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Abstract The empirical likelihood method is known to be a flexible and effec-
tive approach for testing hypotheses and constructing confidence regions in a non-
parametric setting. This framework is adopted here for dealing with the outlier prob-
lem in time series where conventional distributional assumptions may be inappro-
priate in most cases. The procedure is illustrated by a simulation experiment.
Abstract Il metodo basato sulla verosimiglianza empiricaè noto essere un approc-
cio flessibile ed efficiente per il controllo di ipotesi e la costruzione di regioni di con-
fidenza in ambito non parametrico. Questo approccioè qui adottato per affrontare
il problema dei dati anomali in serie storiche dove le ipotesi sulla distribuzione di
probabilità dei dati risultano spesso inappropriate
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1 Introduction

Outliers in time series may be defined as those observations that do not conform to
the overall behavior of the data sequence. In the independent data framework usu-
ally outliers are searched for among either the largest or the smallest observations. In
time series framework outliers are to be found instead amongobservations that show
some unexpected departure from predicted value or fail to fitthe correlation struc-
ture inferred by the majority of the data. Such a result may beproduced by outlying
observations characterized by different shapes which reflect on time series statistics
in some peculiar ways. [11] distinguished outlying observations of four types that
may distort linear model parameter estimates, i.e. additive (AO), innovation (IO),
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transient (TC) and permanent (LC) level change. Other outlier types which have
been considered in the literature are the so called patches ,i.e. a sequence of con-
secutive outlying observations that do not show a steady pattern ([2]), and outliers
in generalized autoregressive conditional heteroscedastic (GARCH) models which
may impact either levels or volatility or both ([1]). Further extensions refer to out-
liers in non linear and in vector time series (see, e.g., [5] for a review).

Statistical inference on outliers in time series usually relies on distributional as-
sumptions on some appropriate data generating process. In this paper a distribution-
free schema for building confidence regions for parameter estimates and conducting
hypothesis testing in the context of time series data possibly affected by outlying ob-
servations is considered. The empirical likelihood (EL) methods ([9]) are adopted
so that the familiar likelihood ratio statistic may be used which allows the statistical
inference to be based essentially on the chi squared distribution. New developments
that prove to be necessary in order to handle difficult situations are employed which
came to be known as adjusted EL and balanced EL ([4, 6]). Attention is specially
directed to outliers of the AO type and outliers which inducea permanent LC. A
rather general framework is provided however, that allows several different other
types to be handled along very similar guidelines. Some simulation experiments are
presented to illustrate the effectiveness of the method in case of moderate sample
size.

The plan of the paper is as follows. In Sect. 2 the EL frameworkis briefly con-
sidered. In Sect. 3 inference methods for outliers in time series are developed based
on EL methods. In Sect. 4 the behavior of the statistics for inference in small sam-
ples is outlined by means of some simulation experiments. Conclusions and possible
suggestions for further research are provided in Sect. 5.

2 The empirical likelihood

EL methods have been introduced by [7, 8, 9] and have been usedafterwards for
many applications, including time series analysis. Basically an unknown probabil-
ity pi is assigned to each observation in a sampley = (y1,y2, . . . ,yn)

′ to define an
empirical distributionF specified by(yi , pi), i = 1, . . . ,n. This way the necessity to
assume a family of probability distributions on which statistical inference may be
based is avoided. The EL is defined instead asL(F) = ∏n

i=1 pi under the constraints
pi ≥ 0, ∑n

i=1 pi = 1. The probability distributionF may possibly depend on a pa-
rameters setθ so that one has to consider the maximum ofF(θ ) to obtain a well
defined probability distribution. Letθ be e.g. the meanθ = ∑i piyi , then the largest
probability to obtain the observed sample is

EL(θ ) = max
p1,...,pn

{

n

∏
i=1

pi : pi > 0,
n

∑
i=1

pi = 1,
n

∑
i=1

piyi = θ

}

. (1)
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This is called the EL profile forθ . The maximum is reached atθ = ȳ= ∑yi/n and
equalsn−n, corresponding topi = 1/n, i = 1, . . . ,n. Thus,ȳ is the maximum EL
estimator ofθ . The EL ratio is obtained dividing (1) by its maximumn−n.

The addition of the so called estimating equations ([9, 10])to the constraint set
is a further step that allows complicated models to be estimated and statistical infer-
ence for building confidence regions and conducting tests ofhypotheses to be based
on EL ratio. Let the datay be generated by a model which depends on a parameter
vectorθ of lengthp and assume thatr ≥ p equations of the type

E{g(y,θ )}= 0, g= (g1, . . . ,gr)
′, (2)

exist that uniquely describe the relationships between thedata and the model param-
eters. The functionsg1, . . . ,gr are called the estimating functions and Equations (2)
are called the estimating equations. The EL ratio may be written

ELR(θ ) = max
p1,...,pn

{

n

∏
i=1

(npi)|pi ≥ 0,
n

∑
i=1

pi = 1,
n

∑
i=1

pig(yi,θ ) = 0

}

. (3)

If r = p Equations (2) are as many as the number of the unknown parameters. A
model for which this circumstance occurs is often called a just identified model. In
what follows such assumption will be held satisfied.

Letθ0 denote in Equation (3) the true parameter vector. Then it maybe shown ([9,
10]) that under some regularity conditions, asn→ ∞, the statistic−2log{ELR(θ )}
in θ = θ0 is distributed as aχ2 with p degrees of freedom, in close agreement with
the similar property which holds for ordinary parametric likelihood. So even in the
absence of any assumption on the probability distribution of the data, confidence
regions and tests of hypotheses may be computed all the same.

3 Empirical likelihood for inference on outliers in time series

It seems convenient in the present EL context to consider thefollowing general time
series model with outliers

yt = f (xt ,θ )+ εt , (4)

wherext summarizes all explanatory variables possibly including one or more dum-
mies which account for outliers occurring at known time instants, andεt is a zero
mean random error for which no distributional assumptions are made. The vector
parameterθ assumed of lengthp includes both model parameters and outlier sizes.
The following procedure may be used to inscribe the inference problems related to
model in Equation (4) in the EL framework. Letet = yt − f (xt ,θ ). The least squares
estimateθ̂ is obtained by solving the normal equations

∂
∂θk

n

∑
t=1

e2
t = 2

n

∑
t=1

(yt − f (xt ,θ ))
{

−
∂

∂θk
f (xt ,θ )

}

= 0, k= 1, . . . , p. (5)
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The estimating functionsgk(xt ,θ ) in the EL framework are each of the terms in the
sum which defines Equation (5).

Two cases will be considered here in some details, i.e. the AOand the LC outlier
type. In both cases an autoregressive (AR) model of orderp will be assumed in
the presence of a single outlier of sizeω , which occurs at timet = q. For the AO a
dummy variablect may be built that takes the formct = 1 if t = qand zero otherwise.
The dummy for the LC will bect = 1 if t ≥ q and zero elsewhere. More details on
how either an AO or an LC impacts the observed time seriesyt may be found in
[11]. The explanatory variables arext =(yt−1, . . . ,yt−p,ct)

′ and the parameter vector
is θ = (φ1, . . . ,φp,ω)′. So model in Equation (4) becomes in more compact form
yt = x′tθ + εt . The estimating functionsgk(xt ,θ ),k = 1, . . . , p+ 1, may be derived
from Equation (5).

gk(xt ,θ ) = (yt−k− ct−kω)et , k= 1, . . . , p

gp+1(xt ,θ ) =

(

p

∑
j=1

ct− jφ j − ct

)

et .

For eachθ , the likelihood ratio function ELR(θ ) is well defined only if the con-
vex hull of {g(xt ,θ ), t = 1, . . . ,n} contains the(p+ 1)-dimensional vector 0. For
AO outliers the probability that the vector 0 is not contained in the convex hull of
g increases when autoregressive order decreases. This problem may well be exem-
plified by an AR(1) model with an AO. In this peculiar case the last constraint in
Equation (3) becomes

pqg2(xq,θ )+ pq+1g2(xq+1,θ ) = 0.

If the estimating functions have the same sign the unique solution ispq = 0, pq+1=0
and−2log{ELR(θ )} goes to infinity. Two kinds of EL adjustments have been sug-
gested to address the convex hull constraint, i.e. the Adjusted EL (AEL) and the Bal-
anced EL (BEL). An AEL has been proposed by [3] which consistsof adding an ar-
tificial observation and then calculating the EL statistic based on the augmented data
set. In the present example, this amounts to setg2(xn+1,θ ) =−anḡ. [4, 6] proposed
a BEL where two balanced points are added to the data set, i.e.g2(xn+1,θ ) = δ and
g2(xn+2,θ ) = 2ḡ− δ . The investigation on the BEL method for inference about a
parameter vectorθ seems very important for improving the method performance.
An appropriate choice of location for the new extra points isproposed in such a way
as to guarantee that correct coverage levels are obtained.

4 Some results from a simulation experiment

The first example is concerned with an LC in an AR(1) model. 250standard nor-
mal random numbers have been generated and used for buildingan AR(1) time
series with parameterφ = 0.7. The first 50 values have been discarded. An outlier
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of sizeω = 5 has been added starting from timeq= 100 on. The 90% confidence
region for the ELR test compared to the likelihood test in normality hypothesis is
displayed in Fig. 1 (left hand panel). The confidence regionsare quite similar in
spite of the fact that much less information has been employed for building the
ELR test. For nominal 1−α confidence level, the observed coverage frequencies
computed on 1000 replications refer to EL (1−αEL) and normal-based (1−αN)
confidence regions. Nominal and observed coverage level aredisplayed in Table 1.
Results are quite satisfying overall, and with the only exception of the 90% confi-
dence probability level the EL coverage frequencies are slightly more accurate than
their normal-based counterpart.

The second example is concerned with an AO in the same AR(1) model. An AO
of sizeω = 5 has been added at timeq= 100. The 90% confidence region for the
ELR test compared to the parametric likelihood ratio test under normality hypothe-
sis is displayed in Fig. 1 (right hand panel). The confidence region computed under
the hypothesis of normality is narrower than that computed by the ELR statistic
since the former benefits of a strong distributional assumption. However as far as
the AR parameter is concerned the difference is negligible.Note that the BEL had
to be employed necessarily for the EL method to work properly, in accordance with
the argument developed in the preceding Sect. 3.
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Fig. 1 LC (left hand panel) and AO (right hand panel) simulated in anAR(1) φ = 0.7 n = 200
ω = 5 q= 100. Confidence regions at 90% Green=ELR Blue=normal ellipsoid

Table 1 Coverage frequencies for a Level Change in an AR(1) model

1−α 1−αEL 1−αN

0.95 0.946 0.933
0.90 0.889 0.891
0.80 0.794 0.786
0.70 0.699 0.698
0.60 0.607 0.610
0.50 0.502 0.510
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5 Conclusions

Empirical likelihood methods have been considered for estimating outliers size in
time series models and computing confidence regions for the estimated sizes. The
use of the balanced empirical likelihood has been taken intoaccount aiming at ob-
taining more accurate coverage and larger power in testing of hypotheses, and al-
lowing the computation of outlier size estimates in cases where plain empirical like-
lihood fails to provide feasible solutions. The empirical likelihood based methods
for making inference on outliers in time series have been illustrated on two simu-
lated examples concerned with a level change outlier and an additive outlier in a first
order autoregressive model. Further interesting topics, e.g. other outlier types, and
outliers identification and estimation in a wider class of time series models, such as
the general autoregressive moving average and the non linear models, are left for
future research.
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