)
−0.5. In this respect, the specification of a Gamma prior for κ

allows to keep Var[εp(s)] the same at all quantiles. Further details can be found in
Lum and Gelfand [2012]. As for Z(s) an exponential correlation function with decay
parameter θ is adopted. To ensure that θ takes values only on a plausible interval
determineted by the scale of data locations, we use a discrete uniform prior for this
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parameter as well as for the other spatial processes fr(u) and fg(s). In the latent
stage of the model, we typically set µµµ fg = 000 and µµµ fr = δ1fg with δ0 = 0. For all
other parameters, m j, λ j, v j, ψ j and δ1, we assume a Normal prior distribution with
mean equal to zero and variance chosen to be large to make the priors relatively non-
informative. A uniform prior is used for the thresholds in γγγ j, whereas to all unknown
error precision model parameters are assigned a Gamma prior. Posterior inference
for the proposed model is facilitated by adapting standard MCMC algorirthms to
our model specification. The full conditional distributions for the spatial quantile
regression model parameters are easy to obtain and are given in Lum and Gelfand
[2012]. Also the conditional distributions involved in the latent stage of our model
specification are not difficult to derive. In particular, for the sampling of the spatial
common factors, we refer to Wang and Wall [2003] and Liu et al. [2005]. Instead,
the Metropolis-Hastings algorithm is employed when the full conditional distribu-
tions are not available in closed form. Finally, it is worth noting that in the latent
stage of the GLSQR model specification we are obliged to solve some identifiabil-
ity issues linked both to scale uncertainty of the latent factors ( fr(u) and fg(s)) and
the Probit formulation of equation (2) which does not allow a distinction between
the error precision parameter eg j(s) and threshold parameters. In the latter respect,
we follow a standard solution of assuming that eg j(s) ∼ N(0,1), as suggested in
Koop [2003].

4 Application to indoor radon data

The model discussed in Section 2 is applied to understanding the impact of specific
variables on indoor radon concentrations. Owing to the well-established link with
malignant diseases, indoor radon concentration has been the subject of numerous
studies. Our illustrative analysis explicitly recognizes the multifactorial dependence
of residential radon concentration and examines the relationships existing between
indoor radon concentrations and some covariates linked to buildings, geological and
radiometric features. The response variable of interest are the annual average radon
concentrations in 710 buildings, mainly homes, mostly at ground level, collected
by the regional Agency of Environmental Protection (ARTA) of Abruzzo, in the
L’Aquila district. Data used in this study also include the physical characteristics
of each building, the natural radioactivity content of the topsoil (equivalent ura-
nium, equivalent thorium and potassium), the underlying geological characteristic
(permeability, porosity, fracturation, karst) of the territory, some lithological infor-
mation of L’Aquila district, and the altitude, integrated in the analysis as a crude
proxy of climate-related variables, which have an influence on the emanation and
diffusion radon process. Further details about this dataset can be found in Pasculli
et al. [2014]. In our model specification altitude, building characteristics and litho-
types are directly included in the model, whereas radiometric and geological data are
viewed as indicators of two interrelated latent factor. In the second stage of GLSQR
specification, we consider a generalised spatial structural equation analysis, which
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assumes that there are two latent common factors underlying the geological and ra-
diometric variables (say fg and fr, respectively). Besides, since the distribution of
radiometric factors depends on the geological characteristics of the area, we relate
the two spatial common factor through a linear regression function. It is assumed
that fr|fg ∼ N

(
1δ0 + δ1fg,ΣΣΣ fr(ωωω)

)
, where 1 is a vector of ones and ΣΣΣ fr(ωωω) a pa-

rameterized spatial covariance matrix that captures the spatial structure of of the
radiometric spatial common factor score. Notice that radiometric and geological
data come from two independent sources. As a result, the linear regression model
can be only estimated once the spatial factor scores fg(s) are interpolated on the
sites u of the radiometric network. To obtain posterior summaries for the parame-
ters the MCMC algorithm was run for 100000 iterations. Posterior inference was
based on the last 50000 draws using every 5th member of the chain to avoid auto-
correlation within the sampled values. Results of the analysis indicate a clear effect
of the building characteristics on the variation of indoor radon concentration with an
impact across quantiles of floor, building typology and type of soil connection. The
regression coefficients associated to the estimated common spatial factor fr (which
synthesizes the radiometric variable) highlight a positive relationship with radon and
suggest that the increments of the level of the factor also produce significant incre-
ments of the upper quantiles of the conditional indoor radon distribution. For these
data the direct effect of the geological factor on indoor radon measures seems to be
weak and constant across the quantiles while its indirect effect, estimated through
the regression with the radiometric factor, is found significant and positive.
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